
Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 1 of 90

MMWAVE MCUPLUS SDK User Guide

Product Release 4.7.1.4

Release Date: Jul 11, 2025

Document Version: 1.0

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 2 of 90

DOCUMENT LICENSE
This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License (CC BY-SA 3.0). To view a copy of this license,
visit or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, http://creativecommons.org/licenses/by-sa/3.0/us/
California, 94105, USA.

COPYRIGHT
Copyright (C) 2014 - 2025 Texas Instruments Incorporated - http://www.ti.com

DISCLAIMER
This mmWave SDK User guide is generic and contains details about all the mmWave devices that are supported by TI in general. However, note that
not all mmWave devices may be supported in a given mmWave SDK release. Please refer to the mmWave SDK Release notes to understand the list
of devices/platforms supported in a given mmWave SDK release.

 This software product is used to configure TI’s mmWave devices, including RF emissions parameters for such devices. Note NOTICE:
that many countries or regions impose regulations governing RF emissions. Users are responsible for understanding local RF emission
regulations and operating the product within those regulations.

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.ti.com/

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 3 of 90

CONTENTS

1. Out-of-box mmWave Experience
2. System Overview

2.1. mmWave Suite
2.2. mmWave Demos
2.3. External Dependencies
2.4. Terms used in this document
2.5. Related documentation/links

3. Getting started
3.1. Hardware Setup (EVM Details)

3.1.1. AWR294x (EVM_UG)
3.1.2. AWR2544 (EVM_UG)
3.1.3. AWR2X44P (AWR2E44P EVM_UG, AWR2944P EVM_UG)

3.2. Programming mmWave devices
3.3. Loading images onto EVM

3.3.1. Demonstration Mode
3.3.2. CCS development mode

3.4. Running the Demos
3.4.1. Power ON EVM
3.4.2. mmWave Demo Visualizer - AWR294X and AWR2x44P
3.4.3. Data Collection and Visualization - AWR2544

3.5. mmWave SDK OOB Demo with LVDS Based Instrumentation
3.6. mmWave SDK OOB Demo with Ethernet Streaming Enabled
3.7. Configuration (.cfg) File Format
3.8. Running the prebuilt unit test binaries (.xer5f, .xem4 and .xe66)
3.9. SDK Clock Configurations

3.9.1. AWR294x
3.9.1.1. Default SBL clock configurations
3.9.1.2. SBL clock configurations for BSS dynamic clocking feature
3.9.1.3. Peripheral Clock Configurations

3.9.2. AWR2544
3.9.2.1. Default SBL clock configurations
3.9.2.2. SBL clock configurations for BSS dynamic clocking feature

3.9.3. AWR2X44P
3.9.3.1. Default SBL clock configurations
3.9.3.2. SBL clock configurations for BSS dynamic clocking feature
3.9.3.3. Peripheral Clock Configurations
3.9.3.4. Ethernet configuration changes (Gigabit speed)

4. How-To Articles
4.1. How to identify the COM ports for mmWave EVM
4.2. How to flash an image onto mmWave EVM

4.2.1. Tool requirements on host PC:
4.2.2. Python3 Setup
4.2.3. Flash Procedure using UniFlash GUI (Applicable for AWR294x (not applicable for AWR2X44P))
4.2.4. Flash Procedure using Python tools

4.3. How to connect mmWave EVM to CCS using JTAG
4.3.1. Emulation Pack Update

4.4. How to run mmWave demo with LVDS-based instrumentation
4.5. How to Run MMWAVE SDK OOB Demo with Ethernet Streaming Enabled

4.5.1. Setting up
4.5.1.1. Connections
4.5.1.2. Software
4.5.1.3. Capturing Detected Object Data over Ethernet using OOB Demo

4.6. How to test AWR2544 OOB demo with integrated PTP stack during development
4.6.1. Hardware Setup
4.6.2. Software

4.7. How to use Custom Flash Device
4.8. How to optimize MSS_L2 memory for SBL over ethernet example (sbl_qspi_enet)
4.9. How to erase flash memory
4.10. How to configure Automotive PHY

4.10.1. OOB demo changes for Auto PHY with osc_clk_out_eth
4.11. How to enable BSS Logger in OOB Demo (AWR2544)
4.12. How to migrate examples from package to package (AWR2x44P)
4.13. How to enable using the same application after R5F core reset
4.14. Developing using SDK

4.14.1. Build Instructions

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 4 of 90

4.14.2. Setting up build environment
4.14.2.1. Windows
4.14.2.2. Linux

4.14.3. Building demo
4.14.3.1. Building demo in Windows
4.14.3.2. Building demo in Linux

4.14.4. Advanced build
4.14.4.1. Building datapath/control/utils components
4.14.4.2. "Error on warning" compiler and linker setting

5. MMWAVE SDK deep dive
5.1. System Deployment
5.2. Typical mmWave Radar Processing Chain
5.3. Typical Programming Sequence

5.3.1. RF Control Path
5.3.1.2. Single RF Control (MSSRADARSS or DSSRADARSS)
5.3.1.3. Co-operative RF control ((MSS+DSS)<->RADARSS)

5.3.2. Data Path
5.3.2.2. Data processing flow with local domain control
5.3.2.3. Data processing flow with remote domain control
5.3.2.4. Distributed Data processing flow and control

5.4. Software hooks for power optimization
5.4.1.1. CLI commands for enabling power optimization hooks

5.5. mmWave SDK - TI components
5.5.1. Demos

5.5.1.1. mmWave Demo
5.5.2. Drivers
5.5.3. mmWaveLink
5.5.4. mmWave API

5.5.4.2. Full configuration
5.5.5. Datapath Interface (DPIF)
5.5.6. Data Processing Units (DPUs)
5.5.7. Data Path Manager (DPM)
5.5.8. Data processing chain (DPC)
5.5.9. mmWaveLib
5.5.10. Group Tracker
5.5.11. CCS Debug Utility
5.5.12. HSI Header Utility
5.5.13. PMIC Read Write Utility (AWR2544, AWR294X and AWR2X44P)
5.5.14. Secondary Bootloader
5.5.15. mmWave SDK - System Initialization
5.5.16. Usecases

5.5.16.1. Data Path tests using Test vector method
6. Appendix

6.1. Memory usage
6.2. Shared memory usage by SDK demos
6.3. Range Bias (TDM Demo) and Rx Channel Gain/Offset Measurement and Compensation
6.4. Guidelines on optimizing memory usage
6.5. How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled
6.6. Enabling L3 cache for DSP/C66x on mmWave devices
6.7. SDK Demos: miscellaneous information
6.8. CCS Debugging of real time application

6.8.1. Inter-chirp debugging
6.8.2. Inter-frame debugging
6.8.3. Using non-real time chain test code
6.8.4. Viewing hardware registers
6.8.5. Viewing expressions/memory in real time

6.9. Shared memory
6.10. Size of Enum

LIST OF FIGURES

3.7.1.1.1. Figure 2: Chirp Diagram
4.1.1.1.1. Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports
5.1.1.1.1. Figure 4: Autonomous mmWave sensor (Standalone mode)
5.1.1.1.2. Figure 5: SDK Layered block diagram
5.2.1.1.1. Figure 6: Typical mmWave radar processing chain
5.2.1.1.2. Figure 7: Typical mmWave radar processing chain using mmWave SDK components
5.2.1.1.4. Figure 8: Scalable data processing chain using mmWave SDK
5.3.1.1.1. Figure 9: Typical mmWave radar control flow
5.3.1.2.1. Figure 10: mmWave Isolation mode: Detailed Control Flow (Init sequence)
5.3.1.2.2. Figure 11: mmWave Isolation mode: Detailed Control Flow (Config sequence)
5.3.1.2.3. Figure 12: mmWave Isolation mode: Detailed Control Flow (start sequence)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 5 of 90

5.3.1.3.1. Figure 13: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)
5.3.1.3.2. Figure 14: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)
5.3.1.3.3. Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)
5.3.2.1.1. Figure 16: Typical mmWave Detection Processing Layers
5.3.2.2.1. Figure 17: Data processing flow with local domain control (init/config)
5.3.2.2.2. Figure 18: Data processing flow with local domain control (start/chirp/frame/stop)
5.3.2.3.1. Figure 19: Data processing flow with remote domain control (init/config)
5.3.2.3.2. Figure 20: Data processing flow with remote domain control (start/chirp/frame/stop)
5.3.2.4.1. Figure 21: Distributed Data processing flow and control (init/config)
5.3.2.4.2. Figure 22: Distributed Data processing flow and control (start/chirp/frame/stop)
5.5.4.1.1. Figure 24: mmWave API - Internal software design
5.5.6.1.1. Figure 25: DPU - Internal software design
5.5.6.1.2. Figure 26: DPU - typical call flow
5.5.7.1.1. Figure 27: Datapath manager (DPM) - internal software design

LIST OF TABLES

3.7.1.1.2. Table 1: mmWave SDK Demos - CLI commands and parameters
3.9.1.1.1. Table 1: mmWave SDK Demos - Clock configurations
3.9.1.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking
3.9.2.1.1. Table 1: mmWave SDK Demos - Clock configurations
3.9.2.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking
3.9.3.1.1. Table 1: mmWave SDK Demos - Clock configurations
3.9.3.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 6 of 90

1.
2.
3.

1.
2.

1.

2.

3.

a.

1. Out-of-box mmWave Experience

To experience the mmWave technology offered by TI, you will need to procure the following

Hardware

mmWave TI EVM
Power supply cable as recommended in TI EVM user guide
PC

Software

Pre-flashed mmWave Demo running on TI EVM (See instructions in this user guide on how to update the flashed demo)
Chrome browser running on PC

Next, to visualize the data flowing out of TI mmWave devices, follow these steps

Connect the EVM to a power outlet via the power cable and to the PC via the included USB cable. EVM should be powered up and
connected to PC now.
On your PC, browse to in Chrome browser and follow the prompts to https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer
install one-time software. [No other software installation is needed at this time]
The Visualizer app should detect and connect to your device via COM ports automatically (except for the very first time where users will need
to confirm the selection via OptionsSerial Port). Select the right Platform and SDK version and start your evaluation!

 Hint : Use HelpAbout to know your Platform and SDK version

For details on how to evaluate, any troubleshooting needs and/or to understand the know-how behind these steps, continue reading this SDK User
Guide...

If the flashed demo on the EVM is an old version and you would like to upgrade to latest demo, continue reading this SDK User Guide...

AWR2544 Visualizer

Download Visualizer from >https://www.ti.com/tool/download/MMWAVE-MCUPLUS-SDK/<version

User Guide: mmwave_mcuplus_sdk_<ver>/mmwave_mcuplus_sdk_<ver>/docs/mmWave_Demo_Visualizer_UserGuide.pdf

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 7 of 90

2. System Overview
The mmWave SDK is split in two broad components: mmWave Suite and mmWave Demos.

2.1. mmWave Suite

mmWave Suite is the foundational software part of the mmWave SDK and would encapsulate these smaller components:

Drivers (Part of the MCU PLUS SDK)
DPL (Part of the MCU PLUS SDK)
mmWaveLink and Firmware (Part of the Device Firmware Package - DFP)
mmWave API
Data processing layer (manager, processing units)
Board Setup and Flash Utilities

2.2. mmWave Demos

SDK provides demos that depict the various control and data processing aspects of a mmWave application. Data visualization of the demo's output on
a PC is provided as part of these demos. These demos are example code that are provided to customers to understand the inner workings of the
mmWave devices and the SDK and to help them get started on developing their own application.

mmWave Processing Demo with TI Gallery App - " "mmWave Demo Visualizer

2.3. External Dependencies

All tools/components needed for building mmWave sdk are included in the mmwave sdk installer. But the following (for external components
debugging) are not included in the mmWave SDK.

CCS (for debugging)
SysConfig (for building and developing applications)

Please refer to the mmWave SDK Release Notes for detailed information on these external dependencies and the list of platforms that are supported.

2.4. Terms used in this document

Terms
used

Comment

xWR This is used throughout the document where that section/component/module applies to both AWR and IWR variants

BSS This is used in the source code and sparingly in this document to signify the RADARSS. It is also interchangeably referred to as the mmWave Front
End. Note that this term will only be used in the context of AWR294X and AWR2544 SoCs.

MSS Master Sub-system. It is also interchangeably referred to as Cortex R5F.

DSS_CM4 DSP Sub-system Cortex M4. It is also interchangeably referred to as HWA_CM4 or M4.

DSS DSP Sub-system. It is also interchangeably referred to as DSS or C66x core.

2.5. Related documentation/links

Other than the documents included in the mmwave_mcuplus_sdk package the following documents/links are important references.

SoC links:
Automotive mmWave Sensors
Industrial mmWave Sensors

Evaluation Modules (Gen1) (EVM) links:
Automotive Evaluation modules (Booster Pack, DEVPACK)
Industrial Evaluation modules (Booster Pack, ISK)

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/
http://www.ti.com/sensors/mmwave/awr/overview.html
http://www.ti.com/sensors/mmwave/iwr/overview.html
http://www.ti.com/sensors/mmwave/awr/tools-software.html
http://www.ti.com/sensors/mmwave/iwr/tools-software.html

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 8 of 90

3. Getting started

The best way to get started with the mmWave SDK is to start running one of the various demos that are provided as part of the package. TI mmWave
EVM comes pre-flashed with the mmWave demo. However, the version of the pre-flashed demo maybe older than the SDK version mentioned in this
document. Users can follow this section and upgrade/run the flashed demo version. The demos (source and pre-built binaries) are placed at

 folder.mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/mmw/

mmWave Demo

This demo is located at folder. The millimeter wave demo shows some of the radar sensing mmwave_mcuplus_sdk_<ver>/ti/demo/ /mmw<platform>
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via . This demo ships out detected objects and mmwave_mcuplus_sdk_<ver>/ docs/mmwave_sdk_module_documentation.html
other real-time information that can be visualized using the TI Gallery App - 'mmWave Demo Visualizer' hosted at -https://dev.ti.com/gallery/view

. The version of the mmWave Demo running on TI mmWave EVM can be obtained from the Visualizer app /mmwave/mmWave_Demo_Visualizer
using the HelpAbout menu.

Device Demo Directory Binary prefix Platform selection in
Visualizer

mmwavelink Library DFP Firmware

AWR294X TDMA, DDMA and TDMA
ENET:

ti\demo\awr294x\mmw\

awr294x_mmw_demo AWR294X mmwave_dfp_02_04_<ver>\ti
\control\mmwavelink\lib

mmwave_dfp_02_04_<ver>\firmware
\radarss\xwr29xx_radarss_metarprc.
bin

AWR2544 TDMA, DDMA:

ti\demo\awr2544\mmw\

ti\demo\awr2544\mmw_csitx\

awr2544_mmw_demo
awr2544_mmw_demo_pm
awr2544_mmw_csitx_demo

NA mmwave_dfp_02_04_<ver>\ti
\control\mmwavelink\lib

mmwave_dfp_02_04_<ver>\firmware
\radarss\xwr25xx_radarss_metarprc.
bin

AWR2X44P TDMA, DDMA, DDMA_ENET:

ti\demo\awr2x44P\

awr2x44P_mmw_demo AWR2X44P mmwave_dfp_02_04_<ver>\ti
\control\mmwavelink\lib

mmwave_dfp_02_04_<ver>\firmware
\radarss
\xwr2x4xP_radarss_metarprc.bin

AWR2X44ECO TDMA, DDMA, DDMA_ENET:

ti\demo\awr2x44P\

awr2x44ECO_mmw_demo AWR2X44P mmwave_dfp_02_04_<ver>\ti
\control\mmwavelink\lib

mmwave_dfp_02_04_<ver>\firmware
\radarss
\xwr2x4xP_radarss_metarprc.bin

AWR2X44LC DDMA:

ti\demo\awr2x44P\

awr2x44LC_mmw_demo AWR2X44P mmwave_dfp_02_04_<ver>\ti
\control\mmwavelink\lib

mmwave_dfp_02_04_<ver>\firmware
\radarss
\xwr2x4xP_radarss_metarprc.bin

Following sections describe the general procedure for booting up the device with the demos and then executing it.

mmWave Demo (AWR2X44ECO)

Set MMWAVE_SDK_DEVICE as awr2x44P in mmwave_mcuplus_sdk_<ver>/scripts/windows/setenv.bat for AWR2x44ECO or
AWR2x44LC device.

mmWave Demo (AWR294x, AWR2x44P, AWR2544 HS-SE)

Pre-built demo binaries are available at mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/mmw (<platform>_mmw_demo<proc_chain>.
 mcu_plus_sdk_<platform>_<ver>/tools/boot/signing. appimage.hs) signed with TI-dummy keys available at User needs to have a valid

HSM-RT to use this.

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer_TPR12/ver/4.1.0/
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 9 of 90

3.1. Hardware Setup (EVM Details)

The EVM figures below show some important cable connections, ports and switches. Take note of the location of the "BOOT MODE" switch, this is
used to switch between different boot modes like QSPI, UART, NOBOOT mode.

Refer to the EVM User Guide to understand the bootup modes of the EVM (" " section in mmWave device's EVM user Sense-on-Power (SOP) Jumpers
guide) .

3.1.1. AWR294x ()EVM_UG

3.1.2. AWR2544 ()EVM_UG

3.1.3. AWR2X44P (,)AWR2E44P EVM_UG AWR2944P EVM_UG

https://www.ti.com/lit/pdf/spruj22
https://www.ti.com/lit/pdf/sprujb0
https://www.ti.com/lit/pdf/swru631
https://www.ti.com/lit/pdf/spruj22

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 10 of 90

3.2. Programming mmWave devices

Here is a little insight into the mmWave devices and the programmable cores they offer. For more detailed information, please refer to the technical
reference manual for the respective mmWave device. These details are needed when loading the binaries using CCS and/or to understand the
various terminologies that exist in the "Getting started" section.

AWR294X

This device has one cortex R5F (MSS) core, one DSP C66x (DSS) core and one cortex R4 (BSS) core. The demos have 2 executables - one for MSS
and one for DSS which should be loaded concurrently for the demos to work. The BSS binary comes as a part of the AWR294X Device Firmware
Package (DFP). See section for more details. The unit tests may have executables for either MSS or DSS or both. These Running the Demos
executables are meant to be run in standalone operation. This means MSS unit test executable can be loaded and run on MSS R5F without
downloading any code on DSS in the CCS Development Mode. Similarly, DSS unit test executable can be loaded and run on DSS C66x without
downloading any code on DSS. The exceptions to this are the mmWave unit tests under full and datapath manager (DPM) unit tests.

AWR2544

This device has one cortex R5F (MSS) core and one cortex R4 (BSS) core. The demo has an executable file which should be loaded on the MSS
core. The BSS binary is a part of the Device Firmware Package (DFP). Unit test case executables can be loaded and run on MSS R5F core. See

 section for more details. In Running the Demos mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/mmw, there are two executable files (awr2544_
mmw_demo.appimage and mmw_pm_demo.appimage). The mmw_pm_demo has ethernet phy loopback feature enabled and MSS awr2544_
Loading task can be enabled by sending CLI command.

AWR2X44P

This device has one cortex R5F (MSS) core, one M4 (DSS_CM4) core, one DSP C66x (DSS) and one cortex R4 (BSS) core. The demos have 3
executables - one for MSS, one for DSS_CM4 (in case of DDM demo), and one for DSP which should be loaded concurrently for the demos to work.
The BSS binary comes as a part of the Device Firmware Package (DFP). See section for more details. The unit tests may have Running the Demos
executables for either MSS, DSS_CM4, DSS or combination of multiple cores. These executables are meant to be run in standalone operation. This
means MSS, DSS_CM4, or DSS unit test executable can be loaded and run on MSS R5F, DSS_CM4 or DSS C66x respectively without downloading
any code on other cores in the CCS Development Mode.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 11 of 90

1.

2.

3.

1.
2.

a.

b.
c.

3.

4.

1.

a.

b.

2.

3.3. Loading images onto EVM

User can choose either one of Demonstration or CCS development modes for loading images onto the EVM.

