
DM814x AM387x EZ Software Developers Guide
(Redirected from DM814x EZ Software Developers Guide)
Translate this page to Translate Show original

Contents

1 Welcome to the DM814x EZ Software Developer's Guide•
2 Starting your software development

2.1 Setting up the EZ SDK♦
2.2 Writing your own "Hello World!" application and executing
it on the target

♦

•

3 Running the pre-installed applications on the target file system
3.1 Running the DaVinci demo examples

3.1.1 Running OMTB◊
♦

3.2 Running the SysLink examples♦
3.3 Running the Codec Engine examples♦
3.4 Running the Qt/Embedded examples♦
3.5 Running the Graphics SDK examples♦
3.6 Running GStreamer pipelines♦

•

4 Using the devkits
4.1 Regenerating the devkits♦
4.2 Verifying the devkit integrity♦
4.3 Moving the devkits♦

•

5 EZSDK software overview
5.1 Creating a Linux application♦
5.2 Creating a SYS/Link application♦
5.3 Creating an OpenMax IL application♦
5.4 Creating a Qt/Embedded application♦
5.5 Matrix User's Guide♦
5.6 Creating a GStreamer application

5.6.1 Compiling a GStreamer application◊
♦

•

6 Additional Procedures
6.1 Setting up cross compilation environment♦
6.2 Modifying the EZSDK Memory Map♦
6.3 Rebuilding the EZ SDK components♦
6.4 Creating your own Linux kernel image♦
6.5 Setting up Tera Term♦
6.6 How to create an SD card♦
6.7 How to display a logo at boot♦
6.8 How to copy boot loaders to NAND flash♦
6.9 How to change the display resolution♦

•

DM814x AM387x EZ Software Developers Guide

DM814x AM387x EZ Software Developers Guide 1

http://ap-fpdsp-swapps.dal.design.ti.com/index.php?title=DM814x_EZ_Software_Developers_Guide&redirect=no
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:TIBanner.png

6.10 How to change the display from LCD to HDMI♦
6.11 How to change from OMX to V4L2 firmware for
capture/display

♦

6.12 FAQ♦

Welcome to the DM814x EZ Software Developer's
Guide
Thank you for choosing the DM814x Evaluation Module (EVM) for your application. The purpose of this
guide is to get you going with developing software for the DM814x on a Linux development host only.

Note! This Software Developer's Guide (SDG) supports version 5.04 of the DM814x EZSDK which is only
for Linux host development.

Note! This guide assumes you have already followed the Quick Start Guide (QSG) for setting up your EVM
and installing the Easy Software Development Kit (EZ SDK). If you have not done this yet, please do so now
before continuing. You can find a hard copy contained with your EVM. Alternatively you can find the QSG
PDF and various other documentation in the 'docs' directory of the EZSDK installation directory.

Note! All instructions in this guide are for Ubuntu 10.04 LTS and Ubuntu 11.10. At this time, these are the
only supported Linux host distributions for development.

Note! In previous DVSDK releases there has been a Getting Started Guide explaining how to set up the
DVSDK. This document replaces and extends the Getting Started Guide for DVSDK 3.xx and is a new
document in the EZSDK superseding the Getting Started Guide.

Throughout this document there will be commands spelled out to execute. Some are to be executed on the
Linux development host, some on the Linux target and some on the u-boot (bootloader) prompt. They are
distinguished by different command prompts as follows:

host $ <this command is to be executed on the host>
target # <this command is to be executed on the target>
u-boot :> <this command is to be executed on the u-boot prompt>

Starting your software development
Your EZ SDK should be installed before you continue. Throughout this document it will be assumed you
have an environment variable EZSDK which points to where your EZ SDK is installed. You can set it as
follows (the following assumes that EZ SDK was installed at default location):

host $ export EZSDK="${HOME}/ti-ezsdk_dm814x-evm_xx_xx_xx_xx"

Setting up the EZ SDK

You will need an ARM Linux development environment, in case you do not have one please refer to this link
to see how to set one up.

Configuration of ARM Linux development Environment

DM814x AM387x EZ Software Developers Guide

 Starting your software development 2

http://releases.ubuntu.com/10.04
http://releases.ubuntu.com/11.10/
http://processors.wiki.ti.com/index.php/How_to_Build_a_Ubuntu_Linux_host_under_VirtualBox

The EZ SDK comes with a script for setting up your Ubuntu 10.04 LTS development host as well as your
target boot environment. It is an interactive script, but if you accept the defaults by pressing return you will
use the recommended settings. This is recommended for first time users. Note that this script requires ethernet
access as it will update your Ubuntu Linux development host with the packages required to develop using the
EZ SDK. Execute the script using:

host $ ${EZSDK}/setup.sh

If you accepted the defaults during the setup process, you will now have set up your development host and
target to:

Boot the Linux kernel from your development host using TFTP. On your development host the Linux
kernel is fetched from /tftpboot by default.

