
Copyright © 2010-2020
Texas Instruments Incorporated

SW-TM4C-EXAMPLES-UG-2.2.0.295

USER’S GUIDE

TivaWare™ Examples

Copyright
Copyright © 2010-2020 Texas Instruments Incorporated. All rights reserved. Tiva, TivaWare, Code Composer Studio are trademarks of Texas Instru-
ments. Arm, Cortex, Thumb are registered trademarks of Arm Limited. All other trademarks are the property of their respective owners.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
www.ti.com/tiva-c

Revision Information
This is version 2.2.0.295 of this document, last updated on April 02, 2020.

2 April 02, 2020

www.ti.com/tiva-c

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5

2 Peripheral Examples . 7
2.1 ADC Examples . 7
2.2 CAN Examples . 8
2.3 EPI Examples . 11
2.4 I2C Examples . 12
2.5 LCD Controller Examples . 14
2.6 PWM Examples . 15
2.7 ROM Examples . 15
2.8 SSI/SPI Examples . 15
2.9 System Control Examples . 17
2.10 System Tick Timer (SysTick) Examples . 17
2.11 General Purpose Timer Examples . 18
2.12 UART Examples . 19

IMPORTANT NOTICE . 22

April 02, 2020 3

Table of Contents

4 April 02, 2020

Introduction

1 Introduction
Texas Instruments® TivaWare™ software provides code examples in two different locations. The
first type of code example is specific to a particular board and is found in the examples/boards
directory. The examples in this directory can be recomplied, downloaded and run on the specified
board without modification. For more information on these examples, refer to the specific Board
Firmware Development Package User’s Guide.

The second type of example applies to all Tiva™ microcontrollers with a particular peripheral and
can be found in the examples/peripherals directory. These examples are small, single-purpose
code segments that are meant to clearly and simply demonstrate a specific feature and must be
customized to run on a particular board.

This document describes the examples available in the examples/peripherals directory. Not every
example can run on every Tiva device; consult the device data sheet to determine if a particular
feature is present. Furthermore please note: THESE EXAMPLES ARE NOT READY TO RUN
PROJECTS. For ready-to-run projects please see the examples/boards directory.

April 02, 2020 5

Introduction

6 April 02, 2020

Peripheral Examples

2 Peripheral Examples
Examples are organized by peripheral in the following sections. Each peripheral section contains
a brief description of each example. They are located in your TivaWare installation under the
examples/peripherals directory, where there is a separate sub-directory for each peripheral.

Note that these examples are different and separate from the board specific examples that you will
find under the examples/boards directory and which are documented elsewhere.

2.1 ADC Examples

2.1.1 Differential ADC (differential)

This example shows how to setup ADC0 as a differential input and take a single sample between
AIN0 and AIN1. The value of the ADC is read and printed to the serial port.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

ADC0 peripheral

GPIO Port E peripheral (for ADC0 pins)

AIN0 - PE3

AIN1 - PE2

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of the ADC.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.1.2 Single Ended ADC (single_ended)

This example shows how to setup ADC0 as a single ended input and take a single sample on
AIN0/PE3.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

ADC0 peripheral

GPIO Port E peripheral (for AIN0 pin)

April 02, 2020 7

Peripheral Examples

AIN0 - PE3

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of the ADC.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.1.3 ADC Temperature Sensor (temperature_sensor)

This example shows how to setup ADC0 to read the internal temperature sensor.

NOTE: The internal temperature sensor is not calibrated. This example just takes the raw tem-
perature sensor sample and converts it using the equation found in the device datasheet for the
TM4C123GH6PM. This equation applies to all TM4C devices with an internal temperature sensor.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

ADC0 peripheral

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of the ADC.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.2 CAN Examples

2.2.1 Multiple CAN RX (multi_rx)

This example shows how to set up the CAN to receive multiple CAN messages using separate
message objects for different messages, and using CAN ID filtering to control which messages are
received. Three message objects are set up to receive 3 of the 4 CAN message IDs that are used
by the multi_tx example. Filtering is used to demonstrate how to receive only specific messages,

8 April 02, 2020

Peripheral Examples

and therefore not receiving all 4 messages from the multi_tx example. As messages are received
the content of each are printed to the serial console.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

CAN0 peripheral
GPIO port B peripheral (for CAN0 pins)
CAN0RX - PB4
CAN0TX - PB5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of CAN.