3.3.1. Demonstration Mode

This mode should be used when either upgrading the factory flashed binaries on the EVM to latest SDK version using the pre-built binaries provided in
the SDK release or for field deployment of mmWave sensors.

Follow the procedure mentioned in the section (). Use the How to flash an image onto mmWave EVM mmwave_mcuplus_sdk_<ver>/ti/demo
as the metaimage./<platform>/mmw/<demo_binary>.appimage

Reboot the device to run the demo image every time on power up. No other image loading step is required on subsequent boot to run the
demo.
Follow the steps mentioned in section.Running the Demos

3.3.2. CCS development mode

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .appimage files keep changing
constantly and frequent flashing of image onto the board is not desirable. This mode allows you to flash once and then use CCS to download a
different image to the device's RAM on every boot.

This mode is the recommended way to run the unit tests for the drivers and components which can be found in the respective test directory for that
component. See section for location of each component's test codemmWave SDK - TI components

EVM and CCS setup: Follow the steps in How to connect mmWave EVM to CCS using JTAG to setup the environment for CCS connectivity.
Load the following prebuilt executables provided in the SDK release package at mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/<demo>

 :/mmw
AWR294x: and/or <mmwave_sdk_device>_mmw_demo_dss<proc_chain>.xe66
<mmwave_sdk_device>_mmw_demo_mss<proc_chain>.xer5f on C66x and R5 cores respectively.
AWR2544: mwave_sdk_device>_mmw_demo.xer5f on R5 core.
AWR2x44P: <mmwave_sdk_device>_mmw_demo_dss<proc_chain>.xe66 and/or <mmwave_sdk_device>_mmw_demo_dss_cm4

and/or .xem4 <proc_chain> <mmwave_sdk_device>_mmw_demo_mss .xer5f <proc_chain> on DSS, DSS_CM4 and cores R5
respectively.

Click on "Run" button to run the file.

To reload, disconnect the connected cores, power cycle the EVM and connect to the cores on CCS again.

3.4. Running the Demos

Follow this subsection to experience the mmWave functionality using the out-of-box mmWave demo. Before you proceed further, make sure that:

You have loaded the right demo binary using the section above, set the EVM to functional mode (QSPI Boot Mode) and powered up the
device. If you have followed the steps correctly,

In case of Demonstration Mode, mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/mmw/<demo_binary>.appimage should have
been flashed onto the EVM.
In case of CCS development Mode, mmwave_mcuplus_sdk_<ver>/ti/utils/ccsdebug/<platform>_ccsdebug.appimage should have
been flashed and correct pre-built executables should have been loaded onto the EVM.

You have connected the EVM to the PC using its XDS110 micro-USB port/cable.

Flash part

Please note that in the case of AWR294X, AWR2544 and AWR2X44P EVMs, the flashing procedure works with the EVM with the flash part
"GD25B64CWAG". Ensure that you are using the same if you want to use the demonstration mode.

Refer section for any other flash part.How to use custom flash device

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 12 of 90

3.4.1.1 Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

Note: The "EVM" in the above figure refers to the AWR294X System or the AWR2544 System or the AWR2X44P
. System

3.4.1. Power ON EVM

Power on the EVM in functional/QSPI-boot mode with right binary loaded (see section above) and connect it to the PC as shown above with the USB
cable.

AWR2544 EVM

 refer For AWR2544 EVM, mmwave_mcuplus_sdk_<ver>/mmwave_mcuplus_sdk_<ver>/docs/mmwave_radar_visualizer_user_guide.pdf
.for running demo with Visualizer GUI

If the user is not using Visualizer, below setup needs to be done to capture 1D compressed FFT output and export via Ethernet interface.

Use any serial terminal application like TeraTerm and connect to Application User COM port with baudrate set to 115200.

There should be an ethernet cable connected between EVM RJ45 port and PC ethernet port. And PC ethernet port needs to support
1Gbps link. Static IP settings for the PC ethernet port with Linux OS:

Refer mmwave_mcuplus_sdk_<ver>\ti\demo\awr2544\mmw\docs\doxygen\html\index.html, section: "Enet Configuration" for Network
header details.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 13 of 90

AWR2544 EVM Functional Mode Configuration

SOP0: 1; SOP1: 0; SOP2: 0

AWR294x EVM Functional Mode Configuration

SOP0: 1; SOP1: 0; SOP2: 0

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 14 of 90

3.4.2. mmWave Demo Visualizer - AWR294X and AWR2x44P

 Browse to the TI gallery app "mmWave Demo Visualizer" at https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer. Use
HelpREADME.md from inside this app for more information on how to run/configure this app.

AWR2X44P / AWR2X44ECO / AWR2X44LC EVM Functional Mode Configuration

Baud rate

In the visualizer, the baud rate to be selected for the Auxiliary data port is 3125000 for all devices (AWR294X and AWR2x44P).

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 15 of 90

1.

2.

a.

b.

First Time Setup

If this is the first time you are using this App, you may be requested to install a plug-in and the TI Cloud Agent Application. This step will
also install the right needed for UART port detection.XDS110 drivers
Once the demo is running on the mmWave sensors and the USB is connected from the board to the PC, the app will try to automatically
detect the COM ports for your device. If auto-detection doesn't work, then you will need to configure the serial ports in this App. Run the
device manager on the PC and locate the following COM ports as shown in the section "How to identify the COM ports for mmWave EVM"
below. In the Visualizer App, go to the Menu->Options->Serial Port and perform the settings as shown below and click on OK.

CFG_port: Use COM port number for " ": Baud: 115200. This is the port where XDS110 Class Application/User UART
 runs for all the demos.CLI (command line interface)

Data_port: Use COM port " ": Baud: 3125000. This is the port on which binary data XDS110 Class Auxiliary Data port
generated by the processing chain in the mmWave demo will be received by the PC. This is the detected object list and
its properties (range, doppler, angle, etc). Note that the default Baud for this port is 921600, and you will separately
have to set it to 3125000 for all devices (AWR294X and AWR2x44P) using Custom Baud Rate selection.

Custom Baud Rate selection: For selecting the custom baud rate for the Data port, perform the following
steps-

Click on the Baud Rates drop down menu for the Data port, where "921600 (recommended)" is shown
by default.
Scroll down the menu and click on "custom".
A text box will appear. Enter "3125000" in the text box for all devices (AWR294X and AWR2x44P).

At this point, this app will automatically try to connect to the target (mmWave Sensor). DATA_port will be marked connected only
after device is configured and sending out detected point cloud. If CFG_port does not connect or if the connection fails, you should
try to connect to the target by clicking in the bottom left corner of this App. If that fails as well, redo the serial port configuration as

 shown in "First time Setup" panel above.

After the App is connected to the target, you can select the configuration parameters (Frequency Band, Platform, etc) in the "Setup
details" and "Scene Selection" area of the tab. Note that upon successful connection, you can see the following status:CONFIGURE

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown in this panel.
Please use the correct COM port number from your setup for following steps.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 16 of 90

b.

c.

d.

e.
f.

i.

ii.
g.

Besides selecting the configuration parameters, you should select which plots you want to see. This can be done using the "check
boxes" in the "Plot Selection" area. Adjust the frame rate depending on number of plots you want to see. For selecting he p atma
plots, set frame rate to less than or equal to 4 fps. When selecting frame rate to be 25-30fps, for better GUI performance, select only
the scatter plot and statistics plot.
Once the configuration is selected, you can send the configuration to the device (use "SEND CONFIG TO MMWAVE DEVICE"
button).
After the configuration is sent to the device, you can switch to the view/tab and the plots that you selected will be shown.PLOTS
You can switch back from "Plots" tab to "Configure" tab, reconfigure your "Scene Selection", "Object Detection" and/or "Plot
Selection" values and re-send the configuration to the device to try a different profile. After a new configuration has been selected,
just press the "SEND CONFIG TO MMWAVE DEVICE" button again and the device will be reconfigured. This can be done without
rebooting the device. If you change the parameters in the "Setup Details", then you will need to take further action before trying the
new configurations

If SDK version is changed: make sure the mmW demo running on the connected TI EVM matches the selected SDK
version in the GUI
If Antenna Config is changed: make sure the TI EVM is rebooted before sending the new configuration.

Alternatively, you can load one of the example configurations (.cfg) present in the
mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\profiles folder and load it through the "LOAD CONFIG FROM PC AND
SEND" button on the "Plots" tab.

If board is rebooted, follow the steps starting from 1 above.

Inner workings of the GUI

In the background, GUI performs the following steps:

Creates or reads the configuration file and sends to the mmWave device using the COM port called . It saves the information CFG_port
locally to be able to make sense of the incoming data that it will display. Refer to the for details on the configuration file CFG Section
contents.
Receives the data generated by the demo on the visualization/Data COM port and processes it to create various displays based on the
GUI configuration in the cfg file.

The format of the data streamed out of the demo is documented in mmw demo's doxygen mmwave_mcuplus_sdk \ti\demo_<ver>
under section: "Output information sent to host".\mmw\docs\doxygen\html\index.html <platform>

On every reconfiguration, it sends a 'sensorStop' command to the device first to stop the active run of the mmWave device. Next, it sends
the command 'flushCfg' to flush the old configuration before sending the new configuration. It is mandatory to flush the old configuration
before sending a new configuration. Additionally, it is mandatory to send all the commands for that demo/platform even if the user desires
the functionality to be disabled i.e. no commands are optional.

Troubleshooting tip

In case you're unable to perform this step correctly, reconfirm the following:

The demo image has been loaded correctly. In case of CCS development mode, you should see "Debug: CLI is
operational" printed on the CCS Console.
The Serial Ports and corresponding baud rates been set correctly.
The two COM Ports are not being used by any other application.

Try reconnecting or refreshing the page.

Troubleshooting tip

In case you're loading the configuration but unable to to see any plots, check the following in that order:

Check if the hardware is connected to the visualizer
Try sending the configuration/file again
Look at the console log for errors
Disconnect and reconnect to the visualizer
Try with one of the example profile configurations
Load the demo in CCS Development mode and check the console for errors

COM port after reboot

Whenever TI EVM is power-cycled (rebooted), you will need to use the bottom left serial port connection icon inside TI gallery app
"mmWave Demo Visualizer" for disconnecting and reconnecting the COM ports. Note that if you used the CLI COM port directly to send the

 commands (instead of TI gallery app) you will have to close the CLI teraterm window and open a new one on every reboot.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 17 of 90

Advanced GUI options

User can configure the device from their own configuration file or the saved app-generated configuration file by using the " LOAD CONFIG
FROM PC AND SEND" button on the tab. Make sure the first two commands in this config file are "sensorStop" followed by PLOTS
"flushCfg".
User can temporarily pause the mmWave sensor by using the "STOP" button on the plots tab. The sensor can be restarted by using the
"START" button. In this case, sensor starts again with the already loaded configuration and no new configuration is sent from the App.
User can simultaneously plot and record the processed/detected objects data coming out of the DATA_port using the "RECORD
START" button in the plots tab. Set the max limits for file size or record time as per your requirements to prevent infinite capturing of data.
The saving of data can be manually stopped using the "Record Stop" button (if the max limits are not reached).
User can use the "PLAYBACK START" button to playback the data and config file recorded via "RECORD START" button in the plots
tab. User should make sure the data file and the config file used in this playback are the matching set. This feature can only be used when
sensor device is either not connected or stopped.
Once the demo has started and plots are active, user can tune the demo using the "Real Time tuning tab" or "Advanced commands" tab
and then save the tuned profile using "EXPORT TUNED PROFILE" button on the PLOTS tab.

Console Messages window in Visualizer

Console message window echoes the following debug information for the users

Every command that is sent to the TI mmWave EVM and the response back from the EVM
Any runtime assert conditions detected by the demo running on TI mmWave EVM after the sensor is started. This is helpful when mmW
demo is flashed onto the EVM and CCS connectivity is not available. It spits out file name and line number to allow users to browse to the
source code and understand the error.

At times, a negative error code is spit out in the error message (either in Visualizer console or in the CCS console window). To understand
or decode that error, please refer to the mmWave demo doxygen ((browse via mmwave_mcuplus_sdk_<ver>\

).docs\mmwave_sdk_module_documentation.html
Init time calibration status after the first sensorStart is issued post reboot for debugging boot time or start failures. This status might be
different for different platforms.

Here is an example of plots that mmWave Demo Visualizer produces based on the config that is passed to the demo application running on mmWave
.sensor

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 18 of 90

3.4.3. Data Collection and Visualization - AWR2544

Setup the EVM as described (Section 3.4).above

If you have followed the steps correctly, and run the demo, following prompt will be visible on the Application USER UART port:

Now send the configuration. Some default configurations are provided at the below path: mmwave_mcuplus_sdk_<ver>/ti/demo/awr2544/mmw
/profiles.

Data Collection:
Note: This section describes the procedure to be followed to collect the Ethernet Compressed 1D FFT data on PC (linux OS).

sudo nice -n -20 tcpdump -i <port> udp and host <SRC IP> -w output.pcap -B 1048576 -s 2048 -C 1300 -p

For example:

sudo nice -n -20 tcpdump -i enx2887ba3e6104 udp and host 192.168.0.195 -w output.pcap -B 1048576 -s 2048 -C 1300 -p

Arguments:

nice -n -20: This allows users to change the priority of the processes in a Linux system
tcpdump: It is a Linux command-line utility used to capture and inspect network traffic going to and from the system.
-i: Interface
udp and host <IP>: Filter the udp packets from the network traffic with the provided host IP.
-w: Write the raw packets to file rather than parsing and printing them out.
-B: Set the operating system capture buffer size, in units of KiB (1024 bytes). Higher buffer size significantly reduces packet drop.
-s: Snarf snap length bytes of data from each packet rather than the default of 262144 bytes. This number should be larger than the packet
size.
-C: Limits the size of each file. Before writing a raw packet to a savefile, check whether the file is currently larger than file_size and, if so,
close the current savefile and open a new one. Default unit: millions of bytes
-p: Don't put the interface into promiscuous mode

These arguments -w, -B, -s, -C, -p are not mandatory, but helps in reducing the packet drop.

For more details, refer tcpdump MAN page: https://www.tcpdump.org/manpages/tcpdump.1.html

Wireshark is an another tool that can be used to capture the ethernet packet on Linux and Windows OS.

Data Parsing and Validation:

COM port after reboot

Refer to the Visualizer Readme and the User Guide for a deep dive into the demo visualizer (present in the "Help" menu).

Issue tcpdump command before issuing sensorStart CLI to capture initial frames.

https://www.tcpdump.org/manpages/tcpdump.1.html

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 19 of 90

For data parsing and visualization, use the python script (data_parser_awr2544.py) available at mmwave_mcuplus_sdk_<ver>/ti/demo/parser_scripts.
For usage details, read the file header.

3.5. mmWave SDK OOB Demo with LVDS Based Instrumentation

In this use case, high bandwidth data (raw ADC capture) is shipped from the device to a PC over the LVDS interface (captured by the DCA1000EVM)
and saved onto the filesystem. For instructions on how to run the mmWave demo with this enabled, refer to the section How to run mmWave demo

. For implementation details, refer to the mmwave demo documentation (with LVDS-based instrumentation mmwave_mcuplus_sdk_<ver>/docs
). /mmwave_sdk_module_documentation.html

3.6. mmWave SDK OOB Demo with Ethernet Streaming Enabled

mmWave SDK out-of-box demo offers the capability of streaming the coordinates and velocity of the detected objects over Ethernet using TCP
protocol and LwIP stack. It is based on the TCPECHO example which comes as a part of the default LwIP contrib apps. For instructions on how to run
the mmWave demo with Ethernet streaming enabled, refer to the section . How to Run MMWAVE SDK OOB Demo with Ethernet Streaming Enabled
For implementation details, refer to the mmwave demo documentation (mmwave_mcuplus_sdk_<ver>/docs/mmwave_sdk_module_documentation.

). html

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 20 of 90

3.7. Configuration (.cfg) File Format

Each line in the .cfg file describes a command with parameters. The various commands and their arguments are described in the table below
(arguments are in sequence). For mmW demo, users can create their own config files from the Visualizer GUI by using the "Save Config to PC" button
or starting from the few sample profiles provided in the directory.mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\profiles

Most of the parameters described below are the same as the mmwavelink API specifications (see doxygen
.) Additionally, users can refer to the chirp diagram below to mmwave_mcuplus_sdk_<ver>\ti\control\mmwavelink\docs\doxygen\html\index.html

understand the chirp and profile related parameters or the appnote http://www.ti.com/litv/pdf/swra553

3.7.1.1.1. Figure 2: Chirp Diagram

Configuration command Command details Command Parameters Usage in mmW demo

dfeDataOutputMode The values in this command should not change between sensorStop
and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<modeType>
1 - frame based chirps
2 - continuous chirping
3 - advanced frame config
4 - advanced chirp with legacy frame config
5 - advanced chirp with advanced frame config

TDM: only option 1, 3, 4 and 5 are
supported

DDM: only option 1, 3, 4 and 5 are
supported

Only option 1 is valid for AWR2544.

channelCfg Channel config message to RadarSS. See mmwavelink doxygen for
details.

The values in this command should not change between sensorStop
and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<rxChannelEn>
Receive antenna mask e.g for 4
antennas, it is 0x1111b = 15

4 antennas supported

<txChannelEn>
Transmit antenna mask

Refer to the antenna layout
on the EVM/board to determine
the right Tx antenna mask
needed to enable the desired
virtual antenna configuration.

For example, in AWR2943
the 2 azimuth antennas can be
enabled using bitmask 0x5
(i.e. tx1 and tx3). The azimuth and
elevation antennas can both
be enabled using bitmask 0x7
(i.e. tx1, tx2 and tx3).

AWR294X: Supports 4 transmit
antennas using bitmask 0xF
(i.e. tx1, tx2, tx3 and tx4).

<cascading>
SoC cascading, not applicable, set to 0

n/a

<ethOscClkEn>

0 - Disable
1 - Enable 25MHz ethernet oscillator clock supply from the
chip

Enabling OSCLKOUT and
OSCLKOUTETH at the same time
is not supported.
Applicable for AWR2544 and
AWR2X44P only

The CLI commands and parameters for AWR294x device (TDM and DDM) are applicable for AWR2x44P unless exclusively
specified in the below table.

http://www.ti.com/litv/pdf/swra553

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 21 of 90

<driveStrength>

Configures drive strength of ethernet oscillator clock out

Input values: Range 0 to 15 (integers)

Drive strength = input * 0.5x

Examples:

0: High impedance state
1: 0.5x
2: 1x
15: 7.5x

Applicable for AWR2544 and
AWR2X44P only

adcCfg ADC config message to RadarSS. See mmwavelink doxygen for
details.

The values in this command should not change between sensorStop
and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<numADCBits>
Number of ADC bits (0 for 12-bits, 1 for
14-bits and 2 for 16-bits)

only 16-bit is supported

<adcOutputFmt>
Output format :
0 - real
1 - complex 1x (image band filtered
output)
2 - complex 2x (image band visible))

AWR294X: only real mode is supported

AWR2544: only real mode is supported.

adcbufCfg adcBuf hardware config. The values in this command can be
changed between sensorStop and sensorStart.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that field
should be set to -1.

For advanced frame mode, it
should be set to either the
intended subframe number or -1
to apply same config
to all subframes.

<adcOutputFmt>
ADCBUF out format
0-Complex,
1-Real

AWR294X: only real mode is supported

<SampleSwap>
ADCBUF IQ swap selection:
0-I in LSB, Q in MSB,
1-Q in LSB, I in MSB

<ChanInterleave>
ADCBUF channel interleave
configuration:
0 - interleaved,
1 - non-interleaved

TDM: only option 1 is supported

DDM: only option 0 is supported

Only option 1 is valid for AWR2544 for
both TDM and DDM

<ChirpThreshold>
Chirp Threshold configuration used for
ADCBUF buffer to trigger ping/pong
buffer switch.