1.

Boot the Linux file system from your development host using NFS. On your development host the
Linux target file system is located at ${HOME}/targetfs

2.

Minicom is set up to communicate with the target over RS-232. If you want to use a windows host for
connecting to the target instead, see the #Setting_up_Tera_Term section.

3.

Note! To boot the board from NFS, you may need to change the boot switch settings on your EVM. Please
refer the UBoot user guide in the board-support/docs folder for more information on the switch settings.

If you start minicom on your Linux development host using minicom -w (or Tera Term on Windows) and
power cycle the EVM, Linux will boot.

After Linux boots up, login into the target using root as the login name.

Note! The Matrix application launcher is launched automatically. If you exit from Matrix and if you would
like to start it again, execute the following command on the target board:

target # /etc/init.d/matrix-gui-e start

If your kit includes an LCD display, the first time the Matrix GUI is executed, you'll go through a LCD
touchscreen calibration process. The calibration process is important as other application in additional to the
Matrix GUI require calibration to run successfully. You can also run the calibration manually without starting
the Matrix GUI by executing the following command on the target board:

target # ln -s /dev/input/event0 /dev/input/touchscreen0
target # ts_calibrate

Make sure you have terminated the Matrix before running any other applications from the command line:

target # /etc/init.d/matrix-gui-e stop

Writing your own "Hello World!" application and executing
it on the target

This section shows how to create/build an application on your host development PC and execute a basic Linux
application on your booted target filesystem.

1. Create your own work directory on the host PC and enter it:

DM814x AM387x EZ Software Developers Guide

Setting up the EZ SDK 3

host $ mkdir ${HOME}/workdir
host $ cd ${HOME}/workdir

2. Create a new C source file:

host $ gedit helloworld.c

Enter the following source code:

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
}

Save the file and exit.

3. Create a basic makefile:

host $ gedit Makefile

Enter the following:

Import the variables from the EZSDK so that you can find the EZSDK components
include ${EZSDK}/Rules.make

helloworld:
Make sure that you use a tab below
 $(CSTOOL_PREFIX)gcc -o helloworld helloworld.c

Save the file and exit. Note that the gap before $(CSTOOL_PREFIX)gcc corresponds to a tab. If it is filled
with spaces instead you will get build errors.

4. Make sure the $EZSDK variable is still set using:

host $ echo $EZSDK

This command should print your EZSDK installation directory. If it doesn't, you will have to set it again as
described in the beginning of this document. Compile the application:

host $ make helloworld

As a result, an executable called helloworld is generated in ${HOME}/workdir

5. You now have your own application, but you need to create a directory and copy it to your NFS exported
filesystem to make it visible by the target:

host $ mkdir ${HOME}/targetfs/home/root/dm814x
host $ cp helloworld ${HOME}/targetfs/home/root/dm814x

6. On your target this application will be accessible from /home/root/dm814x/helloworld. Execute
it on your target:

target # /home/root/dm814x/helloworld

DM814x AM387x EZ Software Developers Guide

Writing your own "Hello World!" application and executingit on the target 4

You should now see the following output:

Hello World!

Congratulations! You now have your own basic application running on the target.

Running the pre-installed applications on the
target file system
The filesystem comes with a number of prebuilt applications (which can be rebuilt inside the EZSDK). This
section shows how to execute those applications in the provided filesystem.

Before running these ensure that Matrix application is not running. This can be done by executing the
following command in the serial terminal.

target # /etc/init.d/matrix-gui-e stop

If you wish to restart the Matrix application at a later time, you can execute the following command.

target # /etc/init.d/matrix-gui-e start

Running the DaVinci demo examples

The EZSDK comes with example applications.

For DaVinci multimedia, you can use OMTB to run different OpenMAX IL chains. OMTB is the OpenMax
Test Bench which is a command-line utility used for validating OpenMax.

Running OMTB

Note: In order to see the video output, the graphics planes need to be turned off. For more information on the
graphics planes and their sysfs entries, please read the VPSS guide in PSP documentation.

Turn off the Graphics Plane 0 by running the following command.

target # echo 0 > /sys/devices/platform/vpss/graphics0/enabled

In case Graphics Planes 1 and 2 are currently open, then they need to be disabled as well.

target # echo 0 > /sys/devices/platform/vpss/graphics1/enabled
target # echo 0 > /sys/devices/platform/vpss/graphics2/enabled

Execute the following commands to run OMTB.

target # cd /usr/share/ti/ti-omtb
target # ./omtb_<platform>_a8host.xv5T <script-name>.oms

DM814x AM387x EZ Software Developers Guide

 Running the pre-installed applications on the target file system 5

For more information on OMTB and how to construct OpenMAX IL chains please refer the OMX and OMTB
documentation.