GPIO port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_CAN0 - CANIntHandler

2.2.2 Multiple CAN TX (multi_tx)

This example shows how to set up the CAN to send multiple messages. The CAN peripheral is
configured to send messages with 4 different CAN IDs. Two of the messages (with different CAN
IDs) are sent using a shared message object. This shows how to reuse a message object for
multiple messages. The other two messages are sent using their own message objects. All four
messages are transmitted once per second. The content of each message is a test pattern. A CAN
interrupt handler is used to confirm message transmission and count the number of messages that
have been sent.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

CAN0 peripheral
GPIO Port B peripheral (for CAN0 pins)
CAN0RX - PB4
CAN0TX - PB5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of CAN.

GPIO port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_CAN0 - CANIntHandler

April 02, 2020 9

Peripheral Examples

2.2.3 Simple CAN RX (simple_rx)

This example shows the basic setup of CAN in order to receive messages from the CAN bus. The
CAN peripheral is configured to receive messages with any CAN ID and then print the message
contents to the console.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

CAN0 peripheral
GPIO port B peripheral (for CAN0 pins)
CAN0RX - PB4
CAN0TX - PB5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of CAN.

GPIO port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_CAN0 - CANIntHandler

2.2.4 Simple CAN TX (simple_tx)

This example shows the basic setup of CAN in order to transmit messages on the CAN bus. The
CAN peripheral is configured to transmit messages with a specific CAN ID. A message is then
transmitted once per second, using a simple delay loop for timing. The message that is sent is a
4 byte message that contains an incrementing pattern. A CAN interrupt handler is used to confirm
message transmission and count the number of messages that have been sent.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

CAN0 peripheral
GPIO Port B peripheral (for CAN0 pins)
CAN0RX - PB4
CAN0TX - PB5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of CAN.

GPIO port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

10 April 02, 2020

Peripheral Examples

INT_CAN0 - CANIntHandler

2.3 EPI Examples

2.3.1 EPI SDRAM Mode (sdram)

This example shows how to configure the TM4C129 EPI bus in SDRAM mode. It assumes that a
64Mbit SDRAM is attached to EPI0.

For the EPI SDRAM mode, the pinout is as follows: Address11:0 - EPI0S11:0 Bank1:0 -
EPI0S14:13 Data15:0 - EPI0S15:0 DQML - EPI0S16 DQMH - EPI0S17 /CAS - EPI0S18 /RAS -
EPI0S19 /WE - EPI0S28 /CS - EPI0S29 SDCKE - EPI0S30 SDCLK - EPI0S31

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

EPI0 peripheral

GPIO Port A peripheral (for EPI0 pins)

GPIO Port B peripheral (for EPI0 pins)

GPIO Port C peripheral (for EPI0 pins)

GPIO Port G peripheral (for EPI0 pins)

GPIO Port K peripheral (for EPI0 pins)

GPIO Port L peripheral (for EPI0 pins)

GPIO Port M peripheral (for EPI0 pins)

GPIO Port N peripheral (for EPI0 pins)

EPI0S0 - PK0

EPI0S1 - PK1

EPI0S2 - PK2

EPI0S3 - PK3

EPI0S4 - PC7

EPI0S5 - PC6

EPI0S6 - PC5

EPI0S7 - PC4

EPI0S8 - PA6

EPI0S9 - PA7

EPI0S10 - PG1

EPI0S11 - PG0

EPI0S12 - PM3

EPI0S13 - PM2

EPI0S14 - PM1

EPI0S15 - PM0

EPI0S16 - PL0

EPI0S17 - PL1

April 02, 2020 11

Peripheral Examples

EPI0S18 - PL2
EPI0S19 - PL3
EPI0S28 - PB3
EPI0S29 - PN2
EPI0S30 - PN3
EPI0S31 - PK5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of EPI0.