Valid values:

0-8 for demos that use DSP for 1D FFT
and LVDS streaming is disabled

only 1 for demos that use HWA for 1D
FFT

only value of 1 is supported
since demos use HWA for 1D FFT

profileCfg Profile config message to RadarSS and datapath. See mmwavelink
doxygen for details.

This is a mandatory command.

<profileId>
profile Identifier

Legacy frame (dfeOutputMode=1):
could be any allowed value but only
one valid profile per config is supported

Advanced frame
(dfeOutputMode=3):
could be any allowed value but only
one profile per subframe is
supported.
However, different subframes can
have different profiles

<startFreq>
"Frequency Start" in GHz (float values
allowed)

Examples:

77

61.38

any value as per mmwavelink
doxygen/device datasheet
but represented in GHz.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

<idleTime>
"Idle Time" in u-sec (float values allowed)

Examples:

7

7.15

any value as per mmwavelink
doxygen/device datasheet but
represented in usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile
parameters and inter-dependent
constraints.

txCalibEnCfg Field

This CLI command doesn't expose the txCalibEnCfg field in
the mmwavelink structure. User should follow the
mmwavelink documentation and update the CLI profileCfg
handler function accordingly. The current handler sets the
value to 0 for this field (backward compatible mode)

Combination of numAdcSamples in profileCfg (and
numRangeBins), numDopplerChirps = total number
of chirps/(num TX in MIMO mode) in frameCfg or
subFrameCfg, number of TX and RX antennas in
channelCfg and chirpCfg determine the size of
Radarcube and other internal buffers/heap in the
demo. It is possible that some combinations of these
values result in out of memory conditions for these
heaps and demo will reject such configuration. Refer
to demo and DPC doxygen to understand the data
buffer layout and use the system printfs on
sensorStart in CCS console window to understand
the exact heap usage for a given configuration.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 22 of 90

<adcStartTime>
"ADC Valid Start Time" in u-sec (float
values allowed)

Examples:

7

7.34

any value as per mmwavelink
doxygen/device datasheet but
represented in usec.

Refer to the chirp diagram shown
above to understand the
relation between various profile
parameters and inter-dependent
constraints.

<rampEndTime>
"Ramp End Time" in u-sec (float values
allowed)

Examples:

58

216.15

any value as per mmwavelink
doxygen/device datasheet but
represented in usec

Refer to the chirp diagram shown
above to understand the
relation between various profile
parameters and inter-dependent
constraints.

<txOutPower>
Tx output power back-off code for tx
antennas

only value of '0' has been tested
within context of mmW demo

<txPhaseShifter>
tx phase shifter for tx antennas

only value of '0' has been tested
within context of mmW demo

<freqSlopeConst>
"Frequency slope" for the chirp in
MHz/usec (float values allowed)

Examples:

68

16.83

any value greater than 0 as per
mmwavelink doxygen/device
datasheet but represented in
MHz/usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters

 and inter-dependent constraints.

<txStartTime>
"TX Start Time" in u-sec (float values
allowed)

Examples:

1

2.92

any value as per mmwavelink
doxygen/device datasheet
but represented in usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

<numAdcSamples>
number of ADC samples collected
during "ADC Sampling Time" as shown
in the chirp diagram above

Examples:

256

224

any value as per mmwavelink
doxygen/device datasheet.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

<digOutSampleRate>
ADC sampling frequency in ksps.

(<numAdcSamples> / <digOutSampleRate>
= "ADC Sampling Time")

Examples:

5500

any value as per mmwavelink
doxygen/device datasheet.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

<hpfCornerFreq1>
HPF1 (High Pass Filter 1) corner frequency
0: 175 KHz
1: 235 KHz
2: 350 KHz
3: 700 KHz

any value as per mmwavelink
doxygen/device datasheet

<hpfCornerFreq2>
HPF2 (High Pass Filter 2) corner frequency
0: 350 KHz
1: 700 KHz
2: 1.4 MHz
3: 2.8 MHz

any value as per mmwavelink
doxygen/device datasheet

 for AWR294X/AWR2544, Note:
<hpfCornerFreq2> and
<hpfCornerFreq1> should have the
same value. Different values cannot be
used.

<rxGain>

Bit 5:0 RX_GAIN
Bit 7:6 RF_GAIN_TARGET

OR'ed value of RX gain in dB and RF gain
target (See mmwavelink doxygen for
details)

any value as per mmwavelink
doxygen/device datasheet

chirpCfg Chirp config message to RadarSS and datapath. See mmwavelink
doxygen for details.

The values in this command can be changed between sensorStop
and sensorStart.

This is a mandatory command when dfeOutputMode is set to 1 or 3.

chirp start index any value as per mmwavelink
doxygen

chirp end index any value as per mmwavelink
doxygen

profile identifier should match the profileCfg-
>profileId

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 23 of 90

start frequency variation in Hz (float
values allowed)

only value of '0' has been tested
within context of mmW demo

frequency slope variation in kHz/us (float
values allowed)

only value of '0' has been tested
within context of mmW demo

idle time variation in u-sec (float values
allowed)

only value of '0' has been tested
within context of mmW demo

ADC start time variation in u-sec (float
values allowed)

only value of '0' has been tested
within context of mmW demo

tx antenna enable mask (Tx2,Tx1) e.g
(10)b = Tx2 enabled, Tx1 disabled.

See note under "channelCfg"
command above.

TDM: Individual chirps should have
either
only one distinct Tx antenna
enabled (MIMO) or same TX
antennas should be enabled for all
chirps

DDM: All transmitters should be active
for the same chirp

advChirpCfg advance chirp config message to RadarSS and datapath. See
mmwavelink doxygen and mmWave-Radar-Interface-Control
document in the mmwave_dfp_<ver>/docs for details. The values in
this command can be changed between sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is set to 4 or 5.

All the field in this CLI command are specific to selected Chirp
Parameter Index in this command.

This command needs to be issued 11 times (AWR2943
/AWR2944) for each of the chirp parameters defined in
<chirpParamIdx> field in a sequential order.

The final value of a chirp parameter is sum of profile data,
accumulated delta dither (which increments every N chirps)
and LUT dither.

The Delta Dither is optional and can be disabled by setting
<deltaParamUpdatePeriod>= 0 and <sfNChirpParamDelta>=
0.

The LUT Dither is mandatory and at least one dither
parameter value (it can be value zero) shall be programmed
for all chirp parameters in LUT, same dither value can be
programmed to all chirps in a subframe/frame by setting
<lutParamUpdatePeriod>= 0.

frameCfg and subFrameCfg CLI commands are affected in
the following way when advanced chirp configuration
(dfeDataOutputMode 4 or 5) is used:

<chirpStartIdx> and <chirpEndIdx> in frameCfg CLI
command are not applicable.

<chirpStartIdx> and <numOfChirps> in subFrameCfg
CLI command are not applicable.

<numLoops> field in frameCfg and subFrameCfg CLI
command defines the total number of chirps in a frame
or subframe respectively.

This command is valid for AWR294X devices.

<chirpParamIdx>
Chirp Parameter Index

0: Profile ID
1: Frequency Start Variation
2: Frequency Slope Variation
3: Idle Time Variation
4: ADC Start Time Variation
5: TX Antenna Enable Mask
6: BPM Enable Mask
7: TX0 Phase Shifter
8: TX1 Phase Shifter
9: TX2 Phase Shifter
10: TX3 Phase Shifter (for AWR294X only)

This value indicates the chirp parameter
for which the CLI command is issued.

Valid value 0-10.

<resetMode>
Global Reset Mode

0: Reset at End of Frame
1: Reset at End of Sub-Frame
2: Reset at End of Burst

This global reset value should be same
for all the chirp parameters.

It indicates when the delta accumulation
(Delta Dither) or the LUT dither pattern
resets back to its initial value.

<deltaResetPeriod>
Delta Reset Period (M)

0: Reset only as per <resetMode> option.
1: Delta increment is disabled.

32768 <resetMode> 2- : Reset every M chirps in addition to
option.

This value resets the delta increment
(delta dither) sequence every M chirps.

Reset period (M) should be an integer
multiple of <deltaParamUpdatePeriod>.

<deltaParamUpdatePeriod>
Delta Parameter Update Period (N)

0: Delta increment is disabled
1-16384: The fixed delta value will be incremented once
after every N chirps.

The chirp parameter will be incremented
by <sfNChirpParamDelta> (delta dither)
after every N chirps.

<sf0ChirpParamDelta>
Delta dither for Sub-frame 0

Also applicable to frame in legacy frame
dfeDataOutputMode (4).

This field indicates the delta increment
(Delta Dither) value that should be
accumulated and added to each chirp
based on update period N.

DFP front-end supports dithering only
for certain chirp parameters. Any value
as per mmwavelink doxygen/device
datasheet (float values allowed) can be
programmed in the units mentioned
below.

Parameter Dither Unit

Start Frequency Hz

Frequency Slope KHz/us

Idle Time u-sec

ADC Start Time u-sec

TX_N Phase Shift degree

<sf1ChirpParamDelta>
Delta dither for Sub-frame 1

Not applicable in legacy frame dfeDataOutputMode (4).

<sf2ChirpParamDelta>
Delta dither for Sub-frame 2

Not applicable in legacy frame dfeDataOutputMode (4).

<sf3ChirpParamDelta>
Delta dither for Sub-frame 3

Not applicable in legacy frame dfeDataOutputMode (4).

<lutResetPeriod>
LUT Reset Period (J)

0: Reset only as per <resetMode> option.
1: Fixed 0 index LUT value programmed for all chirps.th

2-32768: Reset every J chirps in addition to <resetMode>
option.

This value resets the LUT sequence
(LUT dither) every J chirps.

Reset period (J) should be an integer
multiple of <lutParamUpdatePeriod>.

<lutParamUpdatePeriod>
LUT Parameter Update Period (K)

0: Fixed 0 index LUT value programmed for all chirps.th

1-16384: Index to LUT will be incremented once after every
K chirps and corresponding LUT value is used.

The chirp parameter will be updated
with new LUT value every K chirps.

Dithering of all parameters is supported as part of
front-end configuration; however, OOB demo
supports only the normal (legacy chirp) signal
processing chain. Hence, significant dither in the
chirp parameters can lead to undesired signal
processing results.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 24 of 90

<lutPatternAddressOffset>
LUT Pattern Address Offset

Address offset has to be multiple of 4
bytes (word boundary).

This field provides the start address
offset within the Chirp Parameter LUT.
The first chirp of the sub-frame/frame
picks the dither from 0th index to LUT
with this address offset.

<numOfPatterns>
Number of unique LUT Patterns.

This field provides the number of unique
dither parameters present in LUT (LUT
Dither).

This value should always be greater
than or equal to 1.

<lutSfIndexOffset>
LUT Sub-frame Index Offset

Valid in advanced frame configuration (dfeDataOutputMode
5) only.

Valid Range: 0 to P
0: No offset (default)
1 to P: LUT index start offset for each sub-frame.

The chirp LUT start index for first burst
in each sub-frame is equal to the
<lutPatternAddressOffset> +
<lutSfIndexOffset> * #subframe. This
helps to loop set of different chirps in
subsequent sub-frames.

NOTE1: The first sub-frame in advance
frame is always indexing to 0 th

parameter in LUT.

NOTE2: The <lutResetPeriod> cannot
be more than number of chirps in a sub-
frame if this feature is used.

<lutChirpParamSize>
LUT Chirp Parameter Size

Default Value: 0 parameter size)(default

Parameter Value 0 Value 1 Value 2

Start Frequency 4 bytes 2 bytes 1 byte

Idle Time 2 bytes 1 byte -

ADC Start Time 2 bytes 1 byte -

This field is used to reduce the size of
the parameter in LUT if dynamic range
of the parameter is small.

Applicable only for certain chirp
parameters, i.e, Start Frequency, Idle
Time, and ADC Start Time.

<lutChirpParamScale>
LUT Chirp Parameter Scale

Valid Range: 0 to 16
Default Value: 0 (no scale)

Actual parameter value: 2 * LUTData.SCALE

This field is used to reduce the size of
the parameter in LUT if granularity of
the resolution can be increased.

Applicable only for certain chirp
parameters, i.e, Start Frequency, Idle
Time, and ADC Start Time.

<maxTxPhShiftIntDither>
Maximum TX Phase Shifter Internal Dither

Only value of '0' has been tested
within context of mmW demo.

LUTDataCfg LUT Data config message to RadarSS and datapath. See
mmwavelink doxygen and mmWave-Radar-Interface-Control
document in the mmwave_dfp_<ver>/docs for details. The values in
this command can be changed between sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is set to 4 or 5.

All the field in this CLI command are specific to selected Chirp
Parameter Index in this command.

This command needs to be issued 11 times (AWR2943
/AWR2944) for each of the chirp parameters defined in
<chirpParamIdx> field in a sequential order.

This command stores the programmed patterns of a chirp
parameter in the LUT at the <lutPatternAddressOffset>
configured in advChirpCfg CLI command.

In CCS development mode, the programmed LUT data is
stored in a text file for verification.AdvChirpLUTData.txt

This command is valid for AWR294X devices.

<chirpParamIdx>
Chirp Parameter Index

This value indicates the chirp parameter
for which the CLI command is issued.

<LUTData_{0}>.....<LUTData_{numOfPatterns-1}>
LUT Dither Patterns

Any value as per mmwavelink
doxygen/device datasheet (float values
allowed) in the units as defined below.

Parameter LUT Data Unit

Profile ID No unit

Start Frequency Hz

Frequency Slope KHz/us

Idle Time u-sec

ADC Start Time u-sec

TX Enable Mask No unit

BPM Enable Mask No unit

TX_N Phase Shift degree

lowPower Low Power mode config message to RadarSS. See mmwavelink
doxygen for details.

The values in this command should not change between sensorStop
and sensorStart.

Reboot the board to try config with different set of values in this
command.

This is a mandatory command.

<don’t_care> set to 0

ADC Mode
0x00 : Regular ADC mode
0x01 : Low power ADC mode

use value of '0' or '1' (depending on
profileCfg->digOutSampleRate)

frameCfg frame config message to RadarSS and datapath. See mmwavelink
doxygen for details.

dfeOutputMode should be set to 1 to use this command

The values in this command can be changed between sensorStop
and sensorStart.

chirp start index (0-511)
Not applicable in advanced Chirp (dfeDataOutputMode 4 or
5) configuration.

any value as per mmwavelink
doxygen but corresponding
chirpCfg should be defined

The address offsets should be configured
properly for each chirp parameter so that
unique LUT values do not get overwritten
with other parameter values.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 25 of 90

This is a mandatory command when dfeOutputMode is set to 1 or 4. chirp end index (chirp start index-511)
Not applicable in advanced Chirp (dfeDataOutputMode 4 or
5) configuration.

any value as per mmwavelink
doxygen but corresponding
chirpCfg should be defined

number of loops:

In Legacy Chirp (dfeDataOutputMode: 1 or 3):
No. of times to loop through the unique chirps (1 to 255).

In Advanced Chirp (dfeDataOutputMode 4 or 5):
Total number of chirps in a subframe.

any value as per mmwavelink
doxygen/device datasheet but
greater than or equal to 4.

: If value of 2 is desired for Note
number of Doppler Chirps,
one must update the demo/object
detection DPC source code to use
rectangular window for Doppler
DPU instead of Hanning window.

number of frames (valid range is 0 to
65535, 0 means infinite)

any value as per mmwavelink doxygen

numAdcSamples

number of ADC samples collected during
"ADC Sampling Time" as shown in the
chirp diagram above

Examples:

256

224

any value as per mmwavelink
doxygen/device datasheet.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

frame periodicity in ms (float values
allowed)

any value as per mmwavelink
doxygen and represented in
msec. However frame should not
have more than 50% duty
cycle (i.e. active chirp time should
be <= 50% of frame period).
Also it should allow enough time
for selected UART output to be
shipped out (selections based on
guiMonitor command) else demo
will assert if the next frame
start trigger is receive from the
front end and current frame is still

 ongoing. User can use the output
of stats TLV to tune this parameter.

trigger select
1: Software trigger
2: Hardware trigger.
3: CPTS based trigger

only option for Software trigger is
supported

AWR2544: CPTS based trigger is also
supported.

Frame trigger delay in ms (float values
allowed)

any value as per mmwavelink
doxygen and represented
in msec.

advFrameCfg Advanced config message to RadarSS and datapath. See
mmwavelink doxygen for details. The dfeOutputMode should be set
to 3 to use this command.

The values in this command can be changed between sensorStop
and sensorStart.

This is a mandatory command when dfeOutputMode is set to 3 or 5.

This command is valid for AWR294X devices.

<numOfSubFrames>
Number of sub frames enabled in this frame

any value as per mmwavelink doxygen

<forceProfile>
Force profile

only value of 0 is supported

<numFrames>
Number of frames to transmit (1 frame = all enabled sub
frames)

any value as per mmwavelink
doxygen

<triggerSelect>
trigger select
1: Software trigger
2: Hardware trigger.

only option for Software trigger is
supported

<frameTrigDelay>
Frame trigger delay in ms (float values allowed)

any value as per mmwavelink
doxygen and represented in msec.

<numOfSubFrames>
Number of sub frames for sequence configuration

should be kept the same as the first
argument

subFrameCfg Subframe config message to RadarSS and datapath. See
mmwavelink doxygen for details.

The dfeOutputMode should be set to 3 to use this command.

The values in this command can be changed between sensorStop
and sensorStart.

This is a mandatory command when dfeOutputMode is set to 3 or 5.

This command is valid for AWR294X devices.

<subFrameNum>
subframe Number for which this command is being given

value of 0 to RL_MAX_SUBFRAMES- 1

<forceProfileIdx>
Force profile index

ignored as <forceProfile> in
advFrameCfg should be set to 0

<chirpStartIdx>
Start Index of Chirp

Not applicable in advanced Chirp (dfeDataOutputMode 4 or
5) configuration.

any value as per mmwavelink
doxygen but corresponding chirpCfg
should be defined

<numOfChirps>
Num of unique Chirps per burst including start index.

Not applicable in advanced Chirp (dfeDataOutputMode 4 or
5) configuration.

any value as per mmwavelink doxygen
but corresponding number of chirpCfg
should be defined

<numLoops>

In Legacy Chirp (dfeDataOutputMode: 1 or 3):
No. of times to loop through the unique chirps.

In Advanced Chirp (dfeDataOutputMode 4 or 5):
Total number of chirps in a subframe.

any value as per mmwavelink doxygen
but greater than or equal to
4

: If value of 2 is desired for Note
number of Doppler Chirps, one
must update the demo/object
detection DPC source code to use
rectangular window for Doppler
DPU instead of Hanning window.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 26 of 90

<burstPeriodicity>

Burst periodicty in msec (float values
allowed) and meets the criteria
burstPeriodicity >= ((numLoops)* (Sum
total of time duration of all unique chirps
in that burst)) + InterBurstBlankTime

any value as per mmwavelink
doxygen and represented
in msec but subframe should not
have more than 50% duty cycle and
allow enough time for selected
UART output to be shipped out
(selections based on guiMonitor
command)

<chirpStartIdxOffset>
Chirp Start address increment for next
burst

set it to 0 since demo supports only
one burst per subframe

<numOfBurst>
Num of bursts in the subframe

set it to 1 since demo supports only
one burst per subframe

<numOfBurstLoops>
Number of times to loop over the set of
above defined bursts, in the sub frame

set it to 1 since demo supports only
one burst per subframe

<subFramePeriodicity>

subFrame periodicity in msec (float
values allowed) and meets the criteria
subFramePeriodicity >= Sum total time
of all bursts + InterSubFrameBlankTime

set to same as <burstPeriodicity>
since demo supports
only one burst per subframe

guiMonitor Plot config message to datapath.
The values in this command can be changed between sensorStop
and sensorStart.

This is a mandatory command.

This command is valid for AWR294X devices.

All parameters below are flags (1 to
enable and 0 to disable)

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to apply
same config to all subframes.