Note: OMTB will require a script to run and should not be called without a valid script as an argument.

Note: You will need to turn the graphics planes back on if you wish to run any Graphics applications. You
will also need to revert the change to /etc/init.d/load-hd-firmware.sh in case you wish to see the video demo
from the Matrix Application Launcher.

Running the SysLink examples

The SysLink comes with a few sample applications. To run the sample applications such as "MessageQ" use
the below set of commands.

Note! The syslink samples use a different memory map from the default EZSDK installation. In order to run
syslink examples, you must boot with a different memory for linux. When booting, ensure that the linux
bootargs is changed from the default values to MEM=169M

Note! The syslink samples cannot be run out with graphics or firmware loaded. Please execute the following
steps to teardown the graphics plane and ensure that no firmware is running.

target # /etc/init.d/pvr-init stop

target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hd-firmware.sh stop

Now the system is ready to run all syslink samples.

target # modprobe syslink
target # cd /usr/share/ti/syslink-examples/TI814X

Execute the following script to run the example application

target # ./runsamples_debug.sh

The target terminal window will output the results of the examples executed.

Please refer to the syslink documentation in component-sources/syslink_x_xx_xx_xx/docs to experiment on
these examples and for further information on how to change the memory map.

Running the Codec Engine examples

The Codec Engine package comes with a small set of examples.

Note! The syslink samples use a different memory map from the default EZSDK installation. In order to run
syslink examples, you must boot with a different memory for linux. When booting, ensure that the linux
bootargs is changed from the default values to MEM=169M

DM814x AM387x EZ Software Developers Guide

Running OMTB 6

Note! The Codec Engine examples cannot be run out with graphics. Please execute the following steps to
teardown the graphics plane and ensure that no firmware is running.

target # /etc/init.d/pvr-init stop

target # /etc/init.d/matrix-gui-e stop
target # /etc/init.d/load-hd-firmware.sh stop

To run the application, enter the following set of commands on the target:

target # cd /usr/share/ti/ti-codec-engine-examples

Ensure that syslink and cmem modules are installed with memory configuration as below

target # modprobe syslink
target # modprobe cmemk phys_start=0x94000000 phys_end=0x947fffff \
pools=20x4096,10x131072,2x1048576

To run the audio1_copy example, you will need to run the following commands.

target # cd audio1_copy

target # ./app_remote.xv5T

To run other examples, please refer the Codec Engine documentation.

Running the Qt/Embedded examples

The Qt embedded comes with some examples applications. To see the examples that are available, check out
this directory on the target:

target # cd /usr/bin/qtopia/examples
target # ls

Execute the following command to run Qt/e calendar example application.

Note! - You should quit the Matrix GUI application before running Qt/Embedded examples. You will need to
export additional touchscreen related variables.

target # export TSLIB_TSDEVICE=/dev/input/event0
target # export QWS_MOUSE_PROTO="Tslib:/dev/input/event0 Auto:/dev/input/mice"

target # cd /usr/bin/qtopia/examples/richtext/calendar
target # ./calendar -qws -geometry 320x200+50+20

After you see the calendar interface, hit CTRL-C to terminate it

QT Examples with SGX Acceleration please see QT Tips on TI Processors Wiki

DM814x AM387x EZ Software Developers Guide

Running the Codec Engine examples 7

http://processors.wiki.ti.com/index.php/Qt_Tips

Running the Graphics SDK examples

The Graphics SDK comes with some examples applications. To see the examples that are available, check out
this directory on the target:

target # cd /usr/bin/SGX/demos/Raw
target # ls

Here is the list of apps you will see:

OGLES2ChameleonMan OGLESEvilSkull OGLESPolyBump

OGLES2Coverflow OGLESFilmTV OGLESShadowTechniques

OGLES2FilmTV OGLESFiveSpheres OGLESSkybox

OGLES2PhantomMask OGLESFur OGLESTrilinear

OGLES2Shaders OGLESLighting OGLESUserClipPlanes

OGLES2Skybox2 OGLESMouse OGLESVase

OGLES2Water OGLESOptimizeMesh

OGLESCoverflow OGLESParticles

Execute the following command to run 3D Graphics application, this particular example is for an album
coverflow.

target # ./OGLES2Coverflow

After you see the output on the display interface, hit q to terminate it

Running GStreamer pipelines

The EZSDK comes with GStreamer, and you can construct your own pipelines, see [1].

Note: In order to see the video output, the graphics planes need to be turned off. For more information on the
graphics planes and their sysfs entries, please read the VPSS guide in PSP documentation.

