
DSP2804x C/C++ Header Files and Peripheral Examples Quick Start

Version 1.30

July 27, 2009

1

C2804x C/C++ Header Files and Peripheral Examples
Quick Start

1 Introduction: ... 2

1.1 Revision History.. 3
1.2 Where Files are Located (Directory Structure) .. 4

2 Understanding The Peripheral Bit-Field Structure Approach ... 6
3 Peripheral Example Projects ... 6

3.1 Getting Started ... 6
3.1.1 Getting Started in Code Composer Studio v3.x ... 6
3.1.2 Getting Started in Code Composer Studio v4.. 8

3.2 Example Program Structure.. 11
3.2.1 Include Files.. 11
3.2.2 Source Code ... 12
3.2.3 Linker Command Files .. 12

3.3 Example Program Flow... 14
3.4 Included Examples: .. 15
3.5 Executing the Examples From Flash... 17

4 Steps for Incorporating the Header Files and Sample Code ... 20
4.1 Before you begin... 20
4.2 Including the DSP2804x Peripheral Header Files ... 20
4.3 Including Common Example Code.. 24

5 Troubleshooting Tips & Frequently Asked Questions... 26
5.1 Effects of read-modify-write instructions. .. 28

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag........................... 28
5.1.2 Registers with Volatile Bits. ... 29

6 Packet Contents: .. 30
6.1 Header File Support – DSP2804x_headers .. 30

6.1.1 DSP2804x Header Files – Main Files.. 30
6.1.2 DSP2804x Header Files – Peripheral Bit-Field and Register Structure Definition Files31
6.1.3 Code Composer .gel Files... 31
6.1.4 Variable Names and Data Sections... 31

6.2 Common Example Code – DSP2804x_common... 33
6.2.1 Peripheral Interrupt Expansion (PIE) Block Support .. 33
6.2.2 Peripheral Specific Files.. 34
6.2.3 Utility Function Source Files.. 34
6.2.4 Example Linker .cmd files ... 35
6.2.5 Example Library .lib Files .. 35

7 Detailed Revision History: ... 35
8 Errata... 38

 DSP2804x V1.30 Quick Start Readme

2

1 Introduction:

The DSP2804x C/C++ peripheral header files and example projects facilitate writing in C/C++
Code for the Texas Instruments TMS320x2804x DSPs. The code can be used as a learning tool
or as the basis for a development platform depending on the current needs of the user.

• Learning Tool:

This download includes several example Code Composer Studio™† projects for a ‘2804x
development platform.

These examples demonstrate the steps required to initialize the device and utilize the on-
chip peripherals. The provided examples can be copied and modified giving the user a
platform to quickly experiment with different peripheral configurations.

These projects can also be migrated to any future ‘2804x devices by simply changing the
memory allocation in the linker command file.

• Development Platform:

The peripheral header files can easily be incorporated into a new or existing project to
provide a platform for accessing the on-chip peripherals using C or C++ code. In addition,
the user can pick and choose functions from the provided code samples as needed and
discard the rest.

To get started this document provides the following information:

• Overview of the bit-field structure approach used in the DSP2804x C/C++ peripheral header
files.

• Overview of the included peripheral example projects.

• Steps for integrating the peripheral header files into a new or existing project.

• Troubleshooting tips and frequently asked questions.

Finally, this document does not provide a tutorial on writing C code, using Code Composer
Studio, or the C28x Compiler and Assembler. It is assumed that the reader already has a 2804x
hardware platform setup and connected to a host with Code Composer Studio installed. The
user should have a basic understanding of how to use Code Composer Studio to download code
through JTAG and perform basic debug operations.

†
 Code Composer Studio is a trademark of Texas Instruments (www.ti.com).

DSP2804x V1.30 Quick Start Readme

 3

1.1 Revision History

Version 1.30

� This version includes minor corrections and comment fixes to the header files and
examples, and also adds separate example folders, DSP2804x_examples_ccsv4, with
examples supported by the Eclipse-based Code Composer Studio v4. A detailed revision
history can be found in Section 7.

Version 1.20

� This version includes SFO_TI_Build_V5B.lib, which supports all HRPWM configurations
and fixes a few typos and minor errors in the DSP2804x header files and examples. A
detailed revision history can be found in Section 7.

Version 1.10

� This version fixes various typos and minor errors in the DSP2804x header files and
examples. A detailed revision history can be found in Section 7.

Version 1

� This version is the first formal release of the DSP2804x header files and examples. The
name has been changed to align with marketing nomenclature of the supported devices.

Beta 1

� This version is the first preliminary customer release of the DSP2804x header files and
examples. At this point the headers were named DSP282x.

 DSP2804x V1.30 Quick Start Readme

4

1.2 Where Files are Located (Directory Structure)

As installed, the C2804x C/C++ Header Files and Peripheral
Examples is partitioned into a well-defined directory structure. By
default, the source code is installed into the
c:\tidcs\c28\DSP2804x\<version> directory.

Table 1 describes the contents of the main directories used by
DSP2804x:

Table 1. DSP2804x Main Directory Structure

Directory Description

<base> Base install directory. By default this is c:\tidcs\c28\DSP2804x\<version>. For
the rest of this document <base> will be omitted from the directory names.

<base>\doc Documentation including the revision history from the previous release.

<base>\DSP2804x_headers Files required to incorporate the peripheral header files into a project.
The header files use the bit-field structure approach described in Section 2.
Integrating the header files into a new or existing project is described in
Section 4.

<base>\DSP2804x_examples Example Code Composer Studio projects based on the DSP2804x header
files. These example projects illustrate how to configure many of the ‘2804x
on-chip peripherals. An overview of the examples is given in Section 3.

<base>\DSP2804x_examples_ccsv4 Example Code Composer Studio v4 projects compiled with floating point unit
enabled. These example are identical to those in the \DSP2804x_examples
directory, but are generated for CCSv4 and cannot be run in CCSv3.x. An
overview of the examples is given in Section 3.

<base>DSP2804x_common Common source files shared across a number of the DSP2804x example
projects to illustrate how to perform tasks using the DSP2804x header file
approach. Use of these files is optional, but may be useful in new projects. A
list of these files is in Section 6.

Under the DSP2804x_headers and DSP2804x_common directories the source files are further
broken down into sub-directories each indicating the type of file. Table 2 lists the sub-directories
and describes the types of files found within each:

Table 2. DSP2804x Sub-Directory Structure

Sub-Directory Description

DSP2804x_headers\cmd Linker command files that allocate the bit-field structures described in Section 2.

DSP2804x_headers\source Source files required to incorporate the header files into a new or existing project.

DSP2804x V1.30 Quick Start Readme

 5

DSP2804x_headers\include Header files for each of the 2804x on-chip peripherals.

DSP2804x_common\cmd Example memory command files that allocate memory on the ‘2804x devices.

DSP2804x_common\include Common .h files that are used by the peripheral examples.

DSP2804x_common\source Common .c files that are used by the peripheral examples.

DSP2804x_common\lib Common library (.lib) files that are used by the peripheral examples.

DSP2804x_common\gel Code Composer Studio v3.x GEL files for each device. These are optional.

DSP2804x_common\gel\ccsv4 Code Composer Studio v4.x GEL files for each device. These are optional.

 DSP2804x V1.30 Quick Start Readme

6

2 Understanding The Peripheral Bit-Field Structure Approach

The DSP2804x C/C++ Header Files and Peripheral Examples in C use a bit-field structure
approach for mapping and accessing peripheral registers on the TI ‘2804x based DSPs. For
more information on using this technique, refer to the application note Programming
TMS32028xx and 28xxx Peripherals in C/C++ (SPRAA85).

This application note explores the hardware abstraction layer implementation to make C/C++
coding easier on 28x DSPs. This method is compared to traditional #define macros and topics of
code efficiency and special case registers are also addressed.

3 Peripheral Example Projects

In the DSP2804x_examples\ directory of C2804x C/C++ Header Files and Peripheral Examples
in C/C++ there are several example projects that use the DSP2804x header files to configure
the on-chip peripherals. A listing of the examples is included in Section 3.4.

3.1 Getting Started

3.1.1 Getting Started in Code Composer Studio v3.x

To get started, follow these steps to load the DSP2804x CPU-Timer example. Other examples
are set-up in a similar manner.

1. Have a 2804x hardware platform connected to a host with Code Composer Studio
installed.

 NOTE: As supplied, the example projects are built for the ‘28044 device. If you are using
another device within the ‘2804x family, the memory definition in the linker command file
(.cmd) will need to be modified and the project rebuilt.