<detected objects>
1 - enable export of point cloud
(x,y,z,doppler) and point cloud sideinfo
(SNR, noiseval)

2 - enable export of point cloud
(x,y,z,doppler)

0 - disable

all values supported

<log magnitude range>
1 - enable export of log magnitude
range profile at zero Doppler
0 - disable

all values supported

<noise profile>
1 - enable export of log magnitude noise
profile
0 - disable

TDM: all values supported

DDM: must be 0

<rangeAzimuthHeatMap> or
<rangeAzimuthElevationHeatMap>
range-azimuth or range-azimuth-
elevation heat map related information

<rangeAzimuthHeatMap>

This output is provided only in demos
that use AoA (legacy) DPU for AoA
processing
1 - enable export of zero Doppler radar
cube matrix, all range bins, all azimuth
virtual antennas to calculate and display
azimuth heat map.

(The GUI computes the FFT of this to
show heat map)

0 - disable

< rangeAzimuthElevationHeatMap >

This output is provided in demos that
use AoA 2D DPU for AoA processing

1 - enable export of zero Doppler radar
cube matrix, all range bins, all virtual
antennas to calculate and display
azimuth heat map.

(The GUI remaps the antenna symbols
and computes the FFT of this stream to
show azimuth heat map only).

0 - disable

TDM: all values supported

DDM: must be 0

<rangeDopplerHeatMap>
range-doppler heat map
1 - enable export of the whole detection
matrix. Note that the frame period
should be adjusted according to UART
transfer time.
0 - disable

all values supported

<statsInfo>
statistics (CPU load, margins, device
temperature readings, etc)
1 - enable export of stats data.
0 - disable

all values supported

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 27 of 90

aoaFovCfg Command for datapath to filter out detected points outside the
specified range in azimuth or elevation plane

This is a mandatory command.

This command is valid for AWR294X devices.

Specific to TDM.

<subFrameIdx>

subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to
apply same config to all subframes.

<minAzimuthDeg> minimum azimuth angle (in
degrees) that specifies the
start of field of view

<maxAzimuthDeg> maximum azimuth angle (in
degrees) that specifies the
end of field of view

<minElevationDeg> minimum elevation angle (in
degrees) that specifies the
start of field of view

<maxElevationDeg> maximum elevation angle (in
degrees) that specifies the
end of field of view

cfarCfg

(TDM)

CFAR config message to datapath.

This is a mandatory command.

This command is valid for AWR294X devices.

Specific to TDM. For DDM, check
cfarCfg (DDM)

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to apply
same config to all subframes.

<procDirection>
Processing direction:
0 – CFAR detection in range direction
1 – CFAR detection in Doppler direction

all values supported; 2 separate
commands need to be sent; one
for Range and other for doppler.

<mode>
CFAR averaging mode:
0 - CFAR_CA (Cell Averaging)
1 - CFAR_CAGO (Cell Averaging Greatest
Of)
2 - CFAR_CASO (Cell Averaging Smallest
Of)

all values supported

<noiseWin>
noise averaging window length:
Length of the one-sided noise averaged
cells in samples

Make sure 2*(noiseWIn+guardLen)
<numRangeBins for range direction and
2*(noiseWIn+guardLen)
<numDopplerBins for doppler direction.

supported

<guardLen>
one-sided guard length in samples

Make sure 2*(noiseWIn+guardLen)
<numRangeBins for range direction and
2*(noiseWIn+guardLen)
<numDopplerBins for doppler direction.

supported

< >divShift
Cumulative noise sum divisor expressed
as a shift.

Sum of noise samples is divided by
2^<divShift>. Based on <mode> and
<noiseWin> , this value should be set as
shown in next columns.

The value to be used here should match
the "CFAR averaging mode" and the
"noise averaging window length" that is
selected above.

The actual value that is used for division
(2^x) is a power of 2, even though the
"noise averaging window length"
samples may not have that restriction.

CFAR_CA:
<divShift> = ceil(log (2 x 2
<noiseWin>))
CFAR_CAGO/_CASO:
<divShift> = ceil(log (<noiseWin>))2

In profile_2d.cfg, value of 3 means
that the noise sum is
divided by 2^3=8 to get the
average of noise samples
with window length of 8 samples in
CFAR -CASO mode.

cyclic mode or Wrapped around mode.
0- Disabled
1- Enabled

supported

Threshold scale in dB using float
representation.
This is used in conjunction with the noise
sum divisor (say x).
the CUT comparison for log input is:

CUT > (Threshold scale converted from
dB to Q8) + (noise sum / 2^x)

For example:

15

10.75

Detection threshold is specified in
dB scale.
Maximum value allowed is 100dB

peak grouping
0 - disabled
1 - enabled

supported

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 28 of 90

multiObjBeamForming (TDM) Multi Object Beamforming config message to datapath.

This feature allows radar to separate reflections from multiple objects
originating from the same range/Doppler detection.

The procedure searches for the second peak after locating the
highest peak in Azimuth FFT. If the second peak is greater than the
specified threshold, the second object with the same range/Doppler
is appended to the list of detected objects. The threshold is
proportional to the height of the highest peak.

This is a mandatory command.

This command is valid for AWR294X devices.

Specific to TDM.

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<Feature Enabled>
0 - disabled
1 - enabled

supported

<threshold>
0 to 1 – threshold scale for the second
peak detection in azimuth FFT output.
Detection threshold is equal to
<thresholdScale> multiplied by the first
peak height. Note that FFT output is
magnitude squared.

supported

calibDcRangeSig

(TDM)

DC range calibration config message to datapath.

Antenna coupling signature dominates the range bins close to the
radar. These are the bins in the range FFT output located around DC.

When this feature is enabled, the signature is estimated during the
first N chirps, and then it is subtracted during the subsequent chirps.

During the estimation period the specified bins (defined as
[negativeBinIdx, positiveBinIdx]) around DC are accumulated and
averaged. It is assumed that no objects are present in the vicinity of
the radar at that time.

This procedure is initiated by the following CLI command, and it can
be initiated any time while radar is running. Note that the maximum
number of compensated bins is 32.

This is a mandatory command.

This command is valid for AWR294X devices.

Specific to TDM.

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled>
Enable DC removal using first few chirps
0 - disabled
1 - enabled

supported

<negativeBinIdx>
negative Bin Index (to remove DC from
farthest range bins)

Maximum negative range FFT index to
be included for compensation. Negative
indices are indices wrapped around from
far end of 1D FFT.

Ex: Value of -5 means last 5 bins starting
from the farthest bin

supported

<positiveBinIdx>
positive Bin Index (to remove DC from
closest range bins)
Maximum positive range FFT index to be
included for compensation

Value of 8 means first 9 bins (including
bin#0)

supported

<numAvg>
number of chirps to average to collect
DC signature (which will then be applied
to all chirps beyond this).

Value of 256 means first 256 chirps (after
command is issued and feature is
enabled) will be used for collecting
(averaging) DC signature in the bins
specified above. From 257th chirp, the
collected DC signature will be removed
from every chirp.

The value must be power of 2, and
must be greater than the number of
Doppler bins.

clutterRemoval

(TDM)

Static clutter removal config message to datapath.

Static clutter removal algorithm implemented by subtracting from the
samples the mean value of the input samples to the 2D-FFT

This is a mandatory command.

This command is valid for devices.AWR294X

Specific to TDM.

<subFrameIdx>

subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to apply
sameconfig to all subframes.

<enabled>
Enable static clutter removal technique
0 - disabled
1 - enabled

supported

cfarFovCfg

(TDM)

Command for datapath to filter out detected points outside the
specified limits in the range direction or doppler direction

This is a mandatory command.

This command is valid for devices.AWR294X

Specific to TDM.

<subFrameIdx>

subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to apply
same config to all subframes.

<procDirection>
Processing direction:
0 – point filtering in range direction
1 – point filtering in Doppler direction

both values supported but this
command should be
given twice - one for range direction
and other for doppler direction

<min (meters or m/s)>

the units depend on the value for
<procDirection> field above.

meters for Range direction and
meters/sec for Doppler direction

minimum limits for the range or
doppler below which
the detected points are filtered out

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 29 of 90

<max (meters or m/s)>

the units depend on the value for
<procDirection> field above.

meters for Range direction and
meters/sec for Doppler direction

maximum limits for the range or
doppler above which the detected
points are filtered out

compRangeBias
AndRxChanPhase

(TDM)

Command for datapath to compensate for bias in the
range estimation and receive channel gain and
phase imperfections.

Refer to the procedure mentioned here

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor
is running.

This is a mandatory command.

This command is valid for devices.AWR294X

Specific to TDM.

<rangeBias>
Compensation for range estimation bias
in meters

supported

<Re(0,0)> <Im(0,0)> <Re(0,1)>
<Im(0,1)> ... <Re(0,R-1)> <Im(0,R-1)>
<Re(1,0)> <Im(1,0)> ... <Re(T-1,R-1)>
<Im(T-1,R-1)>

Set of Complex value representing
compensation for virtual Rx channel
phase bias in Q15 format. Pairs of I and
Q should be provided for all Tx and Rx
antennas in the device

For AWR2944 demo: 16 pairs of values

should be provided here since the
device has 4 Rx and 4 Tx (total of 16
virtual antennas).

measureRangeBias
AndRxChanPhase

Command for datapath to enable the measurement
of the range bias and receive channel gain and phase
imperfections. Refer to the procedure mentioned here

Range bias measurement is only for TDM.

This is a mandatory command for both TDM and DDM.

This command is valid for devices.AWR294X

<enabled>
1 - enable measurement. This parameter
should be enabled only using profile
calibration.
0 - disable measurement. This should be
the value to use for all other profiles.

supported

<targetDistance>
distance in meters where strong reflector
is located to be used as test object for
measurement. This field is only used
when measurement mode is enabled.

supported

<searchWin>
distance in meters of the search window
around <targetDistance> where the
peak will be searched

supported

extendedMax
Velocity

(TDM)

Velocity disambiguation config message to datapath.
A simple technique for velocity disambiguation is implemented. It
corrects target velocities up to (2*vmax). The output of this feature
may not be reliable when two or more objects are present in the
same range bin and are too close in azimuth plane.

This is a mandatory command.

This command is valid for devices.AWR294X

Specific to TDM.

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas
for advanced frame mode, it should
be set to either the intended
subframe number or -1 to apply
same config to all subframes.

<enabled>
Enable velocity disambiguation technique
0 - disabled
1 - enabled

supported.

CQRxSatMonitor Rx Saturation Monitoring config message for
Chirp quality to RadarSS and datapath. See
mmwavelink doxygen for details on
rlRxSatMonConf_t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between sensorStop
and sensorStart.

<profile>
Valid profile Id for this monitoring
configuration. This profile ID should have
a matching profileCfg.

not presently supported

<satMonSel>
RX Saturation monitoring mode

<priSliceDuration>
Duration of each slice, 1LSB=0.16us,
range: 4 -number of ADC samples

<numSlices>
primary + secondary slices, range 1-127.
Maximum primary slice is 64.

<rxChanMask>
RX channel mask, 1 - Mask, 0 - unmask

CQSigImgMonitor Signal and image band energy Monitoring config message for Chirp
quality to RadarSS and datapath. See mmwavelink doxygen for
details on rlSigImgMonConf_t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between sensorStop
and sensorStart.

<profile>
Valid profile Id for this monitoring
configuration. This profile ID should have
a matching profileCfg

not presently supported

<numSlices>
primary + secondary slices, range 1-127.
Maximum primary slice is 64.

<numSamplePerSlice>
Possible range is 4 to "number of ADC
samples" in the corresponding
profileCfg. It must be an even number.

analogMonitor Controls the enable/disable of the various monitoring features
supported in the demos.

The values in this command can be changed between sensorStop
and sensorStart.

<rxSaturation>
CQRxSatMonitor enable/disable

1:enable
0: disable

not presently supported

<sigImgBand>
CQSigImgMonitor enable/disable
1:enable
0: disable

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 30 of 90

<apllLdoSCMonEn>
APLL LDO Short Circuit Monitor enable/disable
1: Enable
0: Disable

Supported for AWR2544

Testing procedure: Connect one end of
a wire at 1V4 APLL point (C103 on
EVM). When the other end is in contact
with ground, ESM error occurs and the
nError LED glows.

lvdsStreamCfg Enables the streaming of various data streams
over LVDS lanes. When this feature is enabled, make sure
chirpThreshold in adcbufCfg is set to 1.

The values in this command can be changed between sensorStop
and sensorStart.

This command is valid for AWR2544 devices.AWR294X and

<subFrameIdx>
subframe Index

For legacy mode, that field should
be set to -1 whereas for
advanced frame mode, it should be
set to either the intended
subframe number or -1 to apply
same config to all subframes.

<enableHeader>
0 - Disable HSI header for all active
streams
1 - Enable HSI header for all active
streams

Only 0 is supported.

<dataFmt>
Controls HW streaming.
Specifies the HW streaming data format.
0-HW STREAMING DISABLED
1-ADC
4-CP_ADC_CQ

When choosing CP_ADC_CQ, please
ensure that CQRxSatMonitor
and CQSigImgMonitor commands
are provided with appropriate
values and these monitors are
enabled using analogMonitor
command.

<enableSW>
0 - Disable user data (SW session)
1 - Enable user data (SW session)

<enableHeader> should be set to 1
when this field is enabled.

Only ADC format is currently
supported.

calibdata Boot time RF calibration save/restore command.

Provides user to either save the boot time RF calibration performed
by the RadarSS onto the FLASH or to restore the previously
saved RF calibration data from the FLASH and instruct RadarSS to
not re-perform the boot-time calibration. User can either save or
restore or perform neither operations. User is not allowed to
simultaneous save and restore in a given boot sequence.

Boot time phase shift calibration data is also saved along with all
other calibration data.

The values in this command should not change between sensorStop
and sensorStart.

Reboot the board to try config with different set of values in this
command

<save enable>

1 - Save enabled. Application will boot
-up normally and configure the RadarSS
to perform all applicable boot
calibrations during mmWave_open.
Once the calibrations are performed,
application will retrieve the calibration
data from RadarSS and save it to FLASH.
User need to specify valid <flash offset>
value. <restore enable> option should
be set to 0.

0 - Save disabled.

supported

<restore enable>

1 - Restore enabled. Application will check
the FLASH for a valid calibration data section.
If present, it will restore the data from FLASH
and provide it to RadarSS while configuring
it to skip any real-time boot calibrations and
use provided calibration data. User need to
specify valid <flash offset> value which was
used during saving of calibration data.
<save enable> option should be set to 0.

0 - Restore disabled.

supported

<Flash offset>

Address offset in the flash to be used while
saving or restoring calibration data.

Make sure the address doesn't overlap the
location in FLASH where application
images are stored and has enough space
for saving rlCalibrationData_t and
rlPhShiftCalibrationData_t

This field is don't care if both save and
restore are disabled

supported

To be specified as a hexadecimal
number with the prefix "0x" (Ex.
0x1f0000)

enetStreamCfg

(TDM)

Ethernet streaming configuration command

This is a mandatory command if mmwDemoEnet is used.

This command is valid for devices.AWR294X

Specific to TDM.

<isEnable>

0 - Ethernet streaming of detected object data is enabled

1 - Ethernet streaming of detected object data is disabled

supported

<remoteIpD> <remoteIpC> <remoteIpB> <remoteIpA>

If the IP Address obtained by the PC is D.B.C.A, the
arguments to send would be D B C A.

supported

sensorStart sensor Start command to RadarSS and datapath.
Starts the sensor. This function triggers the transmission of the
frames as per the frame and chirp configuration. By default, this
function also sends the configuration to the mmWave Front End and
the processing chain.

This is a mandatory command.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 31 of 90

Optionally, user can provide an argument
'doReconfig'
0 - Skip reconfiguration and just start the
sensor using already provided configuration.

<any other value> - not supported

supported

sensorStop sensor Stop command to RadarSS and datapath.
Stops the sensor.
If the sensor is running, it will stop the mmWave Front End and the
processing chain.
After the command is acknowledged, a new config can be provided
and sensor can be restarted or sensor can be restarted without a
new config (i.e. using old config). See 'sensorStart' command.

This is mandatory before any reconfiguration is performed post
sensorStart.

supported

flushCfg This command should be issued after 'sensorStop' command to flush
the old configuration and provide a new one.

This is mandatory before any reconfiguration is performed post
sensorStart.

configDataPort This is an optional command to change the baud rate of the
DATA_port.

This command will be accepted only when sensor is in init state or
stopped state i.e. between sensorStop and sensorStart. It is
recommended to use this command outside of the CFG file so that
PC tools can also be configured to accept data at the desired baud
rate.

This command is valid for devices.AWR294X

<baudrate>

The new baud rate for the DATA_port.

Recommended value: 3125000.

supported

<ackPing>

0 - Do not send any bytes on data port

1- Send 16 bytes of value '0xFF' to ack/sync
over the DATA_port (binary) after change to
baud rate is applied.

supported

queryDemoStatus This is an optional command that can be issued anytime to get the
sensor state (0-init,1-opened,2-started,3-stopped) of the device and
the current baud rate of the DATA_port.

The response of this command is provided on the CLI port.

This command is valid for devices.AWR294X

queryLocalIp

(TDM)

This is an optional command that can be issued anytime via the
"Status" window of the visualizer to print out the IP Address obtained
by the EVM.

This command is valid for devices.AWR294X

Specific to TDM.

compressionCfg

AWR294X (DDM)
AWR2544 (TDM/DDM)

Compression / Decompression configuration

This is a mandatory command.

Specific to DDM.

<subFrameNum>: subframe Number value of 0 to RL_MAX_SUBFRAMES- 1

<enabled>: 1 if enabled must be enabled, since disabling
compression is not currently supported

<compressionMethod> 0: EGE compression

1: BFP compression

<compressionRatio>: compression ratio floating point number between 0 and 1

<rangeBinsPerBlock>: number of range bins to compress
per block

must be a power of 2.

intfMitigCfg

AWR294X (DDM)
AWR2544 (TDM/DDM)

Interference mitigation configuration. Enabled by default in the
current release.

Mandatory command.

Specific to DDM.

<subFrameNum>: subframe number value of 0 to RL_MAX_SUBFRAMES- 1

<magSNRdB>: mag SNR for interference mitigation integer val in dB

<magDiffSNRdB>: magDiff SNR for interference mitigation integer val in dB

localMaxCfg (DDM) Local max configuration. Enabled by default in the current release.

Mandatory command.

This command is valid for devices.AWR294X

Specific to DDM.

<subFrameNum>: subframe number value of 0 to RL_MAX_SUBFRAMES- 1

<azimThreshdB>: azimuth threshold for local max paramset integer val in dB

<dopplerThreshdB>: doppler threshold for local max
paramset

integer val in dB

rangeProcCfg (DDM)

Range processing chain configuration.

Not a mandatory command.

 Specific to DDM.

For AWR2x44P sensor
reconfiguration is not
possible. Issue only
sensorStart 0 after
sensorStop to re-start
the sensor. Sending the
entire config file is not
supported.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 32 of 90

 <rangeProcChain>: Range Processing Chain select (below
number of paramsets exclude dummy and compression
paramsets)

0 (Default Mode) – Three HWA Paramsets (except Dummy
and Compression) are used. DC Estimates and Interference
Statistics are computed for current chirp and used in the
same chirp.

1 (Previous Frame DC Estimate Mode) – Two HWA
Paramsets (except Dummy and Compression) are used.
DC Estimates is computed and stored for next frame while
interference statistics is computed for current chirp and
used in the same chirp. Thus, every chirp's DC
compensation happens with the DC estimate of previous
frame.

2 (Previous Chirp Estimates Mode) – One HWA Paramset
(except Dummy and Compression) is used. DC Estimates
and Interference Statistics is computed and stored for next
nth chirp. Thus, every chrips's DC Compensation and
Interference Mitigation happens with the estimates from
previous n'th chirp where n is total number of subbands.

Selects out of the three range
processing chain differentiated primarily
by number of HWA paramsets used for
DC compensation, interference
mitigation and range fft.

