
©2013 Texas Instruments Incorporated www.ti.com

Em
bedded Sim

ply B
lue A

pplication N
ote

Texas Instruments
Application Note 1711
Sebastien Mathieu
September 2007
Revised February 2013

Embedded Simply Blue
Application Note

1.0 Introduction
SB_Custom has been created to give an embedded exam-
ple of a Simply Blue device (LMX9830 or LMX9838
based) communicating with a 16 bits microprocessor chip.

Note that those files are not complete and can not be
compiled and tested as is. The purpose of it is to give
some guidelines for an embedded world and simplify the
development process.

In this document, the term “Host” refers to the 16 bits micro-
processor platform which role is to initialize and manage the
communication with the National Bluetooth module
(LMX9820A, LMX9830 or LMX9838 based). The term
“Bluetooth module” or “module” refers to the National Blue-
tooth module (LMX9820A, LMX9830 or LMX9838 based).

2.0 SB_Custom files overview
SB_Custom contains the following files with their respective
description:

• sbappli_custom.c:

This file is the top level file of the project and contains the ba-
sic framework to create an embedded application using
uCOS-II as Operating System. All high level initializations
such as UART communication, host hardware initialization
and module initialization have to be done in this file.

• sbopcodes_custom.h:

A listing and definition of every command opcode of the Sim-
plyBlue command interface is done in this file. The Simply-
Blue command interface allows sending and receiving
commands from/to the module in order to easier the commu-

nication with the module. Please refer to the Software User’s
Guide to get more information.

• sb_custom.c:

This file implements the command interface on the host.
Construction of a command, sending of a command to the
module, command parser and wrapper are all included in
this file.

• sb_custom.h:

This header file contains the definition and important infor-
mation for the sb_custom.c file.

3.0 SimplyBlue Command construction
3.1 UART PROTOCOL PRINCIPLES
The Bluetooth module can be controlled by simple com-
mands on the UART interface. The host should send those
commands using the UART interface to set up the Bluetooth
module. The commands have to be sent within a special
package format. The following sections describe the format
of the command set packages.

3.1.1 Framing
The connection is considered “Error free”. But for packet rec-
ognition and synchronization, some framing is used.
All packets sent in both directions are constructed after the
following model:

3.1.2 Start delimiter
The start delimiter indicates the Bluetooth module the begin-
ning of a new package. The “STX” char is used as start de-
limiter.

STX = 0x02

3.1.3 Packet type identification
This byte identifies the type of packet. The following types
are valid:

Table 1. Package Framing

Start
delimiter

Packet Type
identification

Op
code

Data
length

Check-
sum Packet Data

End
delimiter

1 byte 1 byte 1 byte 2 bytes 1 byte <Data length> bytes 1 byte
|--------------- Checksum ----------------|

www.ti.com 2

A
N

-1
71

1

All other values are reserved.

3.1.4 Opcode
The opcode is a command specifier. Each command is rep-
resented by a one byte identifier. The complete list of com-
mand opcode can be found in Annex “Command Opcode”.

3.1.5 Data length
Number of bytes in the “Packet data” area. The maximum
size is 333 bytes.

3.1.6 Packet data
The data fields hold binary data; hence both 0x02 (=STX)
and 0x03 (=ETX) are allowed as data.

3.1.7 Checksum
This is a simple Block Check Character (BCC) checksum of
the bytes from “Packet type” to, and including, “data length”.
The BCC checksum is calculated as the low byte of the sum
of all bytes.

E.g. if the sum of all bytes are 0x3724, the checksum is
0x24.

3.1.8 End delimiter
The “ETX” char is used as end delimiter.
ETX = 0x03

3.1.9 Retransmission
The connection is considered “Error free”, hence no need
for implementing time-outs and retransmissions.

3.1.10 Flow control
A transparent data-mode is supported for RFCOMM com-
munication. When using this transparent mode, full hard-
ware handshake is needed.

When not in transparent mode, the protocol principle of
REQ-CFM, limits the need of buffer capacity. As IND's can
come out of REQ-CFM sequence, and is unconfirmed, the
user device has to be able to read these data fast enough /
have enough buffer capacity.