UART0 peripheral
GPIO Port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.4 I2C Examples

2.4.1 I2C Master Loopback (i2c_master_slave_loopback)

This example shows how to configure the I2C0 module for loopback mode. This includes setting up
the master and slave module. Loopback mode internally connects the master and slave data and
clock lines together. The address of the slave module is set in order to read data from the master.
Then the data is checked to make sure the received data matches the data that was transmitted.
This example uses a polling method for sending and receiving data.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

I2C0 peripheral
GPIO Port B peripheral (for I2C0 pins)
I2C0SCL - PB2
I2C0SDA - PB3

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of I2C.

UART0 peripheral
GPIO Port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

12 April 02, 2020

Peripheral Examples

2.4.2 Slave Receive Interrupt (slave_receive_int)

This example shows how to configure a receive interrupt on the slave module. This includes setting
up the I2C0 module for loopback mode as well as configuring the master and slave modules. Loop-
back mode internally connects the master and slave data and clock lines together. The address of
the slave module is set to a value so it can receive data from the master.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

I2C0 peripheral

GPIO Port B peripheral (for I2C0 pins)

I2C0SCL - PB2

I2C0SDA - PB3

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of I2C.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_I2C0 - I2C0SlaveIntHandler

2.4.3 SoftI2C AT24C08A EEPROM (soft_i2c_atmel)

This example shows how to configure the SoftI2C module to read and write an Atmel AT24C08A
EEPROM. A pattern is written into the first 16 bytes of the EEPROM and then read back.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

Timer0 peripheral (for the SoftI2C timer)

GPIO Port B peripheral (for SoftI2C pins)

PB2 (for SCL)

PB3 (for SDA)

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of I2C.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

April 02, 2020 13

Peripheral Examples

This example uses the following interrupt handlers. To use this example in your own application,
you must add these interrupt handlers to your vector table.

INT_TIMER0A - Timer0AIntHandler

2.5 LCD Controller Examples

2.5.1 LCD Controller Raster Mode Example (raster_example)

This application illustrates the use of the Tivaware Graphics Library and Tiva TM4C129x LCD con-
troller driving an 800x480 display using raster (HSYNC/VSYNC/ACTIVE/DATA) mode. The display
is initialized and enabled then a simple pattern including lines, a small image, some text and a circle
is displayed.

By default, the application is set up to support an Innolux EJ090NA-03A display with 800x480
resolution, refreshed at 60Hz from a 16bpp frame buffer stored in SDRAM. The SDRAM is attached
to the MCU via the External Peripheral Interface (EPI) module. The file drivers/raster_displays.c
contains timings and initialization functions for several other displays and the application can be
easily rebuilt to support any of these by replacing the preprocessor define “INNOLUX_DISPLAY”
with one of the other display labels:

OPTREX_DISPLAY supports an Optrex T-55226D043J-LW-A-AAN in 800x480 with 75Hz re-
fresh rate.

LXD_DISPLAY supports an LXD M7170A in 640x480 with 60Hz refresh rate.

FORMIKE_DISPLAY supports at Formike KWH070KQ13 in 800x480 with 60Hz refresh rate.

Display interface timing information and any required initialization code is included in the
file lcd/drivers/raster_displays.c. New raster-mode displays can be added to this file and
raster_displays.h very easily and used by the application merely by adding another display label
and appropriate code to set the tRasterDisplayInfo timing structure for that display at the top of
raster_example.c.

Once appropriate display timings have been determined, the display can be used by the TivaWare
Graphics Library via one of the supplied raster mode display drivers. Four distinct drivers are
supplied in the lcd/drivers directory, each supporting a different color depth for the frame buffer:

grlib_raster_driver_1bpp.c supports a monochrome (2 color) display buffer.

grlib_raster_driver_4bpp.c supports a 4 bit per pixel (16 color) frame buffer.

grlib_raster_driver_8bpp supports an 8 bit per pixel (256 color) frame buffer.

grlib_raster_driver_16bpp supports a 16 bit per pixel (65536 color) frame buffer.

The size of frame buffer required varies with the resolution of the LCD display in use and the desired
frame buffer color depth. Note that the frame buffer color depth may be lower than the native color
resolution of the LCD panel - the LCD controller makes use of a color lookup table or palette to
convert the pixels in the frame buffer to the correct color format for the LCD’s hardware interface.