<enableReal2X>: 1 if enabled Real 2x mode makes the paramsets
doing DC estimation, compensation and
/or interference statistics but not FFT, to
run on two real samples at once by
considering them complex. Not
applicable for rangeProcChain mode 2
(previous chirp estimates mode).

<magThresMinLim>: Interference stats magnitude threshold
minimum limit

integer val > 0

Applicable only for rangeProcChain 2
.(previous chirp estimates mode)

<magDiffThresMinLim>: Interference stats magnitude
difference threshold minimum limit

integer val > 0

Applicable only for rangeProcChain 2
.(previous chirp estimates mode)

ddmPhaseShiftAntOrder (DDM) Antenna order to configure DDM phase shifters.
If the user does not intend to use all the TX antennas, the order
should be programmed assuming that all the TX were enabled. The
phase shift values for the ones that are not enabled will be
configured to 0 by the code.

Note that in the DDMA case, the elevation antenna(s) should always
come at the end of this array. Basically, phaseShift(azimuth) <
phaseShift(elevation) must be ensured.

Mandatory command for DDM demo in
dfeDataOutputMode 1 and 3.

Specific to DDM.

<Tx0> <Tx1> ... <TxN>:
Antennas in increasing order of phase shift value.
tx0ChirpPhase < tx1ChirpPhase < ... < txNChirpPhase

N = Number of Tx Antenna - 1

For AWR2944 ETS antenna array, TX0,
TX2, TX3 are azimuth and TX1 is
elevation. Then phase shift order = {0,
2, 3, 1}.

antGeometryCfg Antenna Geometry Parameters required to derive the virtual antenna
array rearrangement order and zero insertion mask.

For more details refer to:
mmwave_mcuplus_sdk_<ver>\ti\demo\
<device>\mmw\docs\doxygen\html
\index.html

Mandatory command.

This command is valid for device.AWR294X

<Tx0Row> <Tx0Col>
<TxNRow> <TxNCol> : Antenna Position for the N - 1
virtual antennas in <row> <column> format

<xSpacebylambda>:
Azimuth spacing in units of lambda

Float val
= 0.5 for AWR2944 ETS antenna array

<zSpacebylambda>:
Elevation spacing in units of lambda

Float val
= 0.8 for AWR2944 ETS antenna array

antennaCalibParams (DDM) Antenna calibration parameters. Refer to the procedure mentioned
here

Mandatory command.

This command is valid for devices.AWR294X

Specific to DDM.

<Q0> <I0> …. <Q15> <I15>: antenna calibration
parameters for the 16 virtual antennas of AWR294X in Im(Q)
-Re(I) format

For AWR2943, the last 8 values will be ignored.

Im(Q)-Re(I) format

cfarCfg (different from cfarCfg used
in TDM chain) (DDM)

cfar configuration

Mandatory command.

This command is valid for devices.AWR294X

Specific to DDM.

< procDirection>

Processing direction:
0 – CFAR detection in range direction
1 – CFAR detection in Doppler direction

Both values supported

<averageMode>

CFAR OS and CFAR CA (smaller of) is supported

must be 2 (CFAR-CASO) or 3 (CFAR-
OS)

<winLen>

noise averaging window length:
Length of the one-sided noise averaged
cells in samples

Make sure 2*(+guardLen)winLen
<numRangeBins for range direction and
2*(+guardLen)winLen
<numDopplerBins for doppler direction.

supported

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 33 of 90

<guardLen>

one-sided guard length in samples

Make sure 2*(noiseWIn+guardLen)
<numRangeBins for range direction and
2*(noiseWIn+guardLen)
<numDopplerBins for doppler direction.

must be 0 for CFAR-OS

<noiseDivShift>

Cumulative noise sum divisor expressed
as a shift.

Sum of noise samples is divided by
2^<noiseDivShift>. This parameter is not applicable in
CFAR-OS mode.

The actual value that is used for division (2^x) is a power of
2, even though the "noise averaging window length"
samples may not have that restriction.

noise div shift

<noiseDivShift> = ceil(log (<winLen>))2

A value of 3 means
that the noise sum is
divided by 2^3=8 to get the
average of noise samples
with window length of 8 samples in
CFAR-CASO mode.

<cyclicMode>

cyclic mode

0- Disabled
1- Enabled

only cyclic mode enabled (1) is
supported

<threshold>

CFAR detection threshold in dB

Detection threshold is specified in

dB scale.

<peakGroupingEn>

Peak grouping

0: Disabled

1: Enabled

supported

<osKvalue>

CFAR-OS K Value

See model profile configuration file in
demo/awr294x/mmw/profiles for
example configuration.

<osEdgeKscaleEn>

CFAR-OS Edge K Scaling Enable

See model profile configuration file in
demo/awr294x/mmw/profiles for
example configuration.

< isEnabled>

CFAR Enable:
0 – Disabled
1 – Enabled

For CFAR in Range direction: Both
values supported

For CFAR in Doppler direction: Must be
enabled

spreadSpectrumConfig Spread spectrum clocking (SSC) configuration

The module supports spread spectrum clocking (SSC) on its output
clocks. SSC is used to spread the spectral peaking of the clock to
reduce any electromagnetic interference (EMI) that may be caused
due to the clock’s fundamental or any of its harmonics. When SSC is
enabled the clock’s spectrum is spread by the amount of frequency
spread, and the attenuation is given by the ratio of the frequency
spread (f) and the modulation frequency (fm), i.e., 10*log10(f/fm) dB.

Refer section for more details on clock 3.8 SBL Clock configuration
sources.

<coreADPLLEnable>

Enable SSC for Core ADPLL

0- Disabled

1- Enabled

Supported

<coreModRate>

Core ADPLL modulation rate in KHz

Integer values in range 1 to 100

<coreModDepth>

Core ADPLL modulation depth in percentage

Float values in range 0 to 2

<coreDownSpread>

0- Center spread

1- Down spread

1 is recommended as frequency should
not exceed the maximum operating
frequency of device

<dspADPLLEnable>

Enable SSC for DSP ADPLL

0- Disabled

1- Enabled

Supported

<dspModRate>

DSP ADPLL modulation rate in KHz

Integer values in range 1 to 100

<dspModDepth>

Core ADPLL modulation depth in percentage

Float values in range 0 to 2

<dspDownSpread>

0- Center spread

1- Down spread

1 is recommended as frequency should
not exceed maximum operating
frequency of device

BSS Clock source (PER PLL in default SBL) cannot
have SSC enabled.

Additionally, when BSS Dynamic clocking is enabled,
FRC clock source cannot have SSC enabled.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 34 of 90

<perADPLLEnable>

Enable SSC for PER ADPLL

0- Disabled

1- Enabled

Supported

Default SBL derives BSS clock from
PER PLL, hence recommended to
disable SSC

<perModRate>

PER ADPLL modulation rate in KHz

Integer values in range 1 to 100

<perModDepth>

PER ADPLL modulation depth in percentage

Float values in range 0 to 2

<perDownSpread>

0- Center spread

1- Down spread

1 is recommended as frequency should
not exceed the maximum operating
frequency of device

procChainCfg Configures processing chain for TDM/DDM, 1X/2X mode.

This command is valid for only AWR2544 device.

<procChain>

0 - TDM : Do not configure phase
1 - DDM : Configures the phase of TX antennae per chirp.

Supported

<2xMode>

0 - Disable 2x Mode : Use HWA FFT engine in single path.
1 - Enable 2x Mode : Use HWA FFT engine in 2X mode
(two parallel paths).

Supported

<ethPktRdyCnt>

Number of Chirps after which CPSW is to be triggered.

Refer demo documentation for more details.

Supported

<ethPerPktDly>

Amount of delay to be added before each packet is
transmitted in us.

This delay spreads the packet transfers and may be helpful
in the use-cases where lower (< 1Gbps) CPSW transfer rate
is required depending on the capability of Rx side. It helps
in resolving the packet drop.

Refer demo documentation for more details.

Integer Values

<nwPktCrcSel>

Computes CRC for payload, header and footer

0 - 16 bit CRC
1 - 32 bit CRC

Supported

Refer TRM for more details.

adcDataDitherCfg Configures the dither of chirp available interrupt to delay CPSW event

This command is valid for only AWR2544 device.
<isDelayEn>

Minimum delay of 1.1us is added if enabled

0 - Disable
1 - Enable

Supported

<isDitherEn>

Random dither is added if enabled in the range of (0,
<ditherVal>).

0 - Disable
1 - Enable

Supported

<ditherVal>

Maximum amount of dither to be added in us

Value > 0

showCpswStats Prints the CPSW Network Statistics for Port0 and Port1
This command is valid for only AWR2544 device.

Note: This CLI should not be issued
during chirping.

anaTempRead Prints temperature values from BSS

This command is valid for only AWR2544 and AWR2X44P
device.

Supported

digTempRead Prints MCU, HWA and HSM temperature values for AWR2544.

Prints DSP, HWA and HSM temperature values for AWR2X44P.

This command is valid for only AWR2544 and AWR2X44P
device.

Supported

readVoltageSig Measures and prints external connected voltage values
This command is valid for only AWR2544 device.

Supported

hwaDynamicClockGating

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 35 of 90

Clock gates the unused computation engines in HWA driver based
on paramset

This command is valid for only AWR2544 device.

<enable>
0 - Disabled
1 - Enabled

Supported

hwaGateAfterFrameProc Clock gates or power gates HWA after the frame processing is
completed

Clock is ungated in frame start ISR

This command is valid for only AWR2544 device.

<option>
0 - No optimization
1 - Enable HWA Power gating
2 - Enable HWA Clock gating

Supported

unusedPerClkGate The unused peripherals in the provided demo application are clock
gated.

This command is valid for only AWR2544 device.

<enableClkGating>

0 - Disabled
1 - Enabled

Supported

Clock gates the below peripherals when
enabled:
SPIB , I2C, SCIB, Watchdog,
OBSCLKOUT, PMICCLKOUT,
TRCCLKOUT, MCUCLKOUT

enableProgFiltCfg To program the coefficients for the programmable filter.
When enabled, overrides the device's hard-coded digital decimation
filter and allows the user to obtain the below filter response:

From
(MHz)

To
(MHz)

Gain
(dB)

Ripple
(dB)

Actual Ripple
(dB)

0 4 1 5 3.55

6 10 0 -60 -61.37

Sampling Frequency: 20MHz
Desired Taps: 18

This command is valid for AWR2X44P device only.

<enable>

0 - Disabled

1 - Enabled

Supported

coexMSSVMONSelfTest Enable and set reference voltages for 1.2 UV VMON Self-test, 1.2
OV VMON Self-test, OSC UV VMON Self-test and 3.3 UV VMON
Self-test

Note: coexMSSVMONEnable and coexMSSVMONSelfTest should
not be used simultaneously. Please do not
issue coexMSSVMONSelfTest after coexMSSVMONEnable has
been issued. You may issue it again after resetting the device.

This command is valid for only AWR2544 device.

<UV_VMON>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference voltage value in V for 1.2 UV test (float)
Scaling factor: 2

Range: 0.56 to 0.68

<OV_VMON>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference Voltage Value in V for 1.2 OV test (float)
Scaling factor: 2

Range: 0.48 to 0.58

<OSC_UV_VMON>

0 - Disable
1 - Enable

Supported

 <Thresh

Scaled Reference Voltage Value in V for 1.8 OSC UV test
(float)
Scaling factor: 3

Valid options: 0.6, 0.62, 0.64, 0.66

<VMON_3P3V>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference Voltage Value in V for 3.3 UV test (float)
Scaling factor: 5.5

Valid options: 0.6, 0.62, 0.64, 0.66

coexMSSVMONEnable Enable and set reference voltages for 1.2 UV VMON, 1.2 OV VMON
, OSC UV VMON and 3.3 UV VMON

Note: coexMSSVMONEnable and coexMSSVMONSelfTest should
not be used simultaneously.

This command is valid for only AWR2544 device.

<UV_VMON>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference voltage value in V for 1.2 UV VMON
enable (float)
Scaling factor: 2

Range: 0.48 to 0.58

<OV_VMON>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference Voltage Value in V for 1.2 OV VMON
enable (float)
Scaling factor: 2

Range: 0.56 to 0.68

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 36 of 90

<OSC_UV_VMON>

0 - Disable
1 - Enable

Supported

 <Thresh

Scaled Reference Voltage Value in V for 1.8 OSC UV
VMON Enable (float)
Scaling factor: 3

Valid options: 0.5, 0.52, 0.54, 0.56

<VMON_3P3V>

0 - Disable
1 - Enable

Supported

<Thresh>

Scaled Reference Voltage Value in V for 3.3 UV VMON
Enable(float)
Scaling factor: 5.5

Valid options: 0.5, 0.52, 0.54, 0.56

coexBSSVMONEnable Enable and set reference voltages for VddaBb1P8V, VddaVco1P8V,
VddRf11P0V, VddRf21P0V.

This command is valid for only AWR2544 device.

<VddaBb1P8VEn>

0 - Disable
1 - Enable
3 - Self-test and enable

Supported

<VddaBb1P8VRef>

Scaled Reference Voltage Value in V (float)
Scaling factor: 3

Valid values: 0.5, 0.52, 0.54, 0.56

 <VddaVco1P8VEn>

0 - Disable
1 - Enable
3 - Self-test and enable

Supported

<VddaVco1P8VRef>

Scaled Reference Voltage Value in V (float)
Scaling factor: 3

Valid values: 0.5, 0.52, 0.54, 0.56

<VddRf11P0VEn>

0 - Disable
1 - Enable
3 - Self-test and enable

Supported

<VddRf11P0VRef>

Scaled Reference Voltage Value in V (float)
Scaling factor: 1.8

Valid values: 0.48, 0.49, 0.51, 0.52

<VddRf21P0VEn>

0 - Disable
1 - Enable
3 - Self-test and enable

Supported

<VddRf21P0VRef>

Scaled Reference Voltage Value in V (float)
Scaling factor: 1.8

Valid values: 0.48, 0.49, 0.51, 0.52

coexMSSVMONDisable Disable MSS VMONs

This command is valid for only AWR2544 device.

<UV_VMON>

1- Disable 1.2V UV VMON

Supported

<OV_VMON>

1 - Disable 1.2V OV VMON

Supported

<OSC_UV_VMON>

1 - Disable 1.8V OSC UV VMON

Supported

<VMON_3P3V>

1 - Disable 3.3V UV VMON

Supported

powerMeasMssLoading loads MSS (Perform matrix multiplication) for a given percentage of
frame period.

Loading time = frame period * (<percent>/100)

The matrix multiplication is a low priority task which R5 core
executes when it is idle within the Loading time for each frame.

This command is valid for only AWR2544 device.
Note: Only the power measurement executable supports this
command (awr2544_mmw_pm_demo.xer5f)

<enable>

0 - Disable
1 - Enable

Supported

<percent>
Percentage duration of frame period when the R5 core is
loaded

Supported

% Any line starting with '%' character is considered as
comment line and is skipped by the CLI parsing utility.

3.7.1.1.2. Table 1: mmWave SDK Demos - CLI commands and parameters

3.8. Running the prebuilt unit test binaries (.xer5f, .xem4 and .xe66)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 37 of 90

Unit tests for the drivers and components can be found in the respective test directory for that component. See section "mmWave SDK - TI
 for location of each component's test code. For example, components" the Range Processing DPU test codes (that can run on RF5 and C66x

. In this test directory, user can build .xer5f and . <mmwave_mcuplus_sdk_mcuplus_ver>/ti/datapath/dpu/rangeproc/testseparately) can be found in
xe66 files (build instructions mentioned in). Follow the instructions in section " to "Building datapath/control components" CCS development mode"
download and execute these unit tests via CCS.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 38 of 90

3.9. SDK Clock Configurations

3.9.1. AWR294x

3.9.1.1. Default SBL clock configurations

The secondary bootloader configures all the clocks. The default configuration is:

ADPLL Name (Operating Freq.) HSDIV Configured frequency

CORE PLL (600 MHz) HSDIV_CLKOUT0 Powered down

HSDIV_CLKOUT1 200 MHz (Ethernet)

HSDIV_CLKOUT2 300 MHz (MSS Clock Source)
150MHz (SYS Clock)

HSDIV_CLKOUT3 200 MHz (FRC Clock Source)

DSP PLL (720 MHz) HSDIV_CLKOUT0 Powered Down

HSDIV_CLKOUT1 360 MHz (DSP Clock Source)

HSDIV_CLKOUT2 240 MHz (QSPI, MCAN)

HSDIV_CLKOUT3 Powered Down

PER PLL (1800 MHz) HSDIV_CLKOUT0 Powered Down

HSDIV_CLKOUT1 200 MHz (BSS Clock Source)

HSDIV_CLKOUT2 Powered Down

HSDIV_CLKOUT3 Powered Down

3.9.1.1.1. Table 1: mmWave SDK Demos - Clock configurations

3.9.1.2. SBL clock configurations for BSS dynamic clocking feature

Feature BSS Clock Source FRC Clock Source

BSS Dynamic clocking disabled PER PLL CLKOUT1 PER PLL CLKOUT1

BSS Dynamic clocking enabled Switches between XTAL (40 MHz) and PER PLL CLKOUT1 CORE PLL CLKOUT3

3.9.1.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking

: For more details on BSS Dynamic clocking feature refer "RSS dynamic frequency switch" section in ICD at
mmwave_mcuplus_sdk_<ver>\mmwave_dfp_02_04_<ver>\docs.

To enable/disable this feature, refer .BSS Dynamic Clocking

3.9.1.3. Peripheral Clock Configurations

Peripheral AWR294x Frequency (MHz) Clock Source

SBL - R5F Operating Mode

MCU PLUS SDK has environment to support both lock-step and dual core boot modes. Current "sbl_qspi.release.tiimage" available at "
" SBL application supports only Lock-step boot mode. <mmwave_mcuplus_sdk_mcuplus_ver>/tools/<device>

The BSS, FRC clock source and dynamic clocking feature should be enabled before un-halting BSS core.

If BSS Dynamic clocking feature is enabled, the BSS and FRC clock sources need to be different. Application has to configure FRC to 200
MHz.

MSS RTIC is used by BSS when Dynamic clocking is enabled and hence cannot be used by application.