2. Load the example’s GEL file (.gel) or Project file (.pjt).

Each example includes a Code Composer Studio GEL file to help automate loading of the
project, compiling of the code and populating of the watch window. Alternatively, the project
file itself (.pjt) can be loaded instead of using the included GEL file.

To load the CPU-Timer example’s GEL file follow these steps:

a. In Code Composer Studio: File->Load GEL

b. Browse to the CPU Timer example directory: DSP2804x_examples\cpu_timer

c. Select Example_2804xCpuTimer.gel and click on open.

d. From the Code Composer GEL pull-down menu select

DSP2804x CpuTimerExample-> Load_and_Build_Project
This will load the project and build compile the project.

3. Review the comments at the top of the main source file: Example_2804xCpuTimer.c.

DSP2804x V1.30 Quick Start Readme

 7

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of each
example. In some cases you may be required to make external connections for the example
to work properly.

4. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The DSP2804x
CPU-Timer example only requires that the hardware be setup for “Boot to SARAM” mode.
Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Refer to the
documentation for your hardware platform for information on configuring the boot mode pins.
The ‘2804x boot modes are identical to those on the 280x. Refer to the TMS320x280x Boot
ROM Reference Guide (SPRU722) for more information.

Table 3. 2804x Boot Mode Settings

GPIO18 GPIO29 GPIO34 Mode

1 1 1 Boot to flash 0x3F7FF6

1 1 0 Call SCI-A boot loader

1 0 1 Call SPI-A boot loader

1 0 0 Call I2C boot loader

0 1 1 Reserved
(Was 280x eCAN-A boot loader)

0 1 0 Boot to M0 SARAM 0x000000

0 0 1 Boot to OTP 0x3D7800

0 0 0 Call parallel boot loader

5. Load the code

Once any hardware configuration has been completed, from the Code Composer GEL pull-
down menu select

DSP2804x CpuTimerExample-> Load_Code

This will load the .out file into the 28x device, populate the watch window with variables of
interest, reset the part and execute code to the start of the main function. The GEL file is
setup to reload the code every time the device is reset so if this behavior is not desired, the
GEL file can be removed at this time. To remove the GEL file, right click on its name and
select remove.

6. Run the example, add variables to the watch window or examine the memory
contents.

7. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire
DSP2804x packet to modify or at least create a backup of the original files first. New
examples provided by TI will assume that the base files are as supplied.

Sections 3.2 and 3.3 describe the structure and flow of the examples in more detail.

 DSP2804x V1.30 Quick Start Readme

8

8. When done, remove the example’s GEL file and project from Code Composer
Studio.

To remove the GEL file, right click on its name and select remove.

The examples use the header files in the DSP2804x_headers directory and shared source in the
DSP2804x_common directory. Only example files specific to a particular example are located
within in the example directory.

Note: Most of the example code included uses the .bit field structures to access registers.
This is done to help the user learn how to use the peripheral and device. Using the bit
fields has the advantage of yielding code that is easier to read and modify. This method
will result in a slight code overhead when compared to using the .all method. In addition,
the example projects have the compiler optimizer turned off. The user can change the
compiler settings to turn on the optimizer if desired.

3.1.2 Getting Started in Code Composer Studio v4

To get started, follow these steps to load the 32-bit CPU-Timer example. Other examples are
set-up in a similar manner.

1. Have a hardware platform connected to a host with Code Composer Studio
installed.

 NOTE: As supplied, the ‘280x example projects are built for the ‘2808 device. If you are
using another 280x device, the memory definition in the linker command file (.cmd) will need
to be changed and the project rebuilt.

2. Open the example project.

Each example has its own project directory which is “imported”/opened in Code Composer
Studio v4.

To open the ‘280x CPU-Timer example project directory, follow the following steps:

e. In Code Composer Studio v 4.x: Project->Import Existing CCS/CCE Eclipse Project.

f. Next to “Select Root Directory”, browse to the CPU Timer example directory:
DSP280x_examples_ccsv4\cpu_timer. Select the Finish button.

This will import/open the project in the CCStudio v4 C/C++ Perspective project.

9. Review the comments at the top of the main source file: Example_2804xCpuTimer.c.

A brief description of the example and any assumptions that are made and any external
hardware requirements are listed in the comments at the top of the main source file of each
example. In some cases you may be required to make external connections for the example
to work properly.

10. Perform any hardware setup required by the example.

Perform any hardware setup indicated by the comments in the main source. The DSP2804x
CPU-Timer example only requires that the hardware be setup for “Boot to SARAM” mode.

DSP2804x V1.30 Quick Start Readme

 9

Other examples may require additional hardware configuration such as connecting pins
together or pulling a pin high or low.

Table 3 shows a listing of the boot mode pin settings for your reference. Refer to the
documentation for your hardware platform for information on configuring the boot mode pins.
The ‘2804x boot modes are identical to those on the 280x. Refer to the TMS320x280x Boot
ROM Reference Guide (SPRU722) for more information.

Table 4. 2804x Boot Mode Settings

GPIO18 GPIO29 GPIO34 Mode

1 1 1 Boot to flash 0x3F7FF6

1 1 0 Call SCI-A boot loader

1 0 1 Call SPI-A boot loader

1 0 0 Call I2C boot loader

0 1 1 Reserved
(Was 280x eCAN-A boot loader)

0 1 0 Boot to M0 SARAM 0x000000

0 0 1 Boot to OTP 0x3D7800

0 0 0 Call parallel boot loader

3. Build and Load the code

Once any hardware configuration has been completed, in Code Composer Studio v4, go to
Target->Debug Active Project.

This will open the “Debug Perspective” in CCSv4, build the project, load the .out file into the
28x device, reset the part, and execute code to the start of the main function. By default, in
Code Composer Studio v4, every time Debug Active Project is selected, the code is
automatically built and the .out file loaded into the 28x device.

4. Run the example, add variables to the watch window or examine the memory contents.

11. At the top of the code in the comments section, there should be a list of “Watch
variables”. To add these to the watch window, highlight them and right-click. Then select
Add Watch expression. Now variables of interest are added to the watch window.

5. Experiment, modify, re-build the example.

If you wish to modify the examples it is suggested that you make a copy of the entire header
file packet to modify or at least create a backup of the original files first. New examples
provided by TI will assume that the base files are as supplied.

Sections 3.2 and 3.3 describe the structure and flow of the examples in more detail.

6. When done, delete the project from the Code Composer Studio v4 workspace.

Go to View->C/C++ Projects to open up your project view. To remove/delete the project
from the workspace, right click on the project’s name and select delete. Make sure the Do
not delete contents button is selected, then select Yes. This does not delete the project itself.
It merely removes the project from the workspace until you wish to open/import it again.

 DSP2804x V1.30 Quick Start Readme

10

The examples use the header files in the DSP2802x_headers directory and shared source in
the DSP2802x_common directory. Only example files specific to a particular example are
located within in the example directory.

Note: Most of the example code included uses the .bit field structures to access
registers. This is done to help the user learn how to use the peripheral and device.
Using the bit fields has the advantage of yielding code that is easier to read and
modify. This method will result in a slight code overhead when compared to using the
.all method. In addition, the example projects have the compiler optimizer turned off.
The user can change the compiler settings to turn on the optimizer if desired.

DSP2804x V1.30 Quick Start Readme

 11

3.2 Example Program Structure

Each of the example programs has a very similar structure. This structure includes unique
source code, shared source code, header files and linker command files.

3.2.1 Include Files

All of the example source code #include two header files as shown below:

/**

* DSP2804x_examples\cpu_timer\Example_2804xCpuTimer.c

**/

#include "DSP2804x_Device.h" // DSP2804x Headerfile Include File

#include "DSP2804x_Examples.h" // DSP2804x Examples Include File

• DSP2804x_Device.h

This header file is required to use the DSP2804x peripheral header files. This file includes
all of the required peripheral specific header files and includes device specific macros and
typedef statements. This file is found in the <base>\DSP2804x_headers\include directory.

DSP2804x_GlobalVariableDefs.c

This source file is required to use the DSP2804x

peripheral header files.

Example Specific Source Code

Common (shared) Source Code

Used by more then one example. These files

contain generic functions for setting up peripherals

to a defined state or functions that may be useful to

re-use in different applications.

Shared Source Code

DSP2804x_Headers_nonBIOS.cmd

Linker file required by the peripheral specific header files.