Turn off the Graphics Plane 0 by running the following command.

target # echo 0 > /sys/devices/platform/vpss/graphics0/enabled

In case Graphics Planes 1 and 2 are currently open, then they need to be disabled as well.

target # echo 0 > /sys/devices/platform/vpss/graphics1/enabled
target # echo 0 > /sys/devices/platform/vpss/graphics2/enabled

The following pipeline decodes a H.264 Elementary Stream and displays it to HDMI:

DM814x AM387x EZ Software Developers Guide

 Running the Graphics SDK examples 8

http://processors.wiki.ti.com/index.php/DM81xx_Gstreamer_Pipelines

target # gst-launch -v filesrc location=/usr/share/ti/data/videos/dm816x_1080p_demo.264 \
 ! 'video/x-h264' ! h264parse access-unit=true ! omx_h264dec ! omx_scaler \
 ! omx_ctrl display-mode=OMX_DC_MODE_1080P_60 ! omx_videosink sync=false

Using the devkits
At the top level directory of the EZSDK you will find one or more devkits, typically linux-devkit and
dsp-devkit. The devkits are:

The tools, libraries and headers to develop applications for a specific hardware subsystem (e.g. the
arm or the dsp).

1.

The devkits are relocatable, meaning you can move them to another location on your filesystem and
they will still work (see #Moving the devkits below).

2.

The devkits do not contain source code or build files. If you want to change components, or make a
change to a component, the devkit will need to be regenerated, see #Regenerating the devkits below.

3.

The devkits contain the documentation of the TI components in one location.4.

The devkits were introduced to provide a more unified view of what is available for each hardware subsystem
and present a system view of the software in the EZSDK as opposed to a component view. Since they are
relocatable, they are also easier for a user to check in to version control.

Note! The components themselves are still available from the ${EZSDK}/component-sources directory, and
the ${EZSDK}/Rules.make file still points to all the right component directories. If you do not wish to build
against the devkits, but directly against the components, this is still possible.

Regenerating the devkits

You may need to regenerate the devkit because you changed a component version, in which case you (Codec
Engine example):

Download the new Codec Engine release from the web.1.
Read the release notes to make sure all dependencies are satisfied, or you may have to update more
components.

2.

Extract the downloaded release on your target filesystem, and update the CE_INSTALL_DIR variable
in ${EZSDK}/Rules.make to point to the new location.

3.

Enter the ${EZSDK} directory.4.
Clean the EZSDK by executing make clean so that files not relevant to your target (linux, dsp etc.)
don't get copied.

5.

Make sure the components are compiled for Linux by executing make components_linux.6.
Execute make linux-devkit to populate the linux-devkit with the TI components.7.
Clean the EZSDK by executing make clean.8.
Make sure the components are compiled for the DSP by executing make components_dsp.9.
Execute make dsp-devkit to populate the dsp-devkit with the TI components.10.

If you have modified a component, in which case the support TI will be able to provide is limited, you can
regenerate the devkits using only the last 7 steps above.

Note that not all components contribute to all devkits. You may only have to regenerate e.g. the dsp-devkit if
you update or change sysbios.

DM814x AM387x EZ Software Developers Guide

 Using the devkits 9

Verifying the devkit integrity

When the devkits are created, two files are generated at the devkit's top level directory:

install.log contains the TI components and versions used in the devkit.1.
md5sums contains the md5sums of all files in the devkit.2.

In addition, the ${EZSDK}/docs directory contains the md5sums of the devkits at the time of release.

If a file has been changed, or a component updated, the md5sums will have changed. To verify whether this is
the case for e.g. the dsp-devkit, enter the dsp-devkit directory and execute:

host $ md5sum -c ${EZSDK}/docs/dsp-devkit.md5sums | grep -v OK$

If there is no output from this command, your integrity with the devkit released by TI is ok. If there is an
error, the offending files will be printed.

Moving the devkits

The devkits are relocatable, whereas the rest of the EZSDK is not. This means that you can put the devkits in
any directory on your Linux filesystem, as long as you do the following (dsp-devkit example):

If you want to be able to regenerate the dsp-devkit (see #Regenerating the devkits, you'll need to
update the DSP_DEVKIT_DIR variable in ${EZSDK}/Rules.make.

1.

Before building against the dsp-devkit from the command line, you need to "source" the
environment-setup script (don't forget the .):

2.

host $. /path/to/dsp-devkit/environment-setup

Note! For the linux-devkit you will currently have to edit the first line of
${EZSDK}/linux-devkit/environment-setup to change the SDK_PATH variable to point to your new location.
You can get your new location by executing the following in the linux-devkit directory:

host $ pwd

Note! The dsp-devkit does not contain xdctools. If you need to relocate the devkit, the path to xdctools needs
to be updated in dsp-devkit/environment-setup.