By default, BSS Dynamic clocking has been enabled in the SBL provided in the SDK

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 39 of 90

CPSW (Ethernet) 150 SYS Clock

CPTS 200 DPLL_CORE_HSDIV0_CLKOUT1

CPSW (MII100) 50 DPLL_CORE_HSDIV0_CLKOUT1

CPSW (MII10) 5 DPLL_CORE_HSDIV0_CLKOUT1

CPSW
(RGMII)

50 DPLL_CORE_HSDIV0_CLKOUT1

EPWM 150 SYS Clock

HSI (LVDS) 1800 PER_PLL

HWA 300 DPLL_CORE_HSDIV0_CLKOUT2

I2C 150 SYS Clock

MCANA
MCANB

80 DPLL_DSP_HSDIV0_CLKOUT2

MIBSPIA
MIBSPIB

150 SYS Clock

MSS_RTIA
MSS_RTIB
MSS_RTIC
DSS_RTIA
DSS_RTIB

150 SYS Clock

QSPI 80 DPLL_DSP_HSDIV0_CLKOUT2

UARTA UARTB 150 SYS Clock

WDT (Watchdog) 150 SYS Clock

3.9.2. AWR2544

3.9.2.1. Default SBL clock configurations

ADPLL Name (Operating Freq.) HSDIV Configured frequency

CORE PLL (1500 MHz) HSDIV_CLKOUT0 Powered down

HSDIV_CLKOUT1 250 MHz (Ethernet Clock Source)

HSDIV_CLKOUT2 300 MHz (MSS Clock Source)

150MHz (SYS Clock)

HSDIV_CLKOUT3 Powered Down

PER PLL (1200 MHz) HSDIV_CLKOUT0 Powered Down

HSDIV_CLKOUT1 200 MHz (BSS and FRC Clock Source)

HSDIV_CLKOUT2 Powered Down

HSDIV_CLKOUT3 Powered Down

3.9.2.1.1. Table 1: mmWave SDK Demos - Clock configurations

3.9.2.2. SBL clock configurations for BSS dynamic clocking feature

Feature BSS Clock Source FRC Clock Source

BSS Dynamic clocking disabled PER PLL CLKOUT1 PER PLL CLKOUT1

BSS Dynamic clocking enabled Switches between XTAL (50 MHz) and PER PLL CLKOUT1 PER PLL CLKOUT1

3.9.2.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 40 of 90

3.9.3. AWR2X44P

3.9.3.1. Default SBL clock configurations

ADPLL Name (Operating Freq.) HSDIV Configured frequency

CORE PLL (800 MHz) HSDIV_CLKOUT0 Powered down

HSDIV_CLKOUT1 200 MHz (Ethernet)

HSDIV_CLKOUT2 400 MHz (MSS Clock Source)
200 MHz (SYS Clock DSS CM4 Clock Source)

HSDIV_CLKOUT3 Powered down

DSP PLL (900 MHz) HSDIV_CLKOUT0 Powered Down

HSDIV_CLKOUT1 450 MHz (DSP Clock Source)

HSDIV_CLKOUT2 Powered Down

HSDIV_CLKOUT3 Powered Down

PER PLL (1600 MHz) HSDIV_CLKOUT0 Powered Down

HSDIV_CLKOUT1 200 MHz (BSS and FRC Clock Source)

HSDIV_CLKOUT2 Powered Down

HSDIV_CLKOUT3 Powered Down

3.9.3.1.1. Table 1: mmWave SDK Demos - Clock configurations

3.9.3.2. SBL clock configurations for BSS dynamic clocking feature

Feature BSS Clock Source FRC Clock Source

BSS Dynamic clocking disabled PER PLL CLKOUT1 PER PLL CLKOUT1

BSS Dynamic clocking enabled Switches between XTAL (40/50 MHz) and PER PLL CLKOUT1 PER PLL CLKOUT1

3.9.3.2.1. Table 2: mmWave SDK Demos - Clock configurations for BSS dynamic clocking

BSS Dynamic Clock Switching (AWR2544)

Sequence to enable BSS Dynamic clock switching feature can be referred from "SOC_rcmPopulateBSSControl" API in
mcu_plus_sdk_awr2544_<ver>\source\drivers\soc\awr2544\soc_rcm.c .

Below are the sequence of steps to enable feature (Current SBL Configuration) before un-halting BSS core:

Set BIT#3 of RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5 register.
Configure FRC clock source as DPLL_PER_HSDIV0_CLKOUT1 by writing "1" to BIT#18:16 of RSS_PROC_CTRL:
RSS_CR4_BOOT_INFO_REG5 register.
Configure BSS Clock source by writing 0x333 (Clock Source Selected: DPLL_PER_HSDIV0_CLKOUT1_MUXED) to BIT#15:4 of
RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5 register
Enable FRC clock by writing 0x7 to BIT#8:10 of MSS_TOPRCM:HW_SPARE_RW0 register.

By default, SBL application provided in the SDK enables BSS Dynamic clocking feature.

BSS Dynamic Clock Switching (AWR2X44P)

Sequence to enable BSS Dynamic clock switching feature can be referred from "SOC_rcmPopulateBSSControl" API in
mcu_plus_sdk_awr2x44p_<ver>\source\drivers\soc\awr2x44p\soc_rcm.c .

Below are the sequence of steps to enable feature (Current SBL Configuration) before un-halting BSS core:

Set BIT#3 of RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5 register.
Configure FRC clock source as DPLL_CORE_HSDIV0_CLKOUT3 by writing "0" to BIT#18:16 of RSS_PROC_CTRL:
RSS_CR4_BOOT_INFO_REG5 register.
Configure BSS Clock source by writing 0x333 (Clock Source Selected: DPLL_PER_HSDIV0_CLKOUT1_MUXED) to BIT#15:4 of
RSS_PROC_CTRL:RSS_CR4_BOOT_INFO_REG5 register.

By default, SBL application provided in the SDK enables BSS Dynamic clocking feature.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 41 of 90

1.
a.

b.

3.9.3.3. Peripheral Clock Configurations

Peripheral Frequency (MHz) Clock Source

CPSW (Ethernet) 200 SYS Clock

CPTS 200 DPLL_CORE_HSDIV0_CLKOUT1

CPSW (MII100) 50 DPLL_CORE_HSDIV0_CLKOUT1

CPSW (MII10) 5 DPLL_CORE_HSDIV0_CLKOUT1

CPSW
(RGMII)

50 DPLL_CORE_HSDIV0_CLKOUT1

EPWM 200 SYS Clock

HSI (LVDS) 1600 PER_PLL

HWA 400 DPLL_CORE_HSDIV0_CLKOUT2

I2C 200 SYS Clock

MCANA
MCANB

80 DPLL_CORE_HSDIV0_CLKOUT2

MIBSPIA
MIBSPIB

200 SYS Clock

MSS_RTIA
MSS_RTIB
MSS_RTIC
DSS_RTIA
DSS_RTIB

200 SYS Clock

QSPI 80 DPLL_CORE_HSDIV0_CLKOUT2

UARTA UARTB 200 SYS Clock

WDT (Watchdog) 200 SYS Clock

3.9.3.4. Ethernet configuration changes (Gigabit speed)

Default configuration in SDK is for 100Mbps link. To operate ethernet at 1Gbps speed, the following changes have to be done:

Clock changes:
Configure Core PLL frequency to 2000MHz (250MHz for RGMII and 400MHz for R5F[MSS]) and CORE_PLL_CLKOUT_1 to

in250MHz API as shown below in Bootloader_socConfigurePll
mcu_plus_sdk_awr2x44p_<ver>\source\drivers\bootloader\soc\awr2x44p\bootloader_soc.c

 /* CORE ADPLL reconfiguration. */
 hsDivCfg.hsdivOutEnMask = (SOC_RCM_PLL_HSDIV_OUTPUT_ENABLE_1 |
 SOC_RCM_PLL_HSDIV_OUTPUT_ENABLE_2);
 hsDivCfg.hsDivOutFreqHz[1] = SOC_RCM_FREQ_MHZ2HZ(250);
 hsDivCfg.hsDivOutFreqHz[2] = gCoreBootInfo[CSL_CORE_ID_R5FSS0_0].defaultClockHz;

 SOC_rcmCoreDpllConfig(SOC_RcmPllFoutFreqId_CLK_2000MHZ, &hsDivCfg);

Set " of MSS_TOPRCM:PLL_CORE_CLKCTRL register to 0x4 PLL_CORE_CLKCTRL_SELFREQDCO" field in
SOC_rcmConfigurePllCore API as shown below in mcu_plus_sdk_awr2x44p_<ver>\source\drivers\soc\awr2x44p\soc_rcm.c

Default EVM configuration is having Industrial PHY (DP83867E) connected to SOC.

To enable Auto PHY (DP83TC812R) populated on EVM which is capable of 100Mbps link requires hardware modification. Refer EVM User
Guide for more details.

User can select DP83TG720S Auto PHY for testing 1Gbps operation.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 42 of 90

1.

b.

c.

2.

3.
a.

b.

*ptrClkCtrl = SOC_rcmInsert8 (*ptrClkCtrl, 12U, 10U, 0x4U);

Configure RGMII clock to 250MHz in SOC_rcmConfigEthMacIf API as shown below in
mcu_plus_sdk_awr2x44p_<ver>\source\drivers\soc\awr2x44p\soc_rcm.c

void SOC_rcmConfigEthMacIf(void)
{
 CSL_mss_rcmRegs *ptrMSSRCMRegs;
 uint32_t clkFreq = 0U;
 uint32_t clkDivisor;
 uint32_t mii10ClkDivVal;
 uint32_t clkSrcVal;

 ptrMSSRCMRegs = CSL_RCM_getBaseAddress();
 clkSrcVal = gSocRcmCpswMiiClkSrcValMap[SOC_RcmCpswMiiClockSource_DPLL_CORE_HSDIV0_CLKOUT1];
 CSL_FINS(ptrMSSRCMRegs->MSS_CPSW_MII_CLK_SRC_SEL,
MSS_RCM_MSS_CPSW_MII_CLK_SRC_SEL_MSS_CPSW_MII_CLK_SRC_SEL_CLKSRCSEL, clkSrcVal);

 clkFreq = SOC_rcmGetFreq(gSocRcmCpswMiiClkSrcInfoMap
[SOC_RcmCpswMiiClockSource_DPLL_CORE_HSDIV0_CLKOUT1]);
 clkDivisor = SOC_rcmGetModuleClkDivVal(clkFreq, SOC_RCM_FREQ_MHZ2HZ(50U));
 ptrMSSRCMRegs->MSS_MII100_CLK_DIV_VAL = SOC_rcmInsert16 (ptrMSSRCMRegs-
>MSS_MII100_CLK_DIV_VAL, 11U, 0U, SOC_rcmGetModuleClkDivRegVal(clkDivisor));
 clkDivisor = SOC_rcmGetModuleClkDivVal(clkFreq, SOC_RCM_FREQ_MHZ2HZ(5U));
 mii10ClkDivVal = (clkDivisor & 0xFF) | ((clkDivisor & 0xFF) << 8) | ((clkDivisor & 0xFF)
<< 16);
 ptrMSSRCMRegs->MSS_MII10_CLK_DIV_VAL = SOC_rcmInsert32 (ptrMSSRCMRegs-
>MSS_MII10_CLK_DIV_VAL, 23U, 0U, mii10ClkDivVal);
 clkDivisor = SOC_rcmGetModuleClkDivVal(clkFreq, SOC_RCM_FREQ_MHZ2HZ(250U));
 ptrMSSRCMRegs->MSS_RGMII_CLK_DIV_VAL = SOC_rcmInsert16 (ptrMSSRCMRegs-
>MSS_RGMII_CLK_DIV_VAL, 11U, 0U, SOC_rcmGetModuleClkDivRegVal(clkDivisor));
}

Enable 1Gbps by setting CPSW_SOC_ENABLE_1GBPS macro to 1 as shown below in mcu_plus_sdk_awr2x44p_<ver>\source\networking\.
meta\enet_cpsw\templates\awr2x44p\enet_soc_cfg.c.xdt

#define CPSW_SOC_ENABLE_1GBPS (1)

Update CPTS Clock to 250MHz:

Set cpts_input_clk_freq_2x44p = 250000000 in mcu_plus_sdk_awr2x44p_<ver>\source\networking\.
meta\enet_cpsw\awr2544_awr2x44p\enet_cpsw_awr2544_awr2x44p.syscfg.js

let cpts_input_clk_freq_2x44p = 250000000;

Set the default value for "cptsRftClkFreq" field in CPTS configuration as "CPSW_CPTS_RFTCLK_FREQ_250MHZ" in
mcu_plus_sdk_awr2x44p_<ver>\source\networking\.meta\enet_cpsw\awr2544_awr2x44p\enet_cpsw_cpts_config.syscfg.js

name: "cptsRftClkFreq",
description: "CPTS RFT clock frequency required to set TS_ADD VAL",
displayName: "CPTS Clock Frequency Add Value",
default: "CPSW_CPTS_RFTCLK_FREQ_250MHZ",

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 43 of 90

4. How-To Articles

4.1. How to identify the COM ports for mmWave EVM

When the EVM is powered on and connected to Windows PC via the supplied USB cable, there should be two additional COM Ports in Device
Manager. See your mmWave devices' TI EVM User Guide for details on the COM port.

After following the above steps, disconnect and re-connect the EVM and you should see the COM ports now. See the highlighted COM ports in the
belowFigure

4.1.1.1.1. Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports

1.

2.

3.

4.

Troubleshooting Tip

If the COM ports don't show up in the Device Manager or are not working (i.e. no demo output seen on the data port), then one of these
steps would apply depending on your setup:

If you want to run the Out-of-box demo, simple browse to the Visualizer (https://dev.ti.com/gallery/view/mmwave
) and follow the one-time setup instructions./mmWave_Demo_Visualizer

If you are trying to flash the board, using Uniflash command line tool and desktop version installation instructions would also install
the right drivers for the COM ports.
If above methods didn't work and if TI code composer studio is not installed on that PC, then download and install the standalone

. XDS110 drivers
If TI code composer studio is installed, then version of CCS and emulation package need to be checked and updated as per the
mmWave SDK release notes. See section for more details.Emulation Pack Update

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown above. Please use the correct COM port
number from your setup for following steps.

https://confluence.itg.ti.com/download/attachments/1382639692/Device_Manager.png?version=1&modificationDate=1751865491000&api=v2
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer
https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds_software_package_download.html
https://software-dl.ti.com/ccs/esd/documents/xdsdebugprobes/emu_xds_software_package_download.html

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 44 of 90

4.2. How to flash an image onto mmWave EVM

4.2.1. Tool requirements on host PC:

The tool is implemented using python and needs python version 3.x
The tool uses additional python packages as listed below:

pyserial for UART access on PC
xmodem for the file transfer protocol
tqdm for progress bar when the tool is executing

Refer to , to install python and the required python packages on your PC.Python3

4.2.2. Python3 Setup

Python scripts are used for below functionality in the SDK,
Flashing files to the flash on the EVM via UART.
Booting application on the EVM via UART

Flashing files is the most popular reason why you would need python, so its strongly recommended to install it.
In Windows,

Install python from, https://www.python.org/downloads/windows/
Confirm python is installed by typing below in a command prompt, make sure you see 3.x as the version
C:\> python --version
Python 3.9.1

If above command fails, then add path to Python to your environment "Path" variable, by default python is installed at below path
C:\Users\{your username}\AppData\Local\Programs\Python\Python39

To add a new path to your environment variables, go to "Windows Task Bar Search" and search for "environment variables for your
account"

Environment Variables For Your Account

Click on "Path" variables, click on "Edit", click on "New"
Add the path to the folder where python in installed.
It is strongly recommended to move the path "up" in your path list by clicking the "Move Up" button until the path is at the top of the
list.
Click "OK" to save the settings
Close your Windows command prompt and reopen it and then check if python is visible by doing below
C:\> python --version
Python 3.9.1

Check if the python package manager "pip" is installed, by default pip should be installed along with python.
C:\> python -m pip --version
pip 21.0.1 from C:\Users\{your username}\AppData\Local\Programs\Python\Python39\lib\site-
packages\pip (python 3.9)

Attention

It is important to install Python 3.x. If you have Python 2.x installed, then additionally install Python 3.x and make sure the command python
or python3 indeed points to Python 3.xAll commands mentioned below should be typed in command console in Windows and cmd.exe bash
terminal in Linux.

https://www.python.org/downloads/windows/

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 45 of 90

1.

2.
3.

4.

5.

6.

Install below additional packages via "pip" that are needed for the flashing tools. If you are behind a corporate firewall make sure to
pass the server name and port for the proxy as shown below. If proxy is not needed keep as blank. --proxy=

C:\> python -m pip install pyserial xmodem tqdm --proxy={your proxy server weblink and port}

In Linux,
Do below in Linux bash shell to install python3
$ sudo apt install python3 python3-pip

Check the python version by doing below
$ python3 --version

Check if the python package manager "pip" is installed, by default pip should be installed along with python.
$ pip3 --version

Install below additional packages via "pip" that are needed for the flashing tools. If you are behind a corporate firewall make sure to
pass the server name and port for the proxy as shown below. If proxy is not needed keep as blank. --proxy=

$ pip3 install pyserial xmodem tqdm --proxy={your proxy server weblink and port}

Go back to: , How to connect mmWave EVM to CCS using JTAG Loading images onto mmWave EVM -->Demonstration Mode

4.2.3. Flash Procedure using UniFlash GUI (Applicable for AWR294x (not applicable for AWR2X44P))

Download UniFlash GUI tool () or use browser based UniFlash tool () version https://www.ti.com/tool/UNIFLASH https://dev.ti.com/uniflash/#!/
8.3.0 or later.
Prepare your EVM or module in flashing mode by setting it to SOP5 mode (.SOP0:1; SOP1:0; SOP2:1) Refer SOP Configuration details
Select AWR2944EVM (if using EVM else AWR2944) from the device option in UniFlash GUI and click Start button.

Select SBL (mmwave_mcuplus_sdk_<ver>\mmwave_mcuplus_sdk_<ver>\tools\awr294x\sbl_qspi.release.tiimage) and Application image
(mmwave_mcuplus_sdk_<ver>\mmwave_mcuplus_sdk_<ver>\ti\demo\awr294x\mmw\awr2944_mmw_demoDDM.appimage).

Set the COM port as marked in above snapshot, select this COM port no. which is populated in Device Manager as 'Application/UART' with
AWR2944BOOST EVM connected.
Click on 'Load Images' button to start the flashing process.

Go back to: How to flash an image onto mmWave EVM

In case of any failure or uniflash stuck for long: check USB connection and COM port no., AWR294x EVM SOP setting and reset it, restart
UniFlash GUI.

https://www.ti.com/tool/UNIFLASH
https://dev.ti.com/uniflash/#!/

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 46 of 90

1.

2.

3.
a.

4.

a.

b.
c.

4.2.4. Flash Procedure using Python tools

You will need the mmWave Device TI EVM, USB cable and a Windows/Linux PC to perform these steps.

Setup the EVM for Flashing

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumper/switch locations (See "Sense-on-Power
" section in mmWave device's EVM user guide). The table detailing the boot modes and the figure with the SOP jumper(SOP) Jumpers

/switch locations are provided below for quick reference.

SOP0

jumper
/switch

SOP1

jumper
/switch

SOP2

jumper
/switch

Bootloader mode & operation

1 1 0 No-Boot Mode

ROM does not execute in this boot mode.

1 0 1 UART Boot Mode

ROM receives the secondary boot loader via UART interface MSS SCI A and loads it in SoC memory and switches to
SBL execution.

SBL receives multicore application image via UART interface MSS SCI A and loads it in SoC memory and switches to
application image execution.

1 0 0 QSPI Boot Mode

 ROM loads the SBL from serial flash at flash offset of 0x0, and SBL loads the multicore appimage from serial flash at
flash offset of 0xA0000.

Procure the Images
For flashing AWR294X / AWR2544 / AWR2X44P devices, flashing tool at mcu_plus_sdk_<platform>_<version>\tools\boot\uart_uniflash.py
 should be used. For details related to tools required for flashing procedure, please refer "Flashing Tools" section of mcu_plus_sdk api_guide
available at mcu_plus_sdk_<platform>_<version>\docs\api_guide_<platform> . The flashing procedure requires the flashing of three binaries,

 mmwave_mcuplus_sdk_<version>\tools\<platform> folder. the first two (flash programmer and SBL) of which are present in the The third
For the step is to flash the application image (with an extension) of your choice (for example, CCS Debug binary or demo binary)..appimage

SDK packaged demos, there is a file provided in their respective folder: .appimage
 which is the metaImage to be used for flashing. mmwave_mcuplus_sdk_<version>\ti\demo\<platform>\mmw\<platform>_<demo>.appimage

The metaImage already has the MSS, DSS, DSS_CM4 and BSS (as applicable) application combined into one file. Users can use the
flashing procedure given below to flash the metaImage of their custom demo as well.

Setup the Build Environment
Run the script to set up the build environment, as shown in the following code block. Note that for UNIX, the shell script setenv
which performs this step is located in (use source ./setenv.sh as mentioned in mmwave_mcuplus_sdk_<version>\scripts\unix this
section).

Setting up Build Environment variables

@REM Change the path/version
cd C:\ti\mmwave_mcuplus_sdk_<version>\scripts\windows
@REM Remember to change the variable "MMWAVE_SDK_DEVICE" in this file!
setenv.bat

Flashing procedure

Power up the EVM and check the Device Manager in your windows PC. Note the number for the serial port marked as " XDS110
 Class Application/User UART " for the EVM. Refer to section to identify the How to identify the COM ports for mmWave EVM

 COM port. Lets say for this example, it showed up as COM25. The steps for flashing the binaries to the EVM are as follows:
Switch to and power cycle the EVM. UART Boot Mode (SOP0: 1, SOP1: 0, SOP2: 1)

 The flashing procedure requires the flashing of three binaries, the first two of which are present in the
mmwave_mcuplus_sdk_<version>\tools\<platform> folder. The third step is to flash the image (with an extension) of your .appimage
choice (for example, CCS Debug binary or demo binary). The following code blocks shows the steps, which must be executed in the
UART Boot Mode.