3.1.11 Byte Order
The byte order of the protocol is Little Endian, if nothing else
is specified.

Table 2. Packet Type Identification

Code Packet Type Description

0x52

'R'

Request
(REQ)

A request sent to the Bluetooth module.

All request are answered by exactly one confirm.

0x43

'C'

Confirm

(CFM)

The Bluetooth modules confirm to a request.

All request are answered by exactly one confirm.

0x69

'i'

Indication

(IND)

Information sent from the Bluetooth module, that is not a direct confirm to a
request.

0x72

'r'

Response

(RES)

An optional response to an indication.

This is used to respond to some type of indication messaged.

3 www.ti.com

A
N

-1711
4.0 Command Wrapper
The Command Wrapper mechanism is “packing” the com-
mand bytes together and sending the command through
UART to the module. One part of the Wrapping is done in
the function specific to the command and the other part is
done in the function SbSendCommand. Once the command
is ready to be sent, the function will send it over UART inter-
face to the module and wait for a status OK. This is done

through the message box OSMboxPend(SbDevInfo.SbCm-
dMbox, BTCORE_CALLBACK_TIMEOUT, &err). This mes-
sage box will block the function SbSendCommand until the
status is received from the receiving function.

The Command Wrapper function SbSendCommand is tak-
ing the command pointer and the command size as input
parameters. This function fills out:

• Start delimiter

• Packet type identification

• Checksum

• End delimiter

The rest of the command (Opcode, Data Length and Packet
Data) should be filled previously in the specific command
function calling this wrapper.

For example, the user wants to send the reset command to
the module. The function SbResetDevice will first create
and allocate the command buffer in the memory, and fill:

• Opcode

• Data Length

• Packet Data

For reference, see the following example code.

www.ti.com 4

A
N

-1
71

1
SBStatus_T SbResetDevice(void)

{

 uint16 payloadlen;

 uint8 SbCommand[7];

 payloadlen = 0x0000;

 SbCommand[2] = RESET;

 SbCommand[3] = (payloadlen & 0x00FF); // payload size is stored

 SbCommand[4] = (payloadlen >> 8); // in little endian fashion

 return SbSendCommand(SbCommand, 7 + payloadlen);

}

SBStatus_T SbSendCommand(uint8* SbCommand, uint16 Size)

{

 uint8 err;

 void *msg;

 uint16 checksum;

 SbCommand[0] = STX;

 SbCommand[1] = REQ;

 checksum = SbCommand[1] + SbCommand[2] + SbCommand[3] + SbCommand[4];

 SbCommand[5] = checksum % 256;

 SbCommand[Size - 1] = ETX;

 if (usart_tx(SB_UART_PORT, SbCommand, Size) == Size) {

 msg = OSMboxPend(SbDevInfo.SbCmdMbox, BTCORE_CALLBACK_TIMEOUT, &err);

 if (err == OS_NO_ERR) {

 if ((uint32)msg == SBSTATUS_OK) {

 return SBSTATUS_OK;

 }

 else {

 return SBSTATUS_ERROR;

 }

 }

 else {

 return SBSTATUS_TIMEOUT;

 }

 }

 else {

 return SBSTATUS_UART_INCOMPLETE_TRANSFER;

 }

}

5 www.ti.com

A
N

-1711
5.0 Command Parser
The Command Parser is in charge of analyzing an incoming
frame to determine which command and information have
been received from the module, and what is the action to
take.

This Embedded Simplyblue application is based on multi-
tasking programming, using uCOS RTOS core. In this appli-
cation is running two tasks in parallel. The first one is
dealing with the actions to take, and mainly sending com-
mands to the modules and the second one is receiving and
analyzing the incoming frames.

In the code the function receiving the frames to be analyzed
is called SbTimerTask. As soon as the host receives a Byte

on the UART port, this function will check if the command
received is valid, and this byte per byte. If one byte is not ex-
pected, it will return an invalid result and proceed another
frame.