Memory block specific linker command file

 DSP2804x V1.30 Quick Start Readme

12

• DSP2804x_Examples.h

This header file defines parameters that are used by the example code. This file is not
required to use just the DSP2804x peripheral header files but is required by some of the
common source files. This file is found in the <base>\DSP2804x_common\include
directory.

3.2.2 Source Code

Each of the example projects consists of source code that is unique to the example as well as
source code that is common or shared across examples.

• DSP2804x_GlobalVariableDefs.c

Any project that uses the DSP2804x peripheral header files must include this source file. In
this file are the declarations for the peripheral register structure variables and data section
assignments. This file is found in the <base>\DSP2804x_headers\source directory.

• Example specific source code:

Files that are specific to a particular example have the prefix Example_2804x on their
filename. For example Example_2804xCpuTimer.c is specific to the CPU Timer example
and not used for any other example. Example specific files are located in the
<base>\DSP2804x_examples\<example> directory.

• Common source code:

The remaining source files are shared across the examples. These files contain common
functions for peripherals or useful utility functions that may be re-used. Shared source files
are located in the DSP2804x_common\source directory. Users may choose to incorporate
none, some, or the entire shared source into their own new or existing projects.

3.2.3 Linker Command Files

Each example uses two linker command files. These files specify the memory where the linker
will place code and data sections. One linker file is used for assigning compiler generated
sections to the memory blocks on the device while the other is used to assign the data sections
of the peripheral register structures used by the DSP2804x peripheral header files.

• Memory block linker allocation:

The linker files shown in Table 5 are used to assign sections to memory blocks on the device.
These linker files are located in the <base>\DSP2804x_common\cmd directory. Each example
will use one of the following files depending on the memory used by the example.

DSP2804x V1.30 Quick Start Readme

 13

Table 5. Included Memory Linker Command Files

Memory Linker
Command File Examples

Location Description

28044_RAM_lnk.cmd DSP2804x_common\cmd 28044 memory linker command file. Includes
all of the internal SARAM blocks on a 28044
device. Does not include flash or OTP blocks.

F28044.cmd DSP2804x_common\cmd F28044 memory linker command file. Includes
all Flash, OTP and CSM password protected
memory locations.

• DSP2804x header file structure data section allocation:

Any project that uses the DSP2804x header file peripheral structures must include a linker
command file that assigns the peripheral register structure data sections to the proper
memory location. These files are described in Table 6.

Table 6. DSP2804x Peripheral Header Linker Command File

DSP2804x Peripheral Header File
Linker Command File

Location Description

DSP2804x_Headers_BIOS.cmd DSP2804x_headers\cmd Linker .cmd file to assign the header file variables
in a BIOS project. This file must be included in
any BIOS project that uses the header files. Refer
to section 4.2.

DSP2804x_Headers_nonBIOS.cmd DSP2804x_headers\cmd Linker .cmd file to assign the header file variables
in a non-BIOS project. This file must be included in
any non-BIOS project that uses the header files.
Refer to section 4.2.

 DSP2804x V1.30 Quick Start Readme

14

3.3 Example Program Flow

All of the example programs follow a similar recommended flow for setting up the 2804x devices.
Figure 1 outlines this basic flow:

Reset

Boot Sequence

DSP2804x_CodeStartBranch.asm

Disable WD (Optional)
Branch to C Init Routine

C Init

Initialize System Control

Initalize GPIO

Initialize PIE Vector Table

Initalize Peripherals

Example Specific Code
Enable Interrupts

main()

{

}

Boot ROM

DSP2804x_CodeStartBranch.asm
� Used to re-direct code execution from the boot

entry point to the C Init routine.
� Code can be configured to disable the

WatchDog if the WD is timing out before main()
is reached.

� Assigned to the BEGIN section by the linker.
� Located at 0x000000 for Boot to M0
� Located at 0x3F7FF6 for Boot to Flash

C Init Routine
� The Compiler's boot.asm which is

automatically included with the runtime
library. This will set OBJMODE to 28x.

Init PLL, Turn on Peripheral Clocks and set the
clock pre-scalers
Disable the WatchDog

Configure GPIO Pins to their peripheral function
or as an input or output as required by the
example.

Initalize the entire PIE Vector Table with pointers
to default Interrupt Service Routines (ISRs) found
in DSP2804x_DefaultIsr.c. It is useful for debug
purposes to have the entire table initalized even if
the ISR is not going to be used.

Remap PIE vectors used by the example to ISR
functions found within the example program.

Initalize the peripherals as required by the
example.

Enable the required PIE and CPU interrupts.
Any additional code required for the example.

Additional Functions and
Interrupt Service Routines

Figure 1. Flow for Example Programs

DSP2804x V1.30 Quick Start Readme

 15

3.4 Included Examples:

Table 7. Included Examples

Example Description

adc_seq_ovd_tests ADC test using the sequencer override feature.

adc_seqmode_test ADC Seq Mode Test. Channel A0 is converted forever and logged in a buffer

adc_soc ADC example to convert two channels: ADCINA3 and ADCINA2. Interrupts are
enabled and PWM1 is configured to generate a periodic ADC SOC on SEQ1.

cpu_timer Configures CPU Timer0 and increments a count each time the ISR is serviced.

epwm_Achannel_updown Configures GPIO0-15 for ePWM1-16 A channels (EPWMxA)

epwm_deadband Example deadband generation via ePWM3

epwm_timer_interrupts Starts ePWM1-ePWM6 timers. Every period an interrupt is taken for each ePWM.

epwm_trip_zone Uses the trip zone signals to set the ePWM signals to a particular state.

epwm_up_aq Generate a PWM waveform using an up count time base ePWM1-ePWM3 are used.

epwm_updown_aq Generate a PWM waveform using an up/down time base. ePWM1 – ePWM3 are used.

external_interrupt Configures GPIO0 as XINT1 and GPIO1 as XINT2. The interrupts are fired by toggling
GPIO30 and GPIO31 which are connected to XINT1 (GPIO0) and XINT2 (GPIO1)
externally by the user.

flash ePWM timer interrupt project moved from SARAM to Flash. Includes steps that were
used to convert the project from SARAM to Flash. Some interrupt service routines are
copied from FLASH to SARAM for faster execution.

gpio_setup Three examples of different pinout configurations.

gpio_toggle Toggles all of the I/O pins using different methods – DATA, SET/CLEAR and TOGGLE
registers. The pins can be observed using an oscilloscope.

hrpwm Sets up ePWM1-ePWM4 and controls the edge of output A using the HRPWM
extension. Both rising edge and falling edge are controlled.

hrpwm_sfo Use TI's MEP Scale Factor Optimizer (SFO) library to change the HRPWM. This
version of the SFO library supports HRPWM on ePWM channels 1-4 only.

hrpwm_sfo_v5 Use TI’s MEP Scale Factor Optimizer (SFO) library version 5 to change the HRPWM.
This version of the SFO library supports HRPWM on up to 16 ePWM channels (if
available)

hrpwm_slider This is the same as the hrpwm example except the control of CMPAHR is now
controlled by the user via a slider bar. The included .gel file sets up the slider.

i2c_eeprom Communicate with the EEPROM via I2C

lpm_halt Puts device into low power halt mode. GPIO0 is configured to wake the device from halt
when an external high-low-high pulse is applied to it.

lpm_idle Puts device into low power idle mode. GPIO0 is configured as XINT1 pin. When an
XINT1 interrupt occurs due to a falling edge on GPIO0, the device is woken from idle.

lpm_standby Puts device into low power standby mode. GPIO0 is configured to wake the device from
halt when an external high-low-high pulse is applied to it.

sci_echoback SCI-A example that can be used to echoback to a terminal program such as
hyperterminal. A transceiver and a connection to a PC is required.

scia_loopback SCI-A example code that uses the loop-back test mode of the SCI module to send
characters This example uses bit polling and does not use interrupts.

scia_loopback_interrupts SCI-A example code that uses the internal loop-back test mode to transfer data through
SCI-A. Interrupts and FIFOs are both used in this example.

spi_loopback SPI-A example that uses the peripherals loop-back test mode to send data.

 DSP2804x V1.30 Quick Start Readme

16

Included Examples Continued…

spi_loopback_interrupts SPI-A example that uses the peripherals loop-back test mode to send data. Both
interrupts and FIFOs are used in this example.

sw_prioritized_interrupts The standard hardware prioritization of interrupts can be used for most applications.
This example shows a method for software to re-prioritize interrupts if required.

watchdog Illustrates feeding the dog and re-directing the watchdog to an interrupt.