XTAL 40/50 MHz Detection

SOP3 and SOP4 pins are connected to SOC which is read by software to determine the XTAL populated on EVM.

XTAL SOP4 SOP5

40 MHz 0 0

50 MHz 1 1

Refer EVM schematics for more details.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 47 of 90

4.

c.

5.

Flashing the appimage onto the EVM

@REM Step(i): updated the default.cfg file available at %MMWAVE_SDK_INSTALL_PATH%
\tools\<platform> with user's .appimage path
@REM Example ../../ti/utils/ccsdebug/%Platform%_ccsdebug.appimage
@REM Example ../../ti/utils/ccsdebug/%Platform%_ccsdebug.appimage

@REM Step(ii): cd to path
cd %MMWAVE_SDK_INSTALL_PATH%/tools/<platform>

@REM Step(iii): Command to flash the files
@REM The <COM Port> can be, for example, COM25
@REM For AWR294x path would be %MCU_PLUS_AWR294X_INSTALL_PATH%/tools/boot/uart_uniflash.py
@REM For AWR2544 path would be %MCU_PLUS_AWR2544_INSTALL_PATH%/tools/boot/uart_uniflash.py
@REM For AWR2X44P path would be %MCU_PLUS_AWR2X44P_INSTALL_PATH%/tools/boot/uart_uniflash.py
python %MCU_PLUS_AM294X_INSTALL_PATH%/tools/boot/uart_uniflash.py -p <COM Port> --cfg=default.
cfg

Switch to the QSPI Boot Mode and power-cycle the EVM

Go back to: How to flash an image onto mmWave EVM

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 48 of 90

1.

2.

3.
4.

a.

b.

c.

d.

4.3. How to connect mmWave EVM to CCS using JTAG

Debug/JTAG capability is available via the same XDS110 micro-USB port/cable on the EVM. TI Code composer studio would be required for
accessing the debug capability of the device.

Use the instructions present in the to flash the CCS Debug binary (user will need to give the path How to flash an image onto mmWave EVM
to the CCS Debug binary: %MMWAVE_SDK_INSTALL_PATH%\ti\utils\ccsdebug\%MMWAVE_SDK_DEVICE%_ccsdebug.appimage in Step

).4.c.(iv) of the flashing instructions
Ensure JTAG mux is set to onboard XDS110, as in the figure below and device is in QSPI boot mode.

Connect micro-USB cable from EVM (Labeled with XDS_USB) to PC.
Target Configuration file for CCS (CCXML)

Create a target configuration for the EVM (for example,). Follow the steps mentioned below for the same.<device>evm_xds110.ccxml
If your CCS window do eady show "Target Configurations" pane, go to es not alr View->Target Configurations

This will show the "Target Configurations" pane. right click in this pane and select "New Target Configuration".

Give an appropriate name to the .ccxml file you want to create for the EVM.

FTDI

As SOP setting is also driven by FTDI cable, do not connect FTDI cable while executing any of the SDK applications.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 49 of 90

4.

d. As shown in the figure below, scroll the "Connection" list and select "Texas Instruments XDS110 USB Debug Probe" (Step A).
When this is done, the "Board or Device" list will be filtered to show the possible candidates, find (Step B) and choose the mmWave
device of interest (AWR294X) and check the box (Step C). Click save (Step D) to store this ccxml file. Note that if you /AWR2X44P
don't find your desired device in the list, it is likely that step 4 was not performed correctly.

AWR2X44P Selection

While creating CCXML file for device AWR2E44P/AWR2944P, type "AWR2x44P" in "Board or Device" field, and select
"AWR2x44P" checkbox.

CCS Configuration

Steps 4 and 5 above are a one-time configuration. Once a target configuration is saved, the user can simply load it again
as it will be listed as an existing configuration.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 50 of 90

5.

6.
7.

8.

9.

Launch this device configuration by right-clicking on the target configuration in the "Target Configurations" pane.

This will list three cores of AWR294X R5_0, R5_1 and C66x in the Debug pane. If you don't see this pane, go to ViewDebug.
Connect to R5_0 and/or C66x in the Debug window.

xx_DSP core, on each of the cores by selecting them one by one and After connecting to either Cortex_R5_0 or C66 perform a CPU Reset
clicking on "CPU Reset".

The EVM is ready to use. To load a program onto a core, right click on the core and select 'Load Program'.

Go back to: CCS development mode

AWR2x44P

For AWR2x44P, connect to R5_0 and/or M4_1 and/or DSP in the debug window. After connecting, follow Steps 8 and 9 above.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 51 of 90

4.3.1. Emulation Pack Update

Refer to the mmWave SDK release notes for the emulation pack version that would be needed within CCS to connect to the EVM. Check if that
particular or its later version of "TI Emulators" is available within your CCS installation. If you have an older version on your system, refer to CCS help
on how to update software packages within CCS.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 52 of 90

1.
2.

1.
a.
b.
c.

1.
2.

3.

a.
b.

c.

4.4. How to run mmWave demo with LVDS-based instrumentation

AWR294X:

Mmwave Studio CLI tool available in TI Resource Explorer should be used to capture raw ADC data and post process captured data. mmwave Studio
cli has inbuilt mss application to configure, capture and post process raw ADC data.

4.5. How to Run MMWAVE SDK OOB Demo with Ethernet Streaming Enabled

4.5.1. Setting up

4.5.1.1. Connections

Make the connections as follows:

Ethernet connection between EVM and multiport router.
Ethernet connection between multiport router and PC.

4.5.1.2. Software

Ensure the following additional software are installed:

Python >=v3.7.4 () with the following libraries:https://www.python.org/downloads/release/python-374/
socket: for socket programming in Python
struct: aids processing of captured data
ctypes: aids processing of captured data

4.5.1.3. Capturing Detected Object Data over Ethernet using OOB Demo

The pre-built binaries of the OOB Demo of MMWAVE SDK have ethernet streaming enabled (AWR294x TDM Processing chain, AWR2x44P DDM
Processing chain).

Load the demo and run it.
Ensure that the demo is running and connect to the MMWAVE Demo Visualizer. The visualizer should show "Hardware Connected." like
shown in the following figure (note: COM Ports might be different),

Perform the following steps in the demo visualizer to obtain the IP address of the EVM (Default is assigned with static IP 192.168.1.200). The
figure also shows the steps:

Open the "Status" pane (2) in the "Plots" tab in the visualizer (1).
In the text box, type (3) and click on "Send Command" (4). This will query the IP address obtained by the EVM.queryLocalIp

The local IP address should be displayed in the console window.

https://www.python.org/downloads/release/python-374/

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 53 of 90

4.

5.

a.

b.

c.
6.

7.
8.

Open a command prompt and type the command to get the IP address of the newly configured network. We call this the "RemoteIP". ipconfig
Note the IPv4 address of the network as shown in the following figure. Ensure that the IP address is in the same subnet as the one obtained
in step 3. If that is not true, follow step 5. .Else, skip step 5

Configure a static IP address for the PC. Ensure that the configured IP address is in the same subnet as the EVM IP address obtained in
step 3. To do this, perform the following (these steps are given for Windows 10, the user may check how to configure a static IP address for
their own system):

Go to Control Panel\Network and Internet\Network Connections. You should see the Ethernet connection that you have made
between the multiport router and the PC being listed in the connections list. Right click on the connection and click on "Properties".

After the network properties pane opens, click on "Internet Protocol Version 4 (TCP/IPv4)" (1) and give the desired IP address (2).
Ensure that this address and the EVM IP are in the same subnet.

Click on OK.
Open the python script "tcpserver.py" present in mmwave_mcuplus_sdk_<ver>\ti\demo\utils. Change the HOST IP address configured in
step 5 and configure it in the line "HOST =" in the Python file. For example, if the remote IP configured in is 192.168.1.10, modify the step 5
tcpserver.py file to say " .HOST = ' '192.168.1.10
Execute tcpserver.py.
In the profile configuration (.cfg) file present in folder, profile_<>_enet.cfg mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\profiles
modify the enetStreamCfg command before as follows sensorStart <isEnabled> <remoteIpD> <remoteIpC> <remoteIpB> enetStreamCfg

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 54 of 90

8.

9.
10.

11.

where the IP address of the PC is . For example, , and send this configuration file out , <remoteIpA> D.C.B.A enetStreamCfg 1 192 168 1 10
through the visualizer.
Use tcpdump / wireshark to capture the ethernet data and save it as pcap file.
Captured pcap file can be parsed to obtain the csv file using the python script available at
mmwave_mcuplus_sdk_<ver>\ti\demo\parser_scripts\data_parser_awr2x44x.py.
You should be able to see detected objects data in the generated csv file.

tcpserver.py

After expected data is captured, stop the tcpserver.py execution to flush out any remaining packets. Users can modify the server
and data parser script to serve their own needs.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 55 of 90

4.6. How to test AWR2544 OOB demo with integrated PTP stack during development

4.6.1. Hardware Setup

Connect two EVMs with CAT6 ethernet cable.
Flash PTP stack example available at mcu_plus_sdk_awr2544_<ver>\examples\networking\tsn\gptp_cpsw_app\awr2544-evm\ on one EVM -
PTP controller.
Flash OOB demo available at on second EVM - PTP peripheral.mmwave_mcuplus_sdk_<ver>\ti\demo\awr2544\mmw
To probe GenF signal generated by the PTP peripheral EVM, few hardware changes are required.

Populate R236 resistor (10 ohm).
After populating R236, probe GenF signal from pin 33 of J19.

4.6.2. Software

Load cfg file (mmwave_mcuplus_sdk_<ver>
\ti\demo\awr2544\mmw\profiles\profile_3d_3Azim_1ElevTx_DDM_awr2544_2Xmode_cpts_trigger.cfg) via USER UART port on the PTP
peripheral EVM.
Below is a snapshot of GenF signal and frame start signal captured on PTP peripheral EVM.

By default, frame start signal is not enabled in the software and on the hardware. To enable it on the hardware, user can populate R5 (0
ohm) resistor, and capture frame start signal at pin 33 of J7. User can configure A9 pin for PAD functionality 7.

To enable GenF signal on PTP controller EVM, follow below steps:

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 56 of 90

1.

2.

4.7. How to use Custom Flash Device

This section of document provides instructions to be followed for configuring flash device other than the default flash part populated on EVM (Gigabit
device GD25B64).

Get flash device attributes like Manufacturer ID, Device ID, flash size, OP codes and other details from the datasheet of flash device. Refer to
flashname.json file at for understanding mmwave_mcuplus_sdk_<ver>/mcu_plus_sdk_<platform>_<ver>/source/board/.meta/flash/schema
JSON file format. Few example JSON files created for WINBOND (W25Q32JVSQ) flash and ISSI (IS25LP032D) flash are available at
mmwave_mcuplus_sdk_<ver>/mmwave_mcuplus_sdk_<platform>_<ver>/tools/custom_flash. Alternatively, the different flash configurations
can be changed manually in the sysconfig tool.
Update sysconfig files of sbl_uart_uniflash at mmwave_mcuplus_sdk_<ver>/mmwave_mcuplus_sdk_<platform>_<ver>/examples/drivers/boot

, sbl_qspi at /sbl_uart_uniflash/awr294x-evm/r5fss0-0_nortos/example.syscfg mmwave_mcuplus_sdk_<ver>
and mss.syscfg /mmwave_mcuplus_sdk_<platform>_<ver>/examples/drivers/boot/sbl_qspi/awr294x-evm/r5fss0-0_nortos/example.syscfg

file of the demo application at by mmwave_mcuplus_sdk_<ver>/mmwave_mcuplus_sdk_<ver>/ti/demo/<platform>/mmw/mss/mss.syscfg
changing to custom flash and update the flash name. Now load the new JSON file created. These changes will be reflected in the

 file that is generated by the sysconfig tool.ti_board_open_close.c

1.

2.

Enable pinmux GenF signal (CPTS0_TS_GenF0) from syscfg-gui of for PTP stack example available at
mcu_plus_sdk_awr2544_<ver>\examples\networking\tsn\gptp_cpsw_app\awr2544-evm\

Enable GenF signal in application by using ioctl cmd CPSW_CPTS_IOCTL_SET_GENF.

These steps are provided for modifying SDK demo application to work with user flash device.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 57 of 90

2.

3.

4.

1.

2.
3.

1.
2.

a.
b.

3.
4.

Rebuild the sbl_uart_uniflash example, sbl_qspi example and the Demo application. Refer to for detailed procedure. Flash the Building Demo
.appimages by following .How to flash an image onto mmWave EVM
Switch to QSPI boot mode and verify if the image is flashed successfully by connecting to visualizer.

4.8. How to optimize MSS_L2 memory for SBL over ethernet example (sbl_qspi_enet)

Follow this section to optimize the SBL QSPI Enet example for conservation of MSS_L2 memory. When requiring to flash applications over ethernet
that require large MSS_L2 memory, this optimization will help in storing the ethernet libraries of the sbl_qspi_enet example outside of memory region
MSS_L2 so as to help in achieving increased memory for the application image by reducing the memory consumed by the sbl_qspi_enet example. .

The aim of this section is to fit the necessary QSPI libraries in the beginning of MSS_L2 memory region (of size 0x20000) in release build.

Make a backup of the linker.cmd file of sbl_qspi_enet example, at mcu_plus_sdk_<platform>_<version>/examples/drivers/boot/sbl_qspi_enet
/awr294x-evm/r5fss0-0_nortos/ti-arm-clang/
Replace the existing linker.cmd file with the optimized linker.cmd file provided in the path mmwave_mcuplus_sdk_<version>/tools/sbl_enet/
Build the sbl_qspi_enet application image under release mode.

This is done so that the ethernet libraries placed after 0x20000 in MSS_L2 can be overwritten by the application as this ethernet libraries are not used
during loading of application from flash after the ethernet transfer is completed.

4.9. How to erase flash memory

Follow this subsection to erase flash memory using UART Uniflash tool.

Refer for tool requirements and EVM setup details.How to flash an image onto mmWave EVM
This procedure to erase flash memory has two steps.

Flash programmer binary present at mmwave_mcuplus_sdk_<version>/tools/<platform> should be flashed
Erase operation command which takes two arguments, the flash offset from which the erase operation begins and size of flash to be
erased in bytes should be sent

 Modify the flash offset and flash size in erase_sflash.cfg file at mmwave_mcuplus_sdk_<version>/tools/<platform> if required.
Set the device in UART boot mode. Open a command prompt and run the below commands.

Erase flash

@REM Change the path/version
cd C:\ti\mmwave_mcuplus_sdk_<version>\scripts\windows
@REM Remember to change the variable "MMWAVE_SDK_DEVICE" in this file!
setenv.bat

@REM set platform to AWR294x
cd %MMWAVE_SDK_INSTALL_PATH%/tools/<platform>
@REM Step: Command to erase the flash
@REM The <COM Port> can be, for example, COM25
@REM change sFlash erase size in erase_sflash.cfg
python %MCU_PLUS_AWR294X_INSTALL_PATH%/tools/boot/uart_uniflash.py -p <COM Port> --cfg=erase_sflash.cfg

Sysconfig versions below 1.14.0 do not support this feature

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 58 of 90

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 59 of 90

4.10. How to configure Automotive PHY

AWR2544 EVM is populated with DP83867 (Industrial PHY) and DP83TG720S (Automotive PHY) devices. By default Industrial PHY is enabled. To
enable Automotive phy below hardware and software modifications are to be done:

Hardware:

Populate the following resistors: R11, R240, R239, R238, R237, R245, R234, R74, R230, R225, R178, R100, R96, R247, R249 This
modification enables the connection of RX, TX and MDIO, MDC lines between AWR2544 SOC and Automotive PHY.
Remove the following resistors: R98, R101, R103, R105, R121, R122, R195, R290, R325, R336, R338, R339, R369, R413 This modification
disables the connection of RX, TX and MDIO, MDC lines between AWR2544 SOC and Industrial PHY.

Software:

User can enable AUTO PHY configuration through sysconfig tool.

Open sysconfig in gui mode for any of the ethernet example and select "Auto Phy (dp83tg720)" from "TI NETWORKING -> ENET (CPSW) ->
Board Config -> Phy Variant"

Figure: Auto PHY selection in sysconfig

Development Testing Procedure:

Scatter gather example has been tested using DP83TG720 Media converter EVM as shown in below.

Media converter EVM Link: https://www.ti.com/tool/DP83TG720EVM-MC

Cable used to connect AWR2544 and DP83TG720 Media converter: 1000BASE-T1 CABLE (MATENET)

Figure: Auto PHY test setup

https://www.ti.com/tool/DP83TG720EVM-MC

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 60 of 90

1.
2.
3.
4.

1.

2.

1.
a.
b.
c.

2.

3.
4.

4.10.1. OOB demo changes for Auto PHY with osc_clk_out_eth

To switch the Auto PHY clock source from the default external 25MHz XTAL to osc_clk_out_eth in OOB demo, following changes are required:

Hardware (AWR2544EVM):

Disconnect default 25MHz XTAL (Y5) connected to AUTO_PHY (DP83TG720S)
Populate Zero Ohm resistor R241
Disconnect C121
Replace R242 with Zero Ohm resistor

Software:

Modify profile.cfg file to set <ethOscClkEn> <driveStrength> arguments of "channelCfg" CLI command. Refer section 3.7 Configuration file
 for more details.format

Modify sysconfig file to choose Auto PHY. Refer for further details.Auto PHY sysconfig

4.11. How to enable BSS Logger in OOB Demo (AWR2544)

BSS firmware generates log during its execution and this log can be used for debug purpose in case of any failure or assert from BSS. By default this
log feature is disabled but can be enabled during the BSS bootup sequence. This BSS log can be navigated to specified memory location of device
and from there it can stream out of device using any interface (e.g. Ethernet).

In the SDK, we provide an option to stream this BSS log with the assistance of MSS via Ethernet and can be captured on the other end (e.g. on PC).
Since BSS log is encrypted and can be parsed only by TI, customer needs to capture this log (only in case of BSS failure) and share with TI (via
E2E). TI engineer will parse this log and assist customer to find out the cause of BSS FW failure.

Following are the required changes to generate OOB Demo binary with BSS logger enabled:

SBL changes:
The BSS firmware keeps the debug logger disabled by default. BSS logger feature can be enabled explicitly by configuring
RSS_CR4_BOOT_INFO_REG5 and RSS_CR4_BOOT_INFO_REG6 before un-halting BSS core. The following registers need to be
configured in SOC_rcmPopulateBSSControl API in mmwave_mcuplus_sdk_<version>/mcu_plus_sdk_awr2544_<version>/source/drivers/soc
/awr2544/soc.c

RSS_CR4_BOOT_INFO_REG5[2:0] = 0x2

RSS_CR4_BOOT_INFO_REG6[31:0] = MSS L2 buffer start address allocated for BSS data logging. Valid range: 0xC0200000
- 0xC02EF7FC

Linker file ():mmwave_mcuplus_sdk_<version>/mmwave_mcuplus_sdk_<version>/ti/platform/awr2544/r5f_linker.cmd
Allocate 2KB MSS_L2 memory from the start address configured in SBL as reserved memory in linker file.

Enable the feature in OOB demo:
By default, the BSS Logger feature is disabled in the OOB Demo. To enable the feature, BSS_LOGGER macro has to be defined in makefile (

. After these changes mmwave_mcuplus_sdk_<version>/mmwave_mcuplus_sdk_<version>/ti/demo/awr2544/mmw/mmw_mss.mak)
are done rebuilt OOB demo application

Data capture and binary file generation:

tcpdump command can be issued to capture ethernet packets. Refer section for more details. It is recommended to capture Data Collection
packets on Linux OS to reduce packet drop.