Once the command has been completely received, this
function will call the SbProcessFrame function which is the
real Command Parser. If the message coming from the
module is a confirmation to a command previously sent, the
status will be given back through the message box OSM-
boxPost(SbDevInfo.SbCmdMbox, (void*)status);

www.ti.com 6

A
N

-1
71

1
See the following source code:

void SbProcessFrame(void)

{

 int i;

 uint16 ServiceResponseStart=0;

 uint32 status;

 switch (SbEvent.bOpcode)

 {

 case GAP_DEVICE_FOUND: /* to be implemented */ return or break;

 case SPP_LINK_ESTABLISHED: /* to be implemented */ return or break;

 case SPP_INCOMING_LINK_ESTABLISHED: /* to be implemented */ return or break;

 case SPP_LINK_RELEASED: /* to be implemented */ return or break;

 case GAP_ESTABLISH_SCO_LINK: /* to be implemented */ return or break;

 case GAP_RELEASE_SCO_LINK: /* to be implemented */ return or break;

 case SPP_SEND_DATA: /* to be implemented */ return or break;

 case SPP_INCOMING_DATA: /* to be implemented */ return or break;

 case SDAP_SERVICE_BROWSE: /* to be implemented */ return or break;

 case SDAP_SERVICE_REQUEST: /* to be implemented */ return or break;

 case MODULE_READY:

 if (COMMON_MboxWaitingTasks(SbDevInfo.SbCmdMbox) != 0) {

 OSMboxPost(SbDevInfo.SbCmdMbox, (void*)1);

 }

 /* At this point, the Simply Blue device is reset and ready to work */

 return;

 default:

 break;

 }

 if (SbEvent.bType == CFM) {

 //signal that sb command is completed

 status = ((!SbEvent.pPayload[0]) ? SBSTATUS_OK : SbEvent.pPayload[0]);

 OSMboxPost(SbDevInfo.SbCmdMbox, (void*)status);

 }

}

7 www.ti.com

A
N

-1711
6.0 Transparent mode
Simply Blue devices have this in-built specificity called
the command interpreter which allows the user to send
predefined commands to the module. In case the user wants to
use the device as a true cable replacement, the module will
have to be switched to the so called transparent mode.
Once in transparent mode, the module will not interpret the
commands anymore and will just forward any bytes
received as is, as a pure cable.

To get more information about the transparent mode, please
refer to “Texas Instruments: “LMX9830” or “LMX9838
Software User’s Guide””.

An example of a function setting the module into transpar-
ent mode is detailed below.

The function gets the local port number corresponding to
the link to be switched to transparent mode. If the command
has been successful, the transparent flag will be set to give
the information that the transparent mode is now active, and
the function will return the status OK If the command was
not successful the function will return the status ERROR.

SBStatus_T SbEnterTransparentMode(uint8 LocalPortNo)

{

 int16 payloadlen;

 uint8 SbCommand[8];

 uint8 err;

 void *msg;

 payloadlen = 0x0001;

 SbCommand[2] = SPP_TRANSPARENT_MODE;

 SbCommand[3] = (payloadlen & 0x00FF); // payload size is stored

 SbCommand[4] = (payloadlen >> 8); // in little endian fashion

 SbCommand[6] = LocalPortNo;

 if (SbSendCommand(SbCommand, 7 + payloadlen) == SBSTATUS_OK) {

 Transparent_flag = TRUE; // transparent mode is now active

 return SBSTATUS_OK;

 }

 return SBSTATUS_ERROR;

}

www.ti.com 8

A
N

-1
71

1
7.0 UART Break
Once the Bluetooth module is in transparent mode, the only
way to go back to command mode and get control access
over the module, is to send a UART Break. As defined in the
UART specification, a UART Break is a contiguous trans-
mission of “0” (space) for a certain length of time. The
CCITT “blue book” specification states that the time dura-

tion for this is larger than 2M+3 bit time (where M is the char-
acter length). After the break sequence, another 2M+3 bit
time consisting of the contiguous transmission of “1” (mark)
is required to start the next character.