Note! After relocating the devkits, Rules.Make must be updated. Please update CODEGEN_INSTALL_DIR,
LINUX_DEVKIT_DIR and DSP_DEVKIT_DIR according to their new locations on your filesystem.

EZSDK software overview

DM814x AM387x EZ Software Developers Guide

 EZSDK software overview 10

Overview of the EZ SDK Software stack

The EZ SDK contains many software components. Some are developed by Texas Instruments and some are
developed in and by the open source community(White). TI contributes, and sometimes even maintains, some
of these open source community projects, but the support model is different from a project developed solely
by TI.

Creating a Linux application

DM814x AM387x EZ Software Developers Guide

 Creating a Linux application 11

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Dm814x_am387x_software_overview.jpg

Overview of a basic Linux application component usage

While creating a basic Linux application you are typically using the following components of the stack (the
rest are greyed out above):

Component Purpose in this application Location in the EZSDK

Open Source
Linux libraries

Provides libraries such as
libpng, libusb, libz, libcurl etc.

linux-devkit/arm-none-linux-gnueabi/lib and
linux-devkit/arm-none-linux-gnueabi/usr/lib/

Platform
Support Package

Provides device drivers for the
EVM and documentation and
examples to support them.

board-support

Linux kernel The Linux kernel with the PSP
device drivers board-support/linux-kernel-source

You can find examples all over the web on how to write this type of application. The PSP examples are a
good reference on how to access the peripheral drivers specific to this platform.

Creating a SYS/Link application

DM814x AM387x EZ Software Developers Guide

 Creating a SYS/Link application 12

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_psp_overview.jpg

Overview of a SYSlink application component usage

SYS/Link(SysLink) is foundation software for the inter-processor communication across the HLOS-RTOS
boundary. It provides a generic API that abstracts the characteristics of the physical link connecting HLOS
and RTOS from the applications. It eliminates the need for customers to develop such link from scratch and
allows them to focus more on application development.

SysLink provides several features and capabilities that make it easier and more convenient for developers
using a multi-core system:

Provides a generic API interface to applications•
Hides platform/hardware specific details from applications•
Hides HLOS operating system specific details from applications, otherwise needed for talking to the
hardware (e.g. interrupt services)

•

Applications written on SysLink for one platform can directly work on other platforms/OS
combinations requiring no or minor changes in application code

•

Makes applications portable•
Allows flexibility to applications of choosing and using the most appropriate high/low level protocol•
Provides scalability to the applications in choosing only required modules from SysLink.•

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the EZSDK

SYS/BIOS Real-Time Operation System for TI DSPs component-sources/sysbios_x_xx_xx_xx

SysLink HLOS to RTOS communication link for
passing messages and data in

component-sources/syslink_x_xx_xx_xx

DM814x AM387x EZ Software Developers Guide

 Creating a SYS/Link application 13

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_syslink_overview.jpg

multiprocessor systems

IPC RTOS communication link for passing
messages and data communication component-sources/ipc_x_xx_xx_xx

Platform Support
Package

Provides device drivers for the EVM and
documentation and examples to support
them

board-support

C6000 Code
Generation Tools TI DSP code generation tools dsp-devkit/cgt6x_x_x_xx

Good application examples to start from include:

The sample applications (component-sources/syslink_x_xx_xx_xx/packages/ti/syslink/samples
provide simpler and smaller examples on how to use SysLink.

•

Creating an OpenMax IL application

DM814x AM387x EZ Software Developers Guide

 Creating an OpenMax IL application 14

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Dm816x_omx_overview.jpg

Overview of a basic OMX application component usage

The OpenMax IL package wraps key Multimedia functions which can be invoked from the ARM side using
simple API calls. In addition to the components used for the Linux app, these are used (and the rest is greyed
out in the diagram above):

Component Purpose in this application Location in the EZSDK

OpenMax
OpenMax IL multimedia framework for the
applications invoking multimedia codecs and
other algorithms.

component-sources/omx_xx_xx_xx_xx

SysLink HLOS to RTOS communication link for passing
messages and data in multiprocessor systems component-sources/syslink_x_xx_xx_xx

Creating a Qt/Embedded application

Overview of a Qt/Embedded application component usage

Qt/Embedded is a Graphical User Interface toolkit for rendering graphics to the Linux framebuffer device, and
is included in this kit. The base Qt toolkit on the other hand renders the graphics to the X11 graphical user
interface instead of to the basic framebuffer.