DSP2804x V1.30 Quick Start Readme

 17

3.5 Executing the Examples From Flash

Most of the DSP2804x examples execute from SARAM in “boot to SARAM” mode. One
example, DSP2804x_examples\Flash, executes from flash memory in “boot to flash” mode. This
example is the PWM timer interrupt example with the following changes made to execute out of
flash:

1. Change the linker command file to link the code to flash.

Remove 28044_RAM_lnk.cmdfrom the project and add F28044.cmd. F28044.cmd is located
in the <base>DSP2804x_common\cmd\ directory.

2. Add the DSP2804x_common\source\DSP2804x_CSMPasswords.asm to the project.

This file contains the passwords that will be programmed into the Code Security Module
(CSM) password locations. Leaving the passwords set to 0xFFFF during development is
recommended as the device can easily be unlocked. The 2804x CSM is identical to that on
the 280x. For more information on the CSM refer to the TMS320x280x, 2801x, 2804x
System Control and Interrupts Reference Guide (spru712).

3. Modify the source code to copy all functions that must be executed out of SARAM
from their load address in flash to their run address in SARAM.

In particular, the flash wait state initialization routine must be executed out of SARAM. In
the DSP2804x examples, functions that are to be executed from SARAM have been
assigned to the ramfuncs section by compiler CODE_SECTION #pragma statements as
shown in the example below.

/**

* DSP2804x_common\source\DSP2804x_SysCtrl.c

**/

#pragma CODE_SECTION(InitFlash, "ramfuncs");

The ramfuncs section is then assigned to a load address in flash and a run address in
SARAM by the memory linker command file as shown below:

/**

* DSP2804x_common\include\F28044.cmd

**/

SECTIONS

{

 ramfuncs : LOAD = FLASHD,

 RUN = RAML0,

 LOAD_START(_RamfuncsLoadStart),

 LOAD_END(_RamfuncsLoadEnd),

 RUN_START(_RamfuncsRunStart),

 PAGE = 0

}

 DSP2804x V1.30 Quick Start Readme

18

The linker will assign symbols as specified above to specific addresses as follows:

Address Symbol

Load start address RamfuncsLoadStart

Load end address RamfuncsLoadEnd

Run start address RamfuncsRunStart

These symbols can then be used to copy the functions from the Flash to SARAM using the
included example MemCopy routine or the C library standard memcopy() function.

To perform this copy from flash to SARAM using the included example MemCopy function:

a. Add the file DSP2804x_common\source\DSP2804x_MemCopy.c to the project.

b. Add the following function prototype to the example source code. This is done for you in
the DSP2804x_Examples.h file.

/**

* DSP2804x_common\include\DSP2804x_Examples.h

**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

c. Add the following variable declaration to your source code to tell the compiler that these
variables exist. The linker command file will assign the address of each of these
variables as specified in the linker command file as shown in step 3. For the DSP2804x
example code this has is already done in DSP2804x_Examples.h.

/**

* DSP2804x_common\include\DSP2804x_GlobalPrototypes.h

**/

extern Uint16 RamfuncsLoadStart;

extern Uint16 RamfuncsLoadEnd;

extern Uint16 RamfuncsRunStart;

d. Modify the code to call the example MemCopy function for each section that needs to be
copied from flash to SARAM.

/**

* DSP2804x_examples\Flash source file

**/

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

DSP2804x V1.30 Quick Start Readme

 19

4. Modify the code to call the flash initialization routine:

This function will initialize the wait states for the flash and enable the Flash Pipeline mode.

/**

* DSP2804x peripheral example .c file

**/

InitFlash();

5. Set the required jumpers for “boot to Flash” mode.

The required jumper settings for each boot mode are shown in

Table 8. 2804x Boot Mode Settings

GPIO18 GPIO29 GPIO34 Mode

1 1 1 Boot to flash 0x3F7FF6

1 1 0 Call SCI-A boot loader

1 0 1 Call SPI-A boot loader

1 0 0 Call I2C boot loader

0 1 1 Reserved
(280x eCAN-A boot loader)

0 1 0 Boot to M0 SARAM 0x000000

0 0 1 Boot to OTP 0x3D7800

0 0 0 Call parallel boot loader

Refer to the documentation for your hardware platform for information on configuring the
boot mode selection pins.

The 2804x boot modes are identical to the 280x. For more information refer to the
TMS320x280x, 2801x, 2804x DSP Boot ROM Reference Guide (SPRU722).

6. Program the device with the built code.

In Code Composer Studio v4.0, when code is loaded into the device during debug, it
automatically programs to flash memory.

This can be done using SDFlash available from Spectrum Digital’s website
(www.spectrumdigital.com). In addition the C2000 on-chip Flash programmer plug-in for
Code Composer Studio v3.0 can be used.

These tools will be updated to support new devices as they become available. Please
check for updates.

7. In Code Composer Studio v3, to debug, load the project in CCS, select File->Load
Symbols->Load Symbols Only.

It is useful to load only symbol information when working in a debugging environment where
the debugger cannot or need not load the object code, such as when the code is in ROM or
flash. This operation loads the symbol information from the specified file.

 DSP2804x V1.30 Quick Start Readme

20

4 Steps for Incorporating the Header Files and Sample Code

Follow these steps to incorporate the peripheral header files and sample code into your own
projects.

4.1 Before you begin

Before you include the header files and any sample code into your own project, it is
recommended that you perform the following:

1. Load and step through an example project.

Load and step through an example project to get familiar with the header files and sample
code. This is described in Section 3.

2. Create a copy of the source files you want to use.

– DSP2804x_headers: code required to incorporate the header files into your project

– DSP2804x_common: shared source code much of which is used in the example
projects.

– DSP2804x_examples: example projects that use the header files and shared code.

4.2 Including the DSP2804x Peripheral Header Files

Including the DSP2804x header files in your project will allow you to use the bit-field structure
approach in your code to access the peripherals on the DSP. To incorporate the header files in
a new or existing project, perform the following steps:

1. #include “DSP2804x_Device.h” in your source files.

This include file will in-turn include all of the peripheral specific header files and required
definitions to use the bit-field structure approach to access the peripherals.

/**

* User’s source file

**/

#include “DSP2804x_Device.h”

2. Edit DSP2804x_Device.h and select the target you are building for:

In the below example, the file is configured to build for the ‘28044 device.

/**

* DSP2804x_headers\include\DSP2804x_Device.h

**/

#define TARGET 1

#define DSP28_28044 TARGET

 By default, the ‘28044 device is selected.

DSP2804x V1.30 Quick Start Readme

 21

3. Add the source file DSP2804x_GlobalVariableDefs.c to the project.

This file is found in the DSP2804x_headers\source\ directory and includes:

– Declarations for the variables that are used to access the peripheral registers.

– Data section #pragma assignments that are used by the linker to place the variables in
the proper locations in memory.

4. Add the appropriate DSP2804x header linker command file to the project.

As described in Section 2, when using the DSP2804x header file approach, the data
sections of the peripheral register structures are assigned to the memory locations of the
peripheral registers by the linker.

To perform this memory allocation in your project, one of the following linker command
files located in DSP2804x_headers\cmd\ must be included in your project:

– For non-DSP/BIOS† projects: DSP2804x_Headers_nonBIOS.cmd

– For DSP/BIOS projects: DSP2804x_Headers_BIOS.cmd

The method for adding the header linker file to the project depends on the version of Code
Composer Studio being used.

Code Composer Studio V2.2 and later:

As of CCS 2.2, more then one linker command file can be included in a project.

Add the appropriate header linker command file (BIOS or nonBIOS) directly to the project.

Code Composer Studio prior to V2.2

Prior to CCS 2.2, each project contained only one main linker command file. This file can,
however, call additional .cmd files as needed. To include the required memory allocations
for the DSP2804x header files, perform the following two steps:

1) Update the project’s main linker command (.cmd) file to call one of the
supplied DSP2804x peripheral structure linker command files using the -l
option.

/**

* User’s linker .cmd file

**/

/* Use this include file only for non-BIOS applications */

-l DSP2804x_Headers_nonBIOS.cmd

/* Use this include file only for BIOS applications */

/* -l DSP2804x_Headers_BIOS.cmd */

†
 DSP/BIOS is a trademark of Texas Instruments

 DSP2804x V1.30 Quick Start Readme

22

2) Add the directory path to the DSP2804x peripheral linker .cmd file to your
project.

Code Composer Studio 3.x

a. Open the menu: Project->Build Options

b. Select the Linker tab and then Select Basic.

c. In the Library Search Path, add the directory path to the location of the
DSP2804x_headers\cmd directory on your system.