The size of frame buffer, in bytes, can be determined using the following formula:

Buffer Size = X ∗ Y ∗ (BPP / 8) + (Header Size)

where:

14 April 02, 2020

Peripheral Examples

X is the horizontal pixel resolution of the LCD panel

Y is the vertical pixel resolution of the LCD panel

BPP is the desired number of bits per pixel for the frame buffer

Header Size is 512 for 8bpp frame buffers or 32 for all other color resolutions.

The frame buffer header contains information informing the LCD controller of the pixel format in the
frame buffer and also the color lookup table used for 1, 4 and 8bpp cases. Note that a 32 byte
header is still required even when using 16bpp frame buffers which do not require a color lookup
table.

For large panels such as those described in raster_displays.h, a frame buffer supporting more than
two colors is likely to be too large to fit in the internal memory of a TM4C129x device and would,
therefore, require the use of external, EPI-connected SDRAM. The 16bpp 800x480 frame buffer
used in this application requires almost 940KB of RAM for example. For lower resolution displays
or lower color depths, internal SRAM may be suitable for use as the frame buffer. For example, a
16bpp QVGA (320x240) frame buffer occupies about 150KB of storage and a monochrome (1bpp)
800x480 frame buffer needs only 48KB.

2.6 PWM Examples

2.7 ROM Examples

2.7.1 Mapped ROM Function Calls (rom_mapped)

This example shows how to map ROM function calls at compile time to use a ROM function if
available on the part, or a library call if the function is not available in ROM. This allows you to write
code that can be used on either a part with ROM or without ROM without needing to change the
code. The mapping is performed at compile time and there is no performance penalty for using
the mapped method instead of the direct method. Mapped ROM functions are called with a MAP_
prefix on the driver library function name.

2.8 SSI/SPI Examples

2.8.1 SoftSSI Master (soft_spi_master)

This example shows how to configure the SoftSSI module. The code will send three characters on
the master Tx then polls the receive FIFO until 3 characters are received on the master Rx.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

GPIO Port A peripheral (for SoftSSI pins)

SoftSSIClk - PA2

SoftSSIFss - PA3

SoftSSIRx - PA4

April 02, 2020 15

Peripheral Examples

SoftSSITx - PA5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of SoftSSI.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

SysTickIntHandler

Note:
This example provide the same functionality using the same pins as the spi_master example.
As such, it can be used as a guide for how to convert code which uses hardware SSI to the
SoftSSI module.

2.8.2 SPI Master (spi_master)

This example shows how to configure the SSI0 as SPI Master. The code will send three characters
on the master Tx then polls the receive FIFO until 3 characters are received on the master Rx.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

SSI0 peripheral

GPIO Port A peripheral (for SSI0 pins)

SSI0Clk - PA2

SSI0Fss - PA3

SSI0Rx (TM4C123x) / SSI0XDAT0 (TM4C129x) - PA4

SSI0Tx (TM4C123x) / SSI0XDAT1 (TM4C129x) - PA5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of SSI0.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

16 April 02, 2020

Peripheral Examples

2.8.3 TI Master (ti_master)

This example shows how to configure the SSI0 as TI Master. The code will send three characters
on the master Tx then poll the receive FIFO until 3 characters are received on the master Rx.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

SSI0 peripheral
GPIO Port A peripheral (for SSI0 pins)
SSI0Clk - PA2
SSI0Fss - PA3
SSI0Rx (TM4C123x) / SSI0XDAT0 (TM4C129x) - PA4
SSI0Tx (TM4C123x) / SSI0XDAT1 (TM4C129x) - PA5

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of I2C0.

UART0 peripheral
GPIO Port A peripheral (for UART0 pins)
UART0RX - PA0
UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.9 System Control Examples

2.9.1 System Clock Configuration with PLL (system_clock_pll)

This example shows how to set up the system clock to use the PLL.

2.10 System Tick Timer (SysTick) Examples

2.10.1 Systick Interrupt (systick_int)

This example shows how to configure the SysTick and the SysTick interrupt.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

NONE

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of Systick.