In addition to the components used for the basic Linux app, these are used (and the rest is greyed out in the
diagram above):

Component Purpose in this application Location in the EZ SDK

Qt/Embedded Provides a Graphical User
Interface toolkit linux-devkit/arm-none-linux-gnueabi/usr/lib/libQt*

DM814x AM387x EZ Software Developers Guide

 Creating a Qt/Embedded application 15

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:C6a816x_am389x_qt_overview.jpg

SysLink
HLOS communication link for
passing messages and data in
multiprocessor systems

component-sources/syslink_x_xx_xx_xx

Platform Support
Package

Provides device drivers for the
EVM and documentation and
examples to support them.

board-support

See the Qt Reference Documentation on various API's and its usages. You can also download some Qt/e
example applications from Qt Examples web page.

Compiling an application
EZ SDK Linux development kit includes the Qt/Embedded host tools and development header and libraries.

1. First, configure your cross compilation environment #Setting_up_cross_compilation_environment.

2. Next, follow the typical Qt/e recommended method for cross compiling your application on host.

host $ cd <directory where your application is>
host $ qmake -project
host $ qmake
host $ make

Matrix User's Guide

Please refer to the The Matrix User's Guide for more information.

Creating a GStreamer application

DM814x AM387x EZ Software Developers Guide

 Matrix User's Guide 16

http://doc.trolltech.com/4.7/index.html
http://doc.trolltech.com/4.7/all-examples.html
http://processors.wiki.ti.com/index.php/Matrix_Users_Guide

Overview of a GStreamer application component usage

GStreamer is an open source multimedia framework which allows you to construct pipelines of connected
plugins to process multimedia content. The gst-openmax plugin accelerates multimedia using OpenMax.

Compared to creating an application directly on top of OMX you get the advantage of A/V sync and access to
many useful open source plugins which e.g. allows you to demux avi-files or mp4-files. The downside is
increased complexity and overhead.

In addition to the components used for the OMX app, these are used:

Component Purpose in this application Location in the EZSDK

GStreamer Multimedia Framework linux-devkit/arm-none-linux-gnueabi/usr/lib

To construct your own pipelines there are examples of how to use the open source plugins in various places
on the web including the GStreamer homepage at gstreamer.ti.com.

DM814x AM387x EZ Software Developers Guide

Creating a GStreamer application 17

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/File:Dm816x_gst_overview.jpg
http://gstreamer.ti.com

See the GStreamer Application Development Manual and the GStreamer 0.10 Core Reference Manual on how
to write GStreamer applications.

Compiling a GStreamer application

EZSDK Linux development kit includes the GStreamer development header files, libraries and package
configs.

1. First, configure your cross compilation environment #Setting_up_cross_compilation_environment

2. Next, follow the typical GStreamer recommended method for compiling your application. e.g.

host $ cd <directory where your application is>
host $ arm-none-linux-gnueabi-gcc -o decode decode.c `pkg-config --libs --cflags gstreamer-0.10`

Additional Procedures

Setting up cross compilation environment

To enable your application development, EZ SDK comes with linux-devkit which contains package header,
libraries and other package dependent information needed during development. Execute the following
commands to configure your cross compilation environment

host $ source ${EZSDK}/linux-devkit/environment-setup

The above command will export cross compilation specific environment variables.

You will notice that the command will add [linux-devkit] to your bash prompt to indicate that you have
exported the required cross compiler variables.

Modifying the EZSDK Memory Map

By Default, the EZSDK Ships with a memory map that is configured for 1GB of DDR. More details on how
to configure the memory map to different memory sizes or to even change the partitioning is available on TI's
Processor Wiki at http://processors.wiki.ti.com/index.php/EZSDK_Memory_Map.

Rebuilding the EZ SDK components

The EZ SDK has provided a top level Makefile to allow the re-building of the various components within the
EZSDK.

Note: The EZ SDK component build environment is self contained and doesn't require the
#Setting_up_cross_compilation_environment thus should be avoided to prevent possible build failures.

Rebuild the EZSDK components by first entering the EZ SDK directory using:

host $ cd ${EZSDK}

DM814x AM387x EZ Software Developers Guide

 Additional Procedures 18

http://www.gstreamer.net/data/doc/gstreamer/head/manual/html/index.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html
http://processors.wiki.ti.com/index.php/EZSDK_Memory_Map

The EZ SDK makefile has a number of build targets which allows you to rebuild the EZSDK components. For
a complete list execute:

host $ make help

Some of the components delivered in the EZ SDK are not pre-built. The provided 'make clean' & 'make
components' build targets are designed to clean and build all components (e.g. Linux Kernel, CMEM, DMAI,
etc.) for which a build is compulsory to begin application development. These components must first be
cleaned and then rebuilt by the user before the user attempts to rebuild anything else. To do this, simply run

host $ make clean
host $ make components

After that, each of the build targets listed by 'make help' can then be executed using:

host $ make <target>_clean
host $ make <target>
host $ make <target>_install

In order to install the resulting binaries on your target, execute one of the "install" targets. Where the binaries
are copied is controlled by the EXEC_DIR variable in ${EZSDK}/Rules.make. This variable is set up to
point to your NFS mounted target file system when you executed the EZ SDK setup (setup.sh) script, but
can be manually changed to fit your needs.