Figure 1. Difference between a Standard 0 transmission and BREAK signal

Figure 1 shows the difference between the signal of a nor-
mal 0 and the BREAK signal. The left picture shows the sig-
nalling of 3 Zeros at 115.2kbit/s. Each character is started
and ended with a start bit and a Stop bit. The normal length
of 1 byte is therefore about 86.8μs (1startbit + 8bit data +
1stopbit).

The picture on the right shows a BREAK signalled by the
Bluetooth module after a released link. The signal is held
low for over 4 ms. Theoretical minimum value for a BREAK
at this speed would be about 165μS.

An example of how could be implemented this UART Break
functionality in embedded environement, is detailed below.

The function protects the execution core from an eventual
OS interrupt. The transmit line TX of the UART is pulled
down for about 10 ms to cover the worst case. Of course
this time could be computed depending on the UART
baudrate to get a more accurate time. Then the transmit line
TX of the UART is raised again to finish the UART Break.

void SbSendUartBreak(void)

{

 uint32 ticks,new_tick=0;

 usart_t* usart = usart_tab[SB_UART_PORT];

 OS_ENTER_CRITICAL();

 UMDSL1 |= UBRK; // asserts TX line to 0

 ticks = OSTimeGet();

 while(OSTimeGet() < (ticks+1)); // wait for 10 ms (1 tick)

 UMDSL1 &= (~UBRK); // asserts TX line to 1

 Transparent_flag = FALSE; // command mode active

 OS_EXIT_CRITICAL();