Code Composer Studio 4.x:

Method #1:

a. Right-click on the project in the project window of the C/C++ Projects perspective.

b. Select Link Files to Project…

c. Navigate to the DSP2804x_headers\cmd directory on your system and select the
desired .cmd file.

Note: The limitation with Method #1 is that the path to <install
directory>\DSP2804x_headers\cmd\<cmd file>.cmd is fixed on your PC. If you move
the installation directory to another location on your PC, the project will “break”
because it still expects the .cmd file to be in the original location. Use Method #2 if
you are using “linked variables” in your project to ensure your project/installation
directory is portable across computers and different locations on the same PC. (For
more information, see:
http://tiexpressdsp.com/index.php/Portable_Projects_in_CCSv4_for_C2000)

Method #2:

a. Right-click on the project in the project window of the C/C++ Projects perspective.

b. Select New->File.

c. Click on the Advanced>> button to expand the window.

d. Check the Link to file in the file system checkbox.

e. Select the Variables… button. From the list, pick the linked variable (macro defined in

your macros.ini file) associated with your installation directory. (For the 2804x header

files, this is INSTALLROOT_2804X_V<version #>). For more information on linked

variables and the macros.ini file, see:

http://tiexpressdsp.com/index.php/Portable_Projects_in_CCSv4_for_C2000#Method_.2

32_for_Linking_Files_to_Project:

f. Click on the Extend…” button. Navigate to the desired .cmd file and select OK.

DSP2804x V1.30 Quick Start Readme

 23

5. Add the directory path to the DSP2804x header files to your project.

 Code Composer Studio 3.x:

To specify the directory where the header files are located:

a. Open the menu: Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path, add the directory path to the location of
DSP2804x_headers\include on your system.

Code Composer Studio 4.x:

To specify the directory where the header files are located:

a. Open the menu: Project->Properties.

b. In the menu on the left, select “C/C++ Build”.

c. In the “Tool Settings” tab, Select “C2000 Compiler -> Include Options:”

d. In the “Add dir to #include search path (--include_path, -I” window, select the “Add” icon
in the top right corner.

e. Select the “File system…” button and navigate to the directory path of
DSP2804x_headers\include on your system.

6. Additional suggested build options:

The following are additional compiler and linker options. The options can all be set via the
Project->Build Options menu.

– Compiler Tab:

� -ml Select Advanced and check –ml

Build for large memory model. This setting allows data sections to reside anywhere
within the 4M-memory reach of the 28x devices.

� -pdr Select Diagnostics and check –pdr

Issue non-serious warnings. The compiler uses a warning to indicate code that is
valid but questionable. In many cases, these warnings issued by enabling -pdr can
alert you to code that may cause problems later on.

– Linker Tab:

� -w Select Advanced and check –w

Warn about output sections. This option will alert you if any unassigned memory
sections exist in your code. By default the linker will attempt to place any
unassigned code or data section to an available memory location without alerting the
user. This can cause problems, however, when the section is placed in an
unexpected location.

� -e Select Basic and enter Code Entry Point –e

 DSP2804x V1.30 Quick Start Readme

24

Defines a global symbol that specifies the primary entry point for the output module.
For the DSP2804x examples, this is the symbol “code_start”. This symbol is defined
in the DSP2804x_common\source\DSP2804x_CodeStartBranch.asm file. When
you load the code in Code Composer Studio, the debugger will set the PC to the
address of this symbol. If you do not define a entry point using the –e option, then
the linker will use _c_int00 by default.

4.3 Including Common Example Code

Including the common source code in your project will allow you to leverage code that is already
written for the device. To incorporate the shared source code into a new or existing project,
perform the following steps:

1. #include “DSP2804x_Examples.h” in your source files.

This include file will include common definitions and declarations used by the example code.

/**

* User’s source file

**/

#include “DSP2804x_Examples.h”

2. Add the directory path to the example include files to your project.

Code Composer Studio 3.x

To specify the directory where the header files are located:

a. Open the menu: Project->Build Options

b. Select the Compiler tab

c. Select pre-processor.

d. In the Include Search Path, add the directory path to the location of
DSP2804x_common/include on your system.
Use a semicolon between directories.

For example the directory path for the included projects is:
..\..\DSP2804x_headers\include;..\..\DSP2804x_common\include

Code Composer Studio 4.x:

To specify the directory where the header files are located:

a. Open the menu: Project->Properties.

b. In the menu on the left, select “C/C++ Build”.

c. In the “Tool Settings” tab, Select “C2000 Compiler -> Include Options:”

d. In the “Add dir to #include search path (--include_path, -I” window, select the “Add” icon
in the top right corner.

e. Select the “File system…” button and navigate to the directory path of
DSP2804x_headers\include on your system.

DSP2804x V1.30 Quick Start Readme

 25

3. Add a linker command file to your project.

The following memory linker .cmd files are provided as examples in the
DSP2804x_common\cmd directory. For getting started the basic 28044_RAM_lnk.cmd
file is suggested and used by most of the examples.

Table 9. Included Main Linker Command Files

Main Liner Command File
Examples

Description

28044_RAM_lnk.cmd F28044 memory linker example. Only allocates SARAM
locations.

F28044.cmd F28044 memory linker command file. Includes all Flash, OTP
and CSM password protected memory locations.

4. Set the CPU Frequency

In the DSP2804x_common\include\DSP2804x_Examples.h file specify the proper CPU
frequency. Some examples are included in the file.

/**

* DSP2804x_common\include\DSP2804x_Examples.h

**/

#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 13.330L // for a 75MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 20.000L // for a 50MHz CPU clock speed (SYSCLKOUT)

5. Add desired common source files to the project.

The common source files are found in the DSP2804x_common\source\ directory.

6. Include .c files for the PIE.

Since all catalog ‘2804x applications make use of the PIE interrupt block, you will want to
include the PIE support .c files to help with initializing the PIE. The shell ISR functions can
be used directly or you can re-map your own function into the PIE vector table provided. A
list of these files can be found in section 6.2.1.

 DSP2804x V1.30 Quick Start Readme

26

5 Troubleshooting Tips & Frequently Asked Questions

• In the examples, what do “EALLOW;” and “EDIS;” do?

EALLOW; is a macro defined in DSP2804x_Device.h for the assembly instruction EALLOW
and likewise EDIS is a macro for the EDIS instruction. That is EALLOW; is the same as
embedding the assembly instruction asm(“ EALLOW”);

Several control registers on the 28x devices are protected from spurious CPU writes by the
EALLOW protection mechanism. The EALLOW bit in status register 1 indicates if the
protection is enabled or disabled. While protected, all CPU writes to the register are ignored
and only CPU reads, JTAG reads and JTAG writes are allowed. If this bit has been set by
execution of the EALLOW instruction, then the CPU is allowed to freely write to the
protected registers. After modifying the registers, they can once again be protected by
executing the EDIS assembly instruction to clear the EALLOW bit.

For a preliminary list of protected registers, refer to TMS320x280x Control and Interrupts
Reference Guide (SPRU712).

• Peripheral registers read back 0x0000 and/or cannot be written to.

There are a few things to check:

• Peripheral registers cannot be modified or unless the clock to the specific peripheral is
enabled. The function InitPeripheralClocks() in the DSP2804x_common\source
directory shows an example of enabling the peripheral clocks.

• Some peripherals are not present on all 2804x family derivatives. Refer to the device
datasheet for information on which peripherals are available.

• The EALLOW bit protects some registers from spurious writes by the CPU. If your
program seems unable to write to a register, then check to see if it is EALLOW
protected. If it is, then enable access using the EALLOW assembly instruction.
TMS320x280x Control and Interrupts Reference Guide (SPRU712) for a preliminary list
of EALLOW protected registers.

• Memory block L0, L1 read back all 0x0000.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Refer to the TMS320x280x Control and Interrupts
Reference Guide (SPRU712) for information on the code security module.

• Code cannot write to L0 or L1 memory blocks.

In this case most likely the code security module is locked and thus the protected memory
locations are reading back all 0x0000. Code that is executing from outside of the protected
cannot read or write to protected memory while the CSM is locked. Refer to the
TMS320x280x Control and Interrupts Reference Guide (SPRU712) for information on the
code security module

DSP2804x V1.30 Quick Start Readme

 27

• A peripheral register reads back ok, but cannot be written to.

The EALLOW bit protects some registers from spurious writes by the CPU. If your program
seems unable to write to a register, then check to see if it is EALLOW protected. If it is,
then enable access using the EALLOW assembly instruction. TMS320x280x Control and
Interrupts Reference Guide (SPRU712) for a preliminary list of EALLOW protected
registers.