You can remove all components generated files at any time using:

host $ make clean

And you can rebuild all components using:

host $ make all

You can then install all the resulting target files using:

host $ make install

Creating your own Linux kernel image

The pre-built Linux kernel image (uImage) provided with the EZSDK is compiled with a default
configuration. You may want to change this configuration for your application, or even alter the kernel source
itself. This section shows you how to recompile the Linux kernel provided with the EZSDK, and shows you
how to boot it instead of the default Linux kernel image.

1. If you haven't already done so, follow the instructions in #Setting_up_the_EZ_SDK to setup your build
environment.

2. Recompile the kernel provided with the EZSDK by executing the following:

host $ cd ${EZSDK}
host $ make linux_clean
host $ make linux
host $ make linux_install

DM814x AM387x EZ Software Developers Guide

Rebuilding the EZ SDK components 19

3. You will need a way for the boot loader (u-boot) to be able to reach your new uImage. TFTP server has
been setup in the #Setting_up_the_EZ_SDK section.

4. Copy your new uImage from the EXEC_DIR specified in the file ${EZSDK}/Rules.make to the tftpserver:

host $ cp ${HOME}/targetfs/home/root/dm814x-evm/boot/uImage /tftpboot

5. Copy the exported Linux kernel modules from the EXEC_DIR to the /lib/modules directory:

host $ sudo cp -r ${HOME}/targetfs/lib/modules ${HOME}/targetfs/lib/modules_original
host $ sudo cp -r ${HOME}/targetfs/home/root/dm814x-evm/lib/modules ${HOME}/targetfs/lib

6. Run the u-boot script and follow the instructions. Select TFTP as your Linux kernel location and the file
'uImage' as your kernel image.

host $ ${EZSDK}/bin/setup-uboot-env.sh

Note! In this release of the EZ SDK, U-Boot does not read the MAC Address from eFuses. As a result the
ethernet MAC Address needs to be set manually by choosing a valid random MAC Address. More details are
available in the PSP U-Boot documentation. Please run the following command to set the ethernet MAC
Address

u-boot :> set ethaddr <value of the MAC address chosen>

7. Note that when you change your kernel, it is important to rebuild the kernel modules supplied by the
EZSDK sub-components. You can find a list of these modules under the directory
/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/ (replace 2.6.32-rc2-davinci1 with the version of the
kernel applicable to your platform)

host $ ls ${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/

For each module that you see listed, you should go back to the host, rebuild it, and replace the file with the
one from your EXEC_DIR. E.g. for cmemk.ko

host $ cd ${EZSDK}
host $ make cmem_clean
host $ make cmem
host $ make cmem_install
host $ sudo mv ${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/cmemk.ko \
${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp/cmemk.ko.orig
host $ sudo cp ${HOME}/targetfs/home/root/dm814x-evm/cmem/cmemk.ko \
${HOME}/targetfs/lib/modules/2.6.32-rc2-davinci1/kernel/drivers/dsp

8. After updating all modules, start minicom or Tera Term and power-cycle the board. The new kernel will
now be loaded over TFTP from your Linux host.

Setting up Tera Term

Tera Term is a commonly used terminal program on Windows. If you prefer to use it instead of Minicom, you
can follow these steps to set it up.

1. Download Tera Term from this location, and start the application.

DM814x AM387x EZ Software Developers Guide

Creating your own Linux kernel image 20

http://hp.vector.co.jp/authors/VA002416/ttermp23.zip

2. In the menu select Setup->General... and set:

Default port: COM1

3. In the menu select Setup->Serial Port... and set the following:

Port: COM1
Baud rate: 115200
Data: 8 bits
Parity: none
Stop: 1 bit
Flow control: none

NOTE: Kernel Bootargs can be generated by running the setup script. See the section
#Setting_up_the_EZ_SDK for details on running the setup script.

How to create an SD card

This section explained the procedure required for creating SD card image for DM814x and the steps has been
verified on 2GB, 4GB and 8GB SD cards.

1. Plug an SD card on Linux host machine.

2. Run dmesg command to check the device node. Triple check this to ensure you do not damage your HDD
contents!

host $ dmesg
 [14365.272631] sd 6:0:0:1: [sdb] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB)
 [14365.310602] sd 6:0:0:1: [sdb] Assuming drive cache: write through
 [14365.325542] sd 6:0:0:1: [sdb] Assuming drive cache: write through
 [14365.325571] sdb: sdb1 sdb2

In this example, SD card is detected on /dev/sdb.