}

9 www.ti.com

A
N

-1711
8.0 Annex
8.1 COMMAND OPCODE

Table 3. Opcode Values

Opcode Value

GAP_INQUIRY 0x00

GAP_DEVICE_FOUND 0x01

GAP_REMOTE_DEVICE_NAME 0x02

GAP_READ_LOCAL_NAME 0x03

GAP_WRITE_LOCAL_NAME 0x04

GAP_READ_LOCAL_BDA 0x05

GAP_SET_SCANMODE 0x06

GAP_GET_FIXED_PIN 0x16

GAP_SET_FIXED_PIN 0x17

GAP_GET_PIN 0x75

GAP_GET_SECURITY_MODE 0x18

GAP_SET_SECURITY_MODE 0x19

GAP_REMOVE_PAIRING 0x1B

GAP_LIST_PAIRED_DEVICES 0x1C

GAP_ENTER_SNIFF_MODE 0x21

GAP_EXIT_SNIFF_MODE 0x37

GAP_ENTER_PARK_MODE 0x38

GAP_EXIT_PARK_MODE 0x39

GAP_ENTER_HOLD_MODE 0x3A

GAP_SET_LINK_POLICY 0x3B

GAP_GET_LINK_POLICY 0x3C

GAP_POWER_SAVE_MODE_CHANGED 0x3D

GAP_ACL_ESTABLISHED 0x50

GAP_ACL_TERMINATED 0x51

GAP_SET_AUDIO_CONFIG 0x59

GAP_GET_AUDIO_CONFIG 0x5A

GAP_ESTABLISH_SCO_LINK 0x5D

GAP_RELEASE_SCO_LINK 0x5E

GAP_MUTE_MIC 0x5F

GAP_SET_VOLUME 0x60

GAP_GET_VOLUME 0x61

GAP_CHANGE_SCO_PACKET_TYPE 0x62

SPP_SET_PORT_CONFIG 0x07

SPP_GET_PORT_CONFIG 0x08

SPP_PORT_CONFIG_CHANGED 0x09

www.ti.com 10

A
N

-1
71

1

SPP_ESTABLISH_LINK 0x0A

SPP_LINK_ESTABLISHED 0x0B

SPP_INCOMMING_LINK_ESTABLISHED 0x0C

SPP_RELEASE_LINK 0x0D

SPP_LINK_RELEASED 0x0E

SPP_SEND_DATA 0x0F

SPP_INCOMING_DATA 0x10

SPP_TRANSPARENT_MODE 0x11

SPP_CONNECT_DEFAULT_CON 0x12

SPP_STORE_DEFAULT_CON 0x13

SPP_GET_LIST_DEFAULT_CON 0x14

SPP_DELETE_DEFAULT_CON 0x15

SPP_SET_LINK_TIMEOUT 0x57

SPP_GET_LINK_TIMEOUT 0x58

SPP_PORT_STATUS_CHANGED 0x3E

SPP_GET_PORT_STATUS 0x40

SPP_PORT_SET_DTR 0x41

SPP_PORT_SET_RTS 0x42

SPP_PORT_BREAK 0x43

SPP_PORT_OVERRUN_ERROR 0x44

SPP_PORT_PARITY_ERROR 0x45

SPP_PORT_FRAMING_ERROR 0x46

SDAP_CONNECT 0x32

SDAP_DISCONNECT 0x33

SDAP_CONNECTION_LOST 0x34

SDAP_SERVICE_BROWSE 0x35

SDAP_SERVICE_SEARCH 0x36

SDAP_SERVICE_REQUEST 0x1E

SDAP_ATTRIBUTE_REQUEST 0x3F

CHANGE_LOCAL_BDADDRESS 0x27

CHANGE_NVS_UART_SPEED 0x23

CHANGE_UART_SETTINGS 0x48

SET_PORTS_TO_OPEN 0x22

GET_PORTS_TO_OPEN 0x1F

RESTORE_FACTORY_SETTINGS 0x1A

STORE_CLASS_OF_DEVICE 0x28

FORCE_MASTER_ROLE 0x1D

Table 3. Opcode Values

Opcode Value

11 www.ti.com

A
N

-1711

READ_OPERATION_MODE 0x49

WRITE_OPERATION_MODE 0x4A

SET_DEFAULT_LINK_POLICY 0x4C

GET_DEFAULT_LINK_POLICY 0x4D

SET_EVENT_FILTER 0x4E

GET_EVENT_FILTER 0x4F

SET_DEFAULT_LINK_TIMEOUT 0x55

GET_DEFAULT_LINK_TIMEOUT 0x56

SET_DEFAULT_AUDIO_CONFIG 0x5B

GET_DEFAULT_AUDIO_CONFIG 0x5C

SET_DEFAULT_LINK_LATENCY 0x63

GET_DEFAULT_LINK_LATENCY 0x64

SET_CLOCK_FREQUENCY 0x67

GET_CLOCK_FREQUENCY 0x68

SET_PCM_SLAVE_CONFIG 0x74

ENABLE_SDP_RECORD 0x29

DELETE_SDP_RECORDS 0x2A

STORE_SDP_RECORD 0x31

RESET 0x26

Bluetooth module_READY 0x25

TEST_MODE 0x24

WRITE_ROM_PATCH 0x47

READ_RSSI 0x20

RF_TEST_MODE 0x4B

DISABLE_TL 0x52

TL_ENABLED 0x53

HCI_COMMAND 0x65

AWAIT_INITIALIZATION_EVENT 0x66

ENTER_BLUETOOTH_MODE 0x66

SET_CLOCK_AND_BAUDRATE 0x69

SET_GPIO_WPU 0x6B

GET_GPIO_STATE 0x6C

SET_GPIO_DIRECTION 0x6D

SET_GPIO_OUTPUT_HIGH 0x6E

SET_GPIO_OUTPUT_LOW 0x6F

READ_NVS 0x72

WRITE_NVS 0x73

Table 3. Opcode Values

Opcode Value

www.ti.com 12

A
N

-1
71

1
9.0 Bibliography

[1] Texas Instruments: “LMX9830” or “LMX9838 Software User’s Guide”

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	1.0 Introduction
	2.0 SB_Custom files overview
	3.0 SimplyBlue Command construction
	3.1 UART Protocol principles
	3.1.1 Framing
	3.1.2 Start delimiter
	3.1.3 Packet type identification
	3.1.4 Opcode
	3.1.5 Data length
	3.1.6 Packet data
	3.1.7 Checksum
	3.1.8 End delimiter
	3.1.9 Retransmission
	3.1.10 Flow control
	3.1.11 Byte Order

	4.0 Command Wrapper
	5.0 Command Parser
	6.0 Transparent mode
	7.0 UART Break
	8.0 Annex
	8.1 Command Opcode

	9.0 Bibliography