• I re-built one of the projects to run from Flash and now it doesn’t work. What could be
wrong?

Make sure all initialized sections have been moved to flash such as .econst and .switch.

If you are using SDFlash, make sure that all initialized sections, including .econst, are
allocated to page 0 in the linker command file (.cmd). SDFlash will only program sections
in the .out file that are allocated to page 0.

• Why do the examples populate the PIE vector table and then re-assign some of the
function pointers to other ISRs?

The examples share a common default ISR file. This file is used to populate the PIE vector
table with pointers to default interrupt service routines. Any ISR used within the example is
then remapped to a function within the same source file. This is done for the following
reasons:

– The entire PIE vector table is enabled, even if the ISR is not used within the example.
This can be very useful for debug purposes.

– The default ISR file is left un-modified for use with other examples or your own project
as you see fit.

– It illustrates how the PIE table can be updated at a later time.

• When I build the examples, the linker outputs the following: warning: entry point
other than _c_int00 specified. What does this mean?

This warning is given when a symbol other then _c_int00 is defined as the code entry point
of the project. For these examples, the symbol code_start is the first code that is executed
after exiting the boot ROM code and thus is defined as the entry point via the –e linker
option. This symbol is defined in the DSP2804x_CodeStartBranch.asm file. The entry point
symbol is used by the debugger and by the hex utility. When you load the code, CCS will
set the PC to the entry point symbol. By default, this is the _c_int00 symbol which marks
the start of the C initialization routine. For the DSP2804x examples, the code_start symbol
is used instead. Refer to the source code for more information.

• When I build many of the examples, the compiler outputs the following: remark:
controlling expression is constant. What does this mean?

Some of the examples run forever until the user stops execution by using a while(1) {} loop
The remark refers to the while loop using a constant and thus the loop will never be exited.

• When I build some of the examples, the compiler outputs the following: warning:
statement is unreachable. What does this mean?

 DSP2804x V1.30 Quick Start Readme

28

Some of the examples run forever until the user stops execution by using a while(1) {} loop.
If there is code after this while(1) loop then it will never be reached.

• I changed the build configuration of one of the projects from “Debug” to “Release”
and now the project will not build. What could be wrong?

When you switch to a new build configuration (Project->Configurations) the compiler and
linker options changed for the project. The user must enter other options such as include
search path and the library search path. Open the build options menu (Project->Build
Options) and enter the following information:

– Compiler Tab, Preprocessor: Include search path

– Linker Tab, Basic: Library search path

– Linker Tab, Basic: Include libraries (ie rts2800_ml.lib)

Refer to section 4 for more details.

• In the flash example I loaded the symbols and ran to main. I then set a breakpoint but
the breakpoint is never hit. What could be wrong?

In the Flash example, the InitFlash function and several of the ISR functions are copied out
of flash into SARAM. When you set a breakpoint in one of these functions, Code Composer
will insert an ESTOP0 instruction into the SARAM location. When the ESTOP0 instruction
is hit, program execution is halted. CCS will then remove the ESTOP0 and replace it with
the original opcode. In the case of the flash program, when one of these functions is
copied from Flash into SARAM, the ESTOP0 instruction is overwritten code. This is why the
breakpoint is never hit. To avoid this, set the breakpoint after the SARAM functions have
been copied to SARAM.

5.1 Effects of read-modify-write instructions.

When writing any code, whether it be C or assembly, keep in mind the effects of read-modify-
write instructions.

The ‘28x DSP will write to registers or memory locations 16 or 32-bits at a time. Any instruction
that seems to write to a single bit is actually reading the register, modifying the single bit, and
then writing back the results. This is referred to as a read-modify-write instruction. For most
registers this operation does not pose a problem. A notable exception is:

5.1.1 Registers with multiple flag bits in which writing a 1 clears that flag.

For example, consider the PIEACK register. Bits within this register are cleared when writing a 1
to that bit. If more then one bit is set, performing a read-modify-write on the register may clear
more bits then intended.

The below solution is incorrect. It will write a 1 to any bit set and thus clear all of them:

DSP2804x V1.30 Quick Start Readme

 29

/**

* User’s source file

**/

 PieCtrl.PIEACK.bit.Ack1 = 1; // INCORRECT! May clear more bits.

The correct solution is to write a mask value to the register in which only the intended bit will
have a 1 written to it:

/**

* User’s source file

**/

 #define PIEACK_GROUP1 0x0001

 ……

 PieCtrl.PIEACK.all = PIEACK_GROUP1; // CORRECT!

5.1.2 Registers with Volatile Bits.

Some registers have volatile bits that can be set by external hardware.

Consider the PIEIFRx registers. An atomic read-modify-write instruction will read the 16-bit
register, modify the value and then write it back. During the modify portion of the operation a bit
in the PIEIFRx register could change due to an external hardware event and thus the value may
get corrupted during the write.

The rule for registers of this nature is to never modify them during runtime. Let the CPU take the
interrupt and clear the IFR flag.

 DSP2804x V1.30 Quick Start Readme

30

6 Packet Contents:

This section lists all of the files included in the release.

6.1 Header File Support – DSP2804x_headers

The DSP2804x header files are located in the <base>\DSP2804x_headers\ directory.

6.1.1 DSP2804x Header Files – Main Files

The following files must be added to any project that uses the DSP2804x header files. Refer to
section 4.2 for information on incorporating the header files into a new or existing project.

Table 10. DSP2804x Header Files – Main Files

File Location Description

DSP2804x_Device.h DSP2804x_headers\include Main include file. Include this one file in any of
your .c source files. This file in-turn includes all
of the peripheral specific .h files listed below. In
addition the file includes typedef statements and
commonly used mask values. Refer to section
4.2.

DSP2804x_GlobalVariableDefs.c DSP2804x_headers\source Defines the variables that are used to access
the peripheral structures and data section
#pragma assignment statements. This file must
be included in any project that uses the header
files. Refer to section 4.2.

DSP2804x_Headers_BIOS.cmd DSP2804x_headers\cmd Linker .cmd file to assign the header file
variables in a BIOS project. This file must be
included in any BIOS project that uses the
header files. Refer to section 4.2.

DSP2804x_Headers_nonBIOS.cmd DSP2804x_headers\cmd Linker .cmd file to assign the header file
variables in a non-BIOS project. This file must
be included in any non-BIOS project that uses
the header files. Refer to section 4.2.

DSP2804x V1.30 Quick Start Readme

 31

6.1.2 DSP2804x Header Files – Peripheral Bit-Field and Register Structure Definition
Files

The following files define the bit-fields and register structures for each of the peripherals on the
2804x devices. These files are automatically included in the project by including
DSP2804x_Device.h. Refer to section 4.2 for more information on incorporating the header files
into a new or existing project.

Table 11. DSP2804x Header File Bit-Field & Register Structure Definition Files

File Location Description

DSP2804x_Adc.h DSP2804x_headers\include ADC register structure and bit-field definitions.

DSP2804x_CpuTimers.h DSP2804x_headers\include CPU-Timer register structure and bit-field definitions.

DSP2804x_DevEmu.h DSP2804x_headers\include Emulation register definitions

DSP2804x_EPwm.h DSP2804x_headers\include ePWM register structures and bit-field definitions.

DSP2804x_Gpio.h DSP2804x_headers\include General Purpose I/O (GPIO) register structures and
bit-field definitions.

DSP2804x_I2c.h DSP2804x_headers\include I2C register structure and bit-field definitions.

DSP2804x_PieCtrl.h DSP2804x_headers\include PIE control register structure and bit-field definitions.

DSP2804x_PieVect.h DSP2804x_headers\include Structure definition for the entire PIE vector table.

DSP2804x_Sci.h DSP2804x_headers\include SCI register structure and bit-field definitions.

DSP2804x_Spi.h DSP2804x_headers\include SPI register structure and bit-field definitions.

DSP2804x_SysCtrl.h DSP2804x_headers\include System register definitions. Includes Watchdog,
PLL, CSM, Flash/OTP, Clock registers.

DSP2804x_XIntrupt.h DSP2804x_headers\include External interrupt register structure and bit-field
definitions.

6.1.3 Code Composer .gel Files

The following Code Composer Studio .gel files are included for use with the DSP2804x Header
File peripheral register structures.

Table 12. DSP2804x Included GEL Files

File Location Description

DSP2804x_Peripheral.gel DSP2804x_headers\gel This is relevant for CCSv3.3 only.