3. Run mksdboot script installed in EZ SDK as show below

host $ sudo ${EZSDK}/bin/mksdboot.sh --device /dev/sdb --sdk ${EZSDK}

Wait for script to complete. On successful completion, remove the SD card from the host PC.

4. Power OFF the DM814x EVM.

5. Set the SW1 switch to boot from SD.

SW1 = 000001010111 (high to low, i.e. SW1.1 = 1)•
1 = "On" position on the switch•

6. Insert the SD card into the DM814x EVM.

DM814x AM387x EZ Software Developers Guide

Setting up Tera Term 21

7. Power ON the EVM.

Note! If your flash already has a u-boot environment stored, this will get picked up even while booting from
SD-card. If this is the case, halt the u-boot auto boot process and enter the following command to erase the
NAND environment variables:

u-boot :> nand erase 0x260000 0

Note! If you want to recreate the full SD card with a separate partition for the EZSDK installer and the CCSv5
installer execute the following:

host $ sudo ${EZSDK}/bin/mksdboot.sh --device /dev/sdb --sdk ${EZSDK} \
/path/to/ezsdk_dm814x-evm_5_xx_xx_xx_xx_setuplinux setup_CCS_5.x.x.xxxxx.tar.gz

This takes significant extra time so it's not part of the default instructions.

How to display a logo at boot

This section explains the procedure to display an image at boot time. Booting with the SD card created by
following the steps described in the previous section displays the Texas Instruments logo.

The linux logo appears by default when the u-boot stages are being loaded. After the linux logo, one can give
the commands to load an image using the tftp and display the image at the u-boot command prompt.

To display a bmp image(24 bit) as logo, follow the following steps:

1. Copy the image to the tftp directory in the host system.

host $ sudo cp $EZSDK/bin/ti_logo.bmp /tftpboot

2. Add the commands to display the bmp image at the u-boot to environment variable "bootcmd" and save the
environment to NAND (Note: NAND should be enabled).

u-boot :> setenv bootcmd 'tftp 0x81000000 ti_logo.bmp; bmp display 0x81000000; $bootcmd'

The logo would appear for around 15 seconds by default. To change the time for which the logo is displayed,
change the value of environment variable logotime at the u-boot but it should not be greater than 15. Save the
environment to NAND to see the change in time for which the logo is displayed during the next boot.

u-boot :> setenv logotime value

Note: By default, if the environment variable "logotime" is not defined in u-boot environment, it uses the
default value of 15 to display the logo for that much time.

How to copy boot loaders to NAND flash

The setup-nand-images.sh in $EZSDK/bin can be used to flash uboot to NAND. By running this script images
from SD Card will be copied over to the NAND.

DM814x AM387x EZ Software Developers Guide

How to create an SD card 22

Note! You need ensure that the EVM is connected to the Host via RS-232. You also need to ensure that the
NAND is available and turned on.

Please refer the U-boot documentation under the board-support folder in your EZ SDK installation for the
procedure required for copying boot loaders (MLO and u-boot) on NAND flash using other methods.

How to change the display resolution

The EZ SDK supports multiple displays resolutions but by default boots with 720p60 resolution. To change
the resolution on your display, you can execute the following command. The command below demonstrates
resolution change to 1080p60. In a similar manner, the resolution can be set to 720p60, 1080i60, 1080p30 and
1080p60.

target # cd /usr/share/ti/ti-media-controller-utils
target # ./change_resolution.sh 1080p60

Note! You will need to reboot your board after executing the above command.

How to change the display from LCD to HDMI

The EZ SDK supports multiple displays but by default displays on the LCD. To change the display to HDMI ,
you can execute the following command. In a similar manner, the display can be changed back to LCD.

target # cd /usr/share/ti/ti-media-controller-utils
target # ./change_display.sh hdmi

Note! You will need to reboot your board after executing the above command.

How to change from OMX to V4L2 firmware for
capture/display

The OMX Capture/Display software is orthogonal to the V4L2 drivers. Hence a different set of firmware is
provided if you wish to use V4L2 instead of OMX VFDC, VFPC and VFCC components. To support V4L2
and a different initscript is provided. Copy over the V4L2 specific initscript to the /etc/init.d directory.

target # cd /usr/share/ti/ti-media-controller-utils
target # cp load-hd-v4l2-firmware.sh /etc/init.d/load-hd-firmware.sh
target # sync

Now power cycle the board and it will be setup to load the alternate firmware which supports V4L2.

FAQ

Frequently Asked Questions on The EZ SDK are available at EZ SDK FAQ. This information is also located
in the docs/ folder along with other documents.

DM814x AM387x EZ Software Developers Guide

How to copy boot loaders to NAND flash 23

http://ap-fpdsp-swapps.dal.design.ti.com/index.php/EZ_SDK_FAQ

	DM814x AM387x EZ Software Developers Guide