April 02, 2020 17

Peripheral Examples

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

SysTickIntHandler

2.11 General Purpose Timer Examples

2.11.1 16-Bit One-Shot Timer (oneshot_16bit)

This example shows how to configure Timer0B as a one-shot timer with a single interrupt triggering
after 1ms.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

TIMER0 peripheral

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of Timer0.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_TIMER0B - Timer0BIntHandler

2.11.2 16-Bit Periodic Timer (periodic_16bit)

This example shows how to configure Timer0B as a periodic timer with an interrupt triggering every
1ms. After a certain number of interrupts, the Timer0B interrupt will be disabled.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

TIMER0 peripheral

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of Timer0.

UART0 peripheral

18 April 02, 2020

Peripheral Examples

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

INT_TIMER0B - Timer0BIntHandler

2.11.3 PWM using Timer (pwm)

This example shows how to configure Timer3A to generate a PWM signal on the timer’s CCP pin.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

TIMER3 peripheral

GPIO Port B or M peripheral (for T3CCP0 pin)

T3CCP0 - PB2 on EK-TM4C123GXL, PM2 on EK-TM4C1294XL

The following UART signals are configured only for displaying console messages for this example.
These are not required for operation of Timer0.

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

This example uses the following interrupt handlers. To use this example in your own application you
must add these interrupt handlers to your vector table.

None.

2.12 UART Examples

2.12.1 UART Loopback (uart_loopback)

This example demonstrates the use of a UART port in loopback mode. On being enabled in loop-
back mode, the transmit line of the UART is internally connected to its own receive line. Hence, the
UART port receives back the entire data it transmitted.

This example echoes data sent to the UART’s transmit FIFO back to the same UART’s receive
FIFO. To achieve this, the UART is configured in loopback mode. In the loopback mode, the Tx
line of the UART is directly connected to its Rx line internally and all the data placed in the transmit
buffer is internally transmitted to the Receive buffer.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board.

April 02, 2020 19

Peripheral Examples

UART7 peripheral - For internal Loopback

UART0 peripheral - As console to display debug messages.

• UART0RX - PA0
• UART0TX - PA1

UART parameters for the UART0 and UART7 port:

Baud rate - 115,200

8-N-1 operation

2.12.2 UART Polled I/O (uart_polled)

This example shows how to set up the UART and use polled I/O methods for transmitting and
receiving UART data. The example receives characters from UART0 and retransmits the same
character using UART0. It can be tested by using a serial terminal program on a host computer.
This example will echo every character that is type until the return/enter key is pressed.

This example uses the following peripherals and I/O signals. You must review these and change as
needed for your own board:

UART0 peripheral

GPIO Port A peripheral (for UART0 pins)

UART0RX - PA0

UART0TX - PA1

20 April 02, 2020

April 02, 2020 21

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48,
latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current
and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and appli-
cations using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate
design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of
the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the
use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal
is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use
in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use
of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010-2020, Texas Instruments Incorporated

22 April 02, 2020

www.ti.com/audio
www.ti.com/automotive
amplifier.ti.com
www.ti.com/communications
dataconverter.ti.com
www.ti.com/computers
www.dlp.com
www.ti.com/consumer-apps
dsp.ti.com
www.ti.com/energy
www.ti.com/clocks
www.ti.com/industrial
interface.ti.com
www.ti.com/medical
logic.ti.com
www.ti.com/security
power.ti.com
www.ti.com/space-avionics-defense
microcontroller.ti.com
www.ti.com/video
www.ti-rfid.com
www.ti.com/omap
e2e.ti.com
www.ti.com/wirelessconnectivity

	Copyright
	Revision Information
	1 Introduction
	2 Peripheral Examples
	2.1 ADC Examples
	2.2 CAN Examples
	2.3 EPI Examples
	2.4 I2C Examples
	2.5 LCD Controller Examples
	2.6 PWM Examples
	2.7 ROM Examples
	2.8 SSI/SPI Examples
	2.9 System Control Examples
	2.10 System Tick Timer (SysTick) Examples
	2.11 General Purpose Timer Examples
	2.12 UART Examples

	IMPORTANT NOTICE