Provides GEL pull-down menus to load the DSP2804x
data structures into the watch window.
You may want to have CCS load this file automatically by
adding a
GEL_LoadGel(“<base>\DSP2804x_headers\gel\DSP280
4x_peripheral.gel”) function to the standard F28044.gel
that was included with CCS.

6.1.4 Variable Names and Data Sections

This section is a summary of the variable names and data sections allocated by the
DSP2804x_headers\source\DSP2804x_GlobalVariableDefs.c file. Note that all peripherals may
not be available on a particular 2804x device. Refer to the device datasheet for the peripheral
mix available on each 2804x family derivative.

 DSP2804x V1.30 Quick Start Readme

32

Table 13. DSP2804x Variable Names and Data Sections

Peripheral Starting Address Structure Variable Name

ADC 0x007100 AdcRegs

ADC Mirrored Result Registers 0x000B00 AdcMirror

Code Security Module 0x000AE0 CsmRegs

Code Security Module Password Locations 0x3F7FF8-
0x3F7FFF

CsmPwl

CPU Timer 0 0x000C00 CpuTimer0Regs

Device and Emulation Registers 0x000880 DevEmuRegs

ePWM1 0x006800 EPwm1Regs

ePWM2 0x006840 EPwm2Regs

ePWM3 0x006880 EPwm3Regs

ePWM4 0x0068C0 EPwm4Regs

ePWM5 0x006900 EPwm5Regs

ePWM6 0x006940 EPwm6Regs

ePWM7 0x006980 EPwm7Regs

ePWM8 0x0069C0 EPwm8Regs

ePWM9 0x006600 EPwm9Regs

ePWM10 0x006640 EPwm10Regs

ePWM11 0x006680 EPwm11Regs

ePWM12 0x0066C0 EPwm12Regs

ePWM13 0x006700 EPwm13Regs

ePWM14 0x006740 EPwm14Regs

ePWM15 0x006780 EPwm15Regs

ePWM16 0x0067C0 EPwm16Regs

External Interrupt Registers 0x007070, XIntruptRegs

Flash & OTP Configuration Registers 0x000A80 FlashRegs

General Purpose I/O Data Registers 0x006fC0 GpioDataRegs

General Purpose Control Registers 0x006F80 GpioCtrlRegs

General Purpose Interrupt Registers 0x006fE0 GpioIntRegs

I2C 0x007900 I2caRegs

PIE Control 0x000CE0 PieCtrlRegs

SCI-A 0x007050 SciaRegs

SPI-A 0x007040 SpiaRegs

DSP2804x V1.30 Quick Start Readme

 33

6.2 Common Example Code – DSP2804x_common

6.2.1 Peripheral Interrupt Expansion (PIE) Block Support

In addition to the register definitions defined in DSP2804x_PieCtrl.h, this packet provides the
basic ISR structure for the PIE block. These files are:

Table 14. Basic PIE Block Specific Support Files

File Location Description

DSP2804x_DefaultIsr.c DSP2804x_common\source Shell interrupt service routines (ISRs) for the entire PIE
vector table. You can choose to populate one of functions
or re-map your own ISR to the PIE vector table. Note: This
file is not used for DSP/BIOS projects.

DSP2804x_DefaultIsr.h DSP2804x_common\include Function prototype statements for the ISRs in
DSP2804x_DefaultIsr.c. Note: This file is not used for
DSP/BIOS projects.

DSP2804x_PieVect.c DSP2804x_common\source Creates an instance of the PIE vector table structure
initialized with pointers to the ISR functions in
DSP2804x_DefaultIsr.c. This instance can be copied to the
PIE vector table in order to initialize it with the default ISR
locations.

In addition, the following files are included for software prioritization of interrupts. These files are
used in place of those above when additional software prioritization of the interrupts is required.
Refer to the example and documentation in DSP2804x_examples\sw_prioritized_interrupts for
more information.

Table 15. Software Prioritized Interrupt PIE Block Specific Support Files

File Location Description

DSP2804x_SWPrioritizedDefaultIsr.c DSP2804x_common\source Default shell interrupt service routines (ISRs).
These are shell ISRs for all of the PIE
interrupts. You can choose to populate one of
functions or re-map your own interrupt service
routine to the PIE vector table. Note: This file
is not used for DSP/BIOS projects.

DSP2804x_SWPrioritizedIsrLevels.h DSP2804x_common\include Function prototype statements for the ISRs in
DSP2804x_DefaultIsr.c. Note: This file is not
used for DSP/BIOS projects.

DSP2804x_SWPrioritizedPieVect.c DSP2804x_common\source Creates an instance of the PIE vector table
structure initialized with pointers to the default
ISR functions that are included in
DSP2804x_DefaultIsr.c. This instance can be
copied to the PIE vector table in order to
initialize it with the default ISR locations.

 DSP2804x V1.30 Quick Start Readme

34

6.2.2 Peripheral Specific Files

Several peripheral specific initialization routines and support functions are included in the
peripheral .c source files in the DSP2804x_common\src\ directory. These files include:

Table 16. Included Peripheral Specific Files

File Description

DSP2804x_GlobalPrototypes.h Function prototypes for the peripheral specific functions included in these files.

DSP2804x_Adc.c ADC specific functions and macros.

DSP2804x_CpuTimers.c CPU-Timer specific functions and macros.

DSP2804x_EPwm.c ePWM module specific functions and macros.

DSP2804x_EPwm_defines.h #define macros that are used for the ePWM examples

DSP2804x_Gpio.c General-purpose IO (GPIO) specific functions and macros.

DSP2804x_I2C.c I2C specific functions and macros.

DSP2804x_I2c_defines.h #define macros that are used for the I2C examples

DSP2804x_PieCtrl.c PIE control specific functions and macros.

DSP2804x_Sci.c SCI specific functions and macros.

DSP2804x_Spi.c SPI specific functions and macros.

DSP2804x_SysCtrl.c System control (watchdog, clock, PLL etc) specific functions and macros.

Note: The specific routines are under development and may not all be available as of this release. They will be
added and distributed as more examples are developed.

6.2.3 Utility Function Source Files

Table 17. Included Utility Function Source Files

File Description

DSP2804x_CodeStartBranch.asm Branch to the start of code execution. This is used to re-direct code execution
when booting to Flash, OTP or M0 SARAM memory. An option to disable the
watchdog before the C init routine is included.

DSP2804x_DBGIER.asm Assembly function to manipulate the DEBIER register from C.

DSP2804x_DisInt.asm Disable interrupt and restore interrupt functions. These functions allow you to
disable INTM and DBGM and then later restore their state.

DSP2804x_usDelay.asm Assembly function to insert a delay time in microseconds. This function is cycle
dependant and must be executed from zero wait-stated RAM to be accurate.
Refer to DSP2804x_examples\adc for an example of its use.

DSP2804x_CSMPasswords.asm Include in a project to program the code security module passwords and
reserved locations.

DSP2804x V1.30 Quick Start Readme

 35

6.2.4 Example Linker .cmd files

Example memory linker command files are located in the DSP2804x_common\cmd directory.
For getting started using the 2804x devices, the basic 28044_RAM_lnk.cmd file is suggested
and used by many of the included examples.

On 2804x devices, the SARAM blocks L0 and L1 are mirrored. For simplicity these memory
maps only include one instance of these memory blocks.

Table 18. Included Main Linker Command Files

Main Liner Command File
Examples

Description

28044_RAM_lnk.cmd F28044 memory linker example. Only allocates SARAM locations.

F28044.cmd F28044 memory linker command file. Includes all Flash, OTP
and CSM password protected memory locations.

6.2.5 Example Library .lib Files

Example library files are located in the DSP2804x_common\lib directory. For this release the
IQMath library is included for use in the example projects. Please refer to the C28x IQMath
Library - A Virtual Floating Point Engine (SPRC087) for more information on IQMath and the
most recent IQMath library. The SFO libraries are also included for use in the example projects.
Please refer to TMS320x28xx, 28xxx HRPWM Reference Guide (SPRU924) for more
information on SFO library usage and the HRPWM module.

Table 19. Included Library Files

Main Liner Command File
Examples

Description

IQmath.lib Please refer to the C28x IQMath Library - A Virtual Floating
Point Engine (SPRC087) for more information on IQMath.

IQmathLib.h IQMath header file.

SFO_TI_Build.lib Please refer to the TMS320x28xx, 28xxx HRPWM Reference
Guide (SPRU924) for more information on the SFO library

SFO.h SFO header file

SFO_TI_Build_V5.lib/
SFO_TI_Build_V5B.lib

Please refer to the TMS320x28xx,28xxx HRPWM Reference
Guide (SPRU924) for more information on the SFO V5 library.
Updated versions will be marked with alphabetical characters
after “V5” (i.e. SFO_TI_Build_V5B.lib)

SFO_V5.h SFO V5 header file

7 Detailed Revision History:

Changes from V1.20 to V1.30

Changes to Header Files:

a) DSP280x_CpuTimers.h – Uncommented CpuTimer1 and CpuTimer2 code.

 DSP2804x V1.30 Quick Start Readme

36

b) DSP2804x_Device.h – Added int64 and Uint64 typedef definitions.

c) DSP2804x_Spi.h- Changed SPIPRI register bit 6 to reserved bit.

d) DSP2804x_Gpio.h- In GPIO_DATA_REGS struct changed GPBPUD_REG for GPBDAT
register to GPBDAT_REG.

Changes to Common Files:

e) DSP2804x_CpuTimers.c – Updated comments to indicate only CpuTimer2 is reserved
for DSP/BIOS use. User must comment out CpuTimer2 code when using DSP/BIOS.

f) DSP2804x_I2c_defines.h- Fixed typo for DSP280x_I2CDEINFES_H and replaced with
DSP280x_I2CDEFINES_H.

g) CCSv4 gel files – Added ccsv4 directory in /gel directory for CCSv4-specific device gel
files (GEL_WatchAdd() functions removed).

Changes to Example Files:

h) All PJT Files- Removed the line: Tool="DspBiosBuilder" from all example PJT files for
easy migration path to CCSv4 Microcontroller-only (code-size limited) version users.

i) Example_2804xHRPWM.c and Example_2804xHRPWM_slider.c – Changed
initialization code to set TBPRD register to period-1 instead of period to achieve correct
period and duty cycle.

j) Example_2804xHaltWake.c- Update WAKE_ISR to toggle GPIO1 instead of set GPIO1
in ISR. Additionally, updated description comments for wakeup.

k) Example_2804xHRPWM_SFO_V5.c- Added line of code before calling MepDis()
function to enable HRPWM logic for the channel first.

l) Added DSP2804x_examples_ccsv4 directories - Added directories for CCSv4.x
projects. The example projects in these directories are identical to those found in the
normal CCSv3.x DSP2804x_examples directory with the exception that the examples
now support the Code Composer Studio v4.x project folder format instead of the Code
Composer Studio v3.x PJT files. The example gel files have also been removed for the
CCSv4 example projects because the gel file functions used in the example gels are no
longer supported.

Changes from V1.10 to V1.20

Changes to Header Files:

m) DSP2804x_DevEmu.h – Removed MONPRIV, EMU0SEL, and EMU1SEL bits in the
DEVICECNF register.

Changes to Common Files:

n) DSP2804x_SWPrioritizedDefaultIsr.c – Fixed some PIEIER number typos.

DSP2804x V1.30 Quick Start Readme

 37

o) SFO_TI_Build_V5B.lib and SFO_TI_Build_V5Bfpu.lib – Because the SFO_MepEn()
function in the original version of the SFO library was restricted to MEP control on falling
edge only with HRLOAD on CTR=ZRO, a new version of the V5 library, V5B, was added,
which includes a SFO_MepEn() function that supports all available HRPWM
configurations – falling and rising edge as well as HRLOAD on CTR=ZRO and
CTR=PRD.

p) DSP2804x_SysCtrl.h – Added EALLOW access to code which sets CLKINDIV bit to 0.
Also removed “!” from code which sets CLKINDIV to divider value.

Changes from V1.00 to V1.10

Changes to Header Files:

a) Gel files (f28044.gel and sim28044.gel) – configuration of addressing modes updated
such that AMODE and OBJMODE are set by manipulating the ST register instead of by
directly setting AMODE and OBJMODE via legacy method.

b) DSP2804x_Headers_BIOS.cmd and DSP2804x_Headers_nonBIOS.cmd – Peripheral
Frame 1 and Peripheral Frame 2 comment headings are now above the appropriate
peripheral regfiles.

c) DSP2804x_SysCtrl.h – Edited XCLKOUT (XCLK) register bit descriptions to read
“reserved for TI internal use only” to align with System Control User Guide (with the
exception of XCLKOUTDIV bits).

Changes to Example Files:

a) Example_2804xSpi_FFDLB_int.c – Changed comment regarding RXFIFO level set at
31 levels to 8 levels.

b) All HRPWM example .pjt files – Fixed pathnames for Debug and Release folders so that
they are generated within the hrpwm example folders instead of the global
DSP280x_examples folder.

c) Added 3 low power mode examples – Example_2804xHaltWake.c in lpm_haltwake,
Example_2804xIdleWake.c in lpm_idlewake, and Example_2804xStandbyWake.c in
lpm_standbywake.

d) Example_2804xSci_FFDLB_int.c – fixed baud rate calculation defines at the top of file
by adding: #define LSPCLK_FREQ CPU_FREQ/4 and fixing the SCI baud rate

period formula such that: #define SCI_PRD LSPCLK_FREQ/((SCI_FREQ*8)-1).

e) DSP2804x_SysCtrl.c – Added CsmUnlock() function which allows user to unlock the
CSM in code, if desired.

f) DSP2804x_GlobalPrototypes.h – Added extern function prototype for CsmUnlock().

 DSP2804x V1.30 Quick Start Readme

38

g) SFO library V5 (SFO_TI_Build_V5.lib + SFO_V5.h) added to support up to maximum
number of HRPWM channels. Note – V5 runs faster and takes less memory than the
original version did, but when using SFO_MepEn_V5(n), Mep_En must be called
repetitively until it is finished on the current channel before it is called on a different
channel. Therefore, it now returns a “1” when it has finished running on a channel and a
“0” otherwise. Due to this change, SFO_TI_Build.lib is still included in the event that it is
necessary to run MepEn concurrently on up to 4 HRPWM channels. Also updated
readme in /lib folder.

h) Example_280xHRPWM_SFO_V5.c (hrpwm_sfo_v5) example added to demonstrate
SFO library V5’s optimizations and limitations.

i) The root of the default path in all example project files was changed from
C:\tidcs\c28\DSP2804x\v100\ to C:\tidcs\c28\DSP2804x\v110\ to reflect the version
change.

8 Errata

This section lists known typos or errors in the header files which have not been updated to
prevent incompatibilities with code developed using earlier versions of the header files.

a) DSP2804x_I2C.h:

Details— When the C-header files are included in an assembly project, the assembler
views the AL (Arbitration Lost) bit in both the I2CIER and the I2CSTR structures as
reserved words and issues an error.

Workaround— When including the C-header files in an assembly project, rename the
AL bits to ARBL in DSP2804x_I2C.h as follows to prevent conflicts with the assembler:

//--

// I2C interrupt mask register bit definitions */

struct I2CIER_BITS { // bits description

 Uint16 ARBL:1; // 0 Arbitration lost interrupt

 Uint16 NACK:1; // 1 No ack interrupt

 Uint16 ARDY:1; // 2 Register access ready interrupt

 Uint16 RRDY:1; // 3 Recieve data ready interrupt

 Uint16 XRDY:1; // 4 Transmit data ready interrupt

 Uint16 SCD:1; // 5 Stop condition detection

 Uint16 AAS:1; // 6 Address as slave

 Uint16 rsvd:9; // 15:7 reserved

};

//--

// I2C status register bit definitions */

struct I2CSTR_BITS { // bits description

 Uint16 ARBL:1; // 0 Arbitration lost interrupt

 Uint16 NACK:1; // 1 No ack interrupt

 Uint16 ARDY:1; // 2 Register access ready interrupt

 Uint16 RRDY:1; // 3 Recieve data ready interrupt

 Uint16 XRDY:1; // 4 Transmit data ready interrupt

 Uint16 SCD:1; // 5 Stop condition detection

 Uint16 rsvd1:2; // 7:6 reserved

DSP2804x V1.30 Quick Start Readme

 39

 Uint16 AD0:1; // 8 Address Zero

 Uint16 AAS:1; // 9 Address as slave

 Uint16 XSMT:1; // 10 XMIT shift empty

 Uint16 RSFULL:1; // 11 Recieve shift full

 Uint16 BB:1; // 12 Bus busy

 Uint16 NACKSNT:1; // 13 A no ack sent

 Uint16 SDIR:1; // 14 Slave direction

 Uint16 rsvd2:1; // 15 reserved

};