The captured pcap file can be converted to .bin file by running the bssLogger.py script provided at: mmwave_mcuplus_sdk_<version>
/mmwave_mcuplus_sdk_<version>/ti/demo/parser_scripts. For more details, refer header section documentation in bssLogger.py file.

4.12. How to migrate examples from package to package (AWR2x44P)

Default configurations for all the SDK examples are for AWR2E44P (LOP). Refer mmwave_mcuplus_sdk_<version>
/mcu_plus_sdk_awr2x44p_<version>/docs/api_guide_awr2x44p/SOC_MIGRATION.html for migrating to AWR2944P (ETS). To migrate Out Of Box
demo (mmw_ddm), follow below procedure.

Update below SysConfig file headers from LOP to ETS
mmwave_mcuplus_sdk_<version>/mmwave_mcuplus_sdk_<version>/ti/demo/awr2x44P/mmw_ddm/mss/mss.syscfg
mmwave_mcuplus_sdk_<version>/mmwave_mcuplus_sdk_<version>/ti/demo/awr2x44P/mmw_ddm/dss_cm4/dss_cm4.syscfg
mmwave_mcuplus_sdk_<version>/mmwave_mcuplus_sdk_<version>/ti/demo/awr2x44P/mmw_ddm/dss/dss.syscfg

mmwave_mcuplus_sdk_ ti/common mmwave_mcuplus_sdk_<version>/Modify PACKAGE_TYPE variable to ETS in <version>/
/mmwave_sdk_awr2x44P.mak
For newly created syscfg files which have @v2CliArgs in the header, modify the package from "FCCSP (AMX)" to "FCCSP (ALT)"
Refer to section and rebuild demo.Building Demo

If BSS Logger is enabled, only the logger data will be transmitted over ethernet interface. Compressed 1D-FFT data will not be
transmitted.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 61 of 90

4.13. How to enable using the same application after R5F core reset

The application fails after reset because while switching back to the same application, as the device only has RAM the .data section of the application
is already modified, which causes some of the status bits to not maintain its integrity.

The steps to modify this is make following changes in source\kernel\nortos\dpl\r5\boot_armv7r.c :mcu_plus_sdk_<device>_<version>\

boot_armv7r.c

#include <stdint.h>
#include <string.h>

extern uint32_t __BSS_START;
extern uint32_t __BSS_END;
extern uint32_t __LOAD_DATA_START;
extern uint32_t __LOAD_DATA_END;
extern uint32_t __RUN_DATA_START;

int _system_pre_init()
{
 uint32_t bss_size = ((uintptr_t)&__BSS_END - (uintptr_t)&__BSS_START);
 memset((void*)&__BSS_START, 0x00, bss_size);
 uint32_t data_size = ((uintptr_t)&__LOAD_DATA_END - (uintptr_t)&__LOAD_DATA_START);
 memcpy((void*)&__RUN_DATA_START, (void*)&__LOAD_DATA_START, data_size);
 return 1;
}

#if !defined (_clang_)
void __TI_auto_init()
{
}
#endif

 Then run these commands in the folder mcu_plus_sdk_<device>_<version> :

Rebuilding the libraries

gmake -s -f makefile.<device> nortos_r5f.ti-arm-clang
gmake -s -f makefile.<device> freertos_r5f.ti-arm-clang

After that in the application linked command make similar modifications (have used a separate memory section to copy and run the application to
retain the original .data section integrity) :

Linker Command File

GROUP {
 .data: {} palign(8) /* This is where initialized globals and static go */
 LOAD_START(__LOAD_DATA_START)
 LOAD_END(__LOAD_DATA_END)
 RUN_START(__RUN_DATA_START)
} load > MSS_L23, run > MSS_L2

/* when using multi-core application's i.e more than one R5F active, make sure
 * this memory does not overlap with other R5F's
 */
MSS_L23 : ORIGIN = 0x10260000 , LENGTH = 0x10000
MSS_L2 : ORIGIN = 0x10270000 , LENGTH = 0x30000

4.14. Developing using SDK

4.14.1. Build Instructions

Follow the mmwave_mcuplus_sdk_release_notes instructions to install the mmwave_mcuplus_sdk in your development environment (windows or
linux). All the tools needed for mmwave_mcuplus_sdk build are installed as part of mmwave_mcuplus_sdk installer.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 62 of 90

1.

2.

1.

4.14.2. Setting up build environment

4.14.2.1. Windows

Create command prompt at folder. Under this folder you should see a setenv.bat mmwave_mcuplus_sdk_<ver> install path>/scripts/windows
file that has all the tools environment variables set automatically based on the installation folder. Review this file and change the few build
variables shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the
standard installation process was followed.

Build variables that can be modified (if needed) in setenv.bat

@REM ###
@REM # Build variables (to be modified based on build need)
@REM ###
@REM Select your device. Options (case sensitive) are: awr2944, awr2943, awr2544, awr2x44P
@REM Change this accordingly!!
set MMWAVE_SDK_DEVICE=awr2x44P

@REM If download via CCS is needed, set below define to yes else no
@REM yes: Out file created can be loaded using CCS.
@REM Binary file created can be used to flash
@REM no: Out file created cannot be loaded using CCS.
@REM Binary file created can be used to flash
@REM (additional features: write-protect of TCMA, etc)
set DOWNLOAD_FROM_CCS=yes

Run as shown below.setenv.bat

Run setenv.bat

setenv.bat

This should not give errors and should print the message "mmWave Build Environment Configured". The build environment is now setup.

4.14.2.2. Linux

Open a terminal and cd to . Under this folder you should see a setenv.sh file that has mmwave_mcuplus_sdk_<ver> install path>/scripts/unix
all the tools environment variables set automatically based on the installation folder. Review this file and change the few build variables
shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the standard
installation process was followed.

Build variables that can be modified (if needed) in setenv.sh

###
Build variables (to be modified based on build need)
###
@REM Select your device. Options (case sensitive) are: awr2944, awr2943 awr2544, awr2x44P
set MMWAVE_SDK_DEVICE=awr2944

If download via CCS is needed, set below define to yes else no
yes: Out file created can be loaded using CCS.
Binary file created can be used to flash
no: Out file created cannot be loaded using CCS.
Binary file created can be used to flash
(additional features: write-protect of TCMA, etc)
export DOWNLOAD_FROM_CCS=yes

If you see the following line in the setenv.bat file then most probably the wrong installer was used (Linux installation being
compiled under Windows)

set MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 63 of 90

1.

2.

3.

4.

Assuming build is on a Linux 64bit machine, install modules that allows Linux 32bit binaries to run. This is needed for Image Creator binaries

sudo dpkg --add-architecture i386

Install build-essential package for 'make'. Install mono-complete package as one of the Image Creator binaries (out2rprc.exe) is a windows
executable that needs mono to run in Linux environment

sudo apt-get install build-essential
sudo apt-get --assume-yes install mono-complete

Run as shown below. setenv.sh

Run setenv.sh

source ./setenv.sh

This should not give errors and should print the message . The build environment is now setup."mmWave Build Environment Configured"

4.14.3. Building demo

To clean build a demo, first make sure that the environment is setup as detailed in earlier section. Then run the following commands. On successful
execution of the commands, the output is <demo>.xe* which can be used to load the image via CCS and <demo>.bin which can be used as the binary
in the steps mentioned in section "."How to flash an image onto mmWave EVM

4.14.3.1. Building demo in Windows

Building demo in windows

REM Fill <device type> with appropriate device that supports demo in a particular release
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/<device type>/mmw

REM Clean and build
gmake clean
gmake all

REM Incremental build
gmake all

REM For example to build the mmw demo
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/%MMWAVE_SDK_DEVICE%/mmw
gmake clean
gmake all
REM This will create <mmwave_sdk_device>_mmw_demo_mss.xer5f, <mmwave_sdk_device>_mmw_demo_dss.xe66 &
<mmwave_sdk_device>_mmw_demo.appimage binaries
REM under %MMWAVE_SDK_INSTALL_PATH%/ti/demo/<mmwave_sdk_device>/mmw folder

4.14.3.2. Building demo in Linux

Building demo in linux

Fill <device type> with appropriate device that supports demo in a particular release
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/<device type>/mmw

Clean and build
make clean

If you see the following line in the setenv.sh file then most probably the wrong installer was used (Windows installation being
compiled under Linux)

export MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 64 of 90

make all

Incremental build
make all

For example to build the mmw demo
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/${MMWAVE_SDK_DEVICE}/mmw
make clean
make all
This will create <mmwave_sdk_device>_mmw_demo_mss<Proc_Chain>.xer5f,
<mmwave_sdk_device>_mmw_demo_dss<Proc_Chain>.xe66 & <mmwave_sdk_device>_mmw_demo<Proc_Chain>.appimage
binaries
under ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/${MMWAVE_SDK_DEVICE}/mmw folder

4.14.4. Advanced build

The mmwave sdk package includes all the necessary libraries and hence there should be no need to rebuild the driver, algorithms or control
component libraries. In case a modification has been made to any of these modules then the following section details how to build these components.

4.14.4.1. Building datapath/control/utils components

To clean build control, datapath or utils components and unit tests, first make sure that the environment is setup as detailed in earlier section. Then
run the following commands

Building component in windows

cd %MMWAVE_SDK_INSTALL_PATH%/ti/<component_path_under_ti>
gmake clean
gmake all

REM The command will create the following file
REM lib<component>_<device_type>.aer5f library under ti/<component_path_under_ti>/lib folder
REM If the module has unit test, it will also createcompRangeBias REM <device_type>_<component>_mss.
xer5f unit test binary under ti/<component_path_under_ti>/test/<device_type> folder
REM If the device has a DSP and the driver supports DSP then the command will also create
REM lib<component>_<device_type>.ae66 library for DSS under ti/<component_path_under_ti>/lib folder
REM If the module has unit test, it will also create
REM <device_type>_<component>_dss.xe66 unit test binary for DSS under ti/<component_path_under_ti>/test
/<device_type> folder
REM Above paths are relative to %MMWAVE_SDK_INSTALL_PATH%/

REM For example to build the dpm lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/control/dpm
gmake clean
gmake all

REM For example to build the mmwavelink lib (it does not have a unit test)
cd %MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink
gmake clean
gmake all

REM For example to build the aoaproc dpu lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/datapath/dpc/dpu/aoaproc
gmake clean
gmake all

REM Additional build options for each component can be found by invoking make help
gmake help

Building component in linux

Each demo has dependency on various drivers and control components. The libraries for those components need to be available in their
respective lib folders for the demo to build successfully.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 65 of 90

cd ${MMWAVE_SDK_INSTALL_PATH}/ti/<component_path_under_ti>
make clean
make all

The command will create the following file
lib<component>_<device_type>.aer5f library under ti/<component_path_under_ti>/lib folder
If the module has unit test, it will also create
<device_type>_<component>_mss.xer5f unit test binary under ti/<component_path_under_ti>/test
/<device_type> folder
If the device has a DSP and the driver supports DSP then the command will also create
lib<component>_<device_type>.ae66 library for DSS under ti/<component_path_under_ti>/lib folder
If the module has unit test, it will also create
<device_type>_<component>_dss.xe66 unit test binary for DSS under ti/<component_path_under_ti>/test
/<device_type> folder
Above paths are relative to ${MMWAVE_SDK_INSTALL_PATH}/

For example to build the dpm lib and unit tests
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/control/dpm
make clean
make all

For example to build the mmwavelink lib
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink
make clean
make all

For example to build the aoaproc dpu lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/datapath/dpc/dpu/aoaproc
make clean
make all

Additional build options for each component can be found by invoking make help
gmake help

example output of make help for dpm

**
* Makefile Targets for the DPM
clean -> Clean out all the objects
lib -> Build the Driver only
libClean -> Clean the Driver Library only
test -> Build the applicable unit tests
testClean -> Clean the unit tests
**

example output of make help for demo

**
* Makefile Targets for the DEMO
all -> Builds the mmw Demo (both MSS and DSS binaries) and appimage
clean -> Cleans the mmw Demo (both MSS and DSS binaries) and appimage
mssDemo -> Builds the MSS binary for the mmw Demo
mssDemoClean -> Cleans the MSS binary for mmw Demo
dssDemo -> Builds the DSS binary for the mmw Demo
dssDemoClean -> Cleans the DSS binary for mmw Demo
bin -> Builds the appimage for the demo
binClean -> Cleans the appimage for the demo
mmwDemo -> Builds the mmw Demo (both MSS and DSS binaries) but not the appimage
mmwDemoClean -> Builds the mmw Demo (both MSS and DSS binaries)
**

Please note that not all components are supported for all devices and not all components have unit tests. List of supported components for
each device is listed in the Release Notes.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 66 of 90

4.14.4.2. "Error on warning" compiler and linker setting

By default, the SDK build uses "–emit_warnings_as_errors" option to help users identify certain common mistakes in code that are flagged as warning
but could lead to unexpected results. If user desires to disable this feature, then please set the flag MMWAVE_DISABLE_WARNINGS_AS_ERRORS
to 1 in the above mentioned setenv.bat or setenv.sh and invoke that file again to update the build environment. User can also compile with the
"MMWAVE_DISABLE_WARNINGS_AS_ERRORS=1" flag (for example,).gmake all MMWAVE_DISABLE_WARNINGS_AS_ERRORS=1

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 67 of 90

a.
b.
c.

5. MMWAVE SDK deep dive

5.1. System Deployment

A typical mmWave application would perform these operations:

Control and monitoring of RF front-end through mmaveLink
Transport of external communications through standard peripherals
Some radar data processing using DSP

Typical customer deployment for mmWave sensor is shown in the figure below:

The appimage (MSS + DSS code) is downloaded from the serial flash memory to the mmWave device (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data

5.1.1.1.1. Figure 4: Autonomous mmWave sensor (Standalone mode)

The above deployment can be realized using the mmWave SDK and it components in a layered structure as shown below:

5.1.1.1.2. Figure 5: SDK Layered block diagram

5.2. Typical mmWave Radar Processing Chain

Following figure shows a typical mmWave Radar processing chain that accepts ADC data as input from mmWave Front End and then performs Range
and Doppler FFT followed by non-coherent detection using CFAR. Finally angle is estimated using 3D FFT and the detected points represent the point
cloud data. The point cloud data can then be post processed using higher layer algorithms such as Clustering, Tracking, Classification to represent
real world targets.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 68 of 90

5.2.1.1.1. Figure 6: Typical mmWave radar processing chain

Using mmWave SDK the above chain could be realized as shown in the following figure for devices with HWA as processing nodes. In the following
figure, green arrow shows the control path and red arrow shows the data path. Blue blocks are mmWave SDK components and yellow blocks are
custom application code. The hierarchy of software flow/calls is shown with embedding boxes. Depending on the complexity of the higher algorithms
(such as clustering, tracking, etc) and their memory/mips consumption, they can either be partially realized inside the mmWave device or would run
entirely on the external processor.

AWR294X OOB Demo

5.2.1.1.2. Figure 7: Typical mmWave radar processing chain using mmWave SDK components

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 69 of 90

Each of the mmWave device offers different processing nodes to realize the mmwave processing. has HWA+DSP(C66x). For devices with AWR294X
multiple processing nodes, the mmWave detection processing chain can exploit them as needed for performance and scalable reasons. Shown below
is an example of detection processing chain that uses various data processing units (DPUs) to perform the typical mmwave processing upto the point
cloud. The mmwave data representation in mmWave device memory forms an interface layer between the various DPUs. Each DPU can be realized
independently using HWA or DSP processing node - the choice is either driven by usecase or availability of that processing node on a given mmWave
device. The various mmWave SDK components shown below are described in the section " " below.mmWave SDK - TI components

5.2.1.1.3.

5.2.1.1.4. Figure 8: Scalable data processing chain using mmWave SDK

Please refer to the code and documentation inside the mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw folder for more details and example
code on how this chain is realized using mmWave SDK components.

5.3. Typical Programming Sequence

The above processing chain can be split into two distinct blocks: RF control path and data path.

5.3.1. RF Control Path

The control path in the above processing chain is depicted by the following blocks.

5.3.1.1.1. Figure 9: Typical mmWave radar control flow

Following set of figures shows how an application programming sequence would look like for setting up the typical control path - init, config, start. This
is a high level diagram simplified to highlight the main software APIs and may not show all the processing elements and call flow. For an example
implementation of this call flow, please refer to the code and documentation inside the mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw folder.

5.3.1.2. Single RF Control (MSSRADARSS or DSSRADARSS)

In this scenario, the RF control path runs on either Master subsystem (Cortex-R5F) or DSP subsytem (C66x) and the application can simply call the
mmwave APIs in the SDK in isolation mode to realize most of the functionality.

What must be noted is that in SDK 4.1.0 datapath processing, is done using HWA running on MSS or DSS, not DSP alone (without using
the HWA). Also, the ADC data over the csirx can either be directly put into the HWA memory (as is supported by the current demo), or can
be first placed into an intermediate memory and then routed to the HWA using the EDMA or transferred out of the device (not supported by
the current demo).

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 70 of 90

5.3.1.2.1. Figure 10: mmWave Isolation mode: Detailed Control Flow (Init sequence)

5.3.1.2.2. Figure 11: mmWave Isolation mode: Detailed Control Flow (Config sequence)

5.3.1.2.3. Figure 12: mmWave Isolation mode: Detailed Control Flow (start sequence)

5.3.1.3. Co-operative RF control ((MSS+DSS)<->RADARSS)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 71 of 90

In this scenario the control path can runs in "co-operative" mode where RF control APIs can be interchangeably called by either domains (but the
sequence of API needs to be maintained). One such deployment could have the RF init and config initiated by the MSS and the start is initiated by the
DSS after the data path configuration is complete. In the figures below, control path runs on MSS entirely and MSS is responsible for properly
configuring the RADARSS (RF) and DSS (data processing). The mmWave unit tests provide a sample implementation of this co-operative mode.

5.3.1.3.1. Figure 13: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)

5.3.1.3.2. Figure 14: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 72 of 90

5.3.1.3.3. Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)

5.3.2. Data Path

The mmwave detection processing can be split into following layers of application code, control/management layer to manipulate the data processing
elements, processing chain that ties up individual modules to create a data flow and the low level data processing modules and interfaces.

5.3.2.1.1. Figure 16: Typical mmWave Detection Processing Layers

mmWave devices present a few options on how the data processing layers can be realized using the various control/processing nodes within the
device. To allow ease of programming across these deployment types, data path manager (DPM) presents a simplified API structure to the application
while hiding the complexity of inter task and inter processor communications. As can be seen from the following figures, application would just need to
call the various DPM APIs to control the processing chain (seen as function calls in 'blue' in the ladder diagrams below) and re-act to the outcome of
these APIs in the report callback. Data processing chains (DPCs) also present a standardized API structure to the application via DPM and
encapsulate the realization of the data flow using data processing units (DPUs) within while presenting simple IOCTL based interface to configure and
trigger the data flow. Based on the usecase and the mmWave device hardware capabilities, application can choose from one of the following
deployments:

DPC runs on the same core as control core and the application can control the DPC via DPM in local mode. (See local domain config and
processing figures below)
DPC runs on another core which is different from the controlling core and the application can control the DPC via DPM in remote mode. (See
remote domain config and processing figures below)
DPC is split between two cores and the application can control the DPC via DPM in distributed mode. (See distributed domain config
and processing figures below)

The following ladder diagrams show the flow for init, two different forms of config (one initiated on local core and other on remote core), start trigger,
chirps/frame events and stop trigger. The choice of MSS and DSS responsibilities are shown as one of the possible examples - their roles can be
interchanged as per application needs. These ladder diagrams don't show the corresponding MMWAVE/RF control calls to show independence
between RF control and datapath control. Having said that, typical application would follow the following flow for these two form of controls:

mmWave init and DPM init (order doesn't matter)
mmWave config and DPM IOCTL for DPC config (order doesn't matter)
DPM start and then mmWave start (note this is recommended as DPC should be in started state before the real time frame/chirp H/W events
occur due to mmWave start)
mmWave stop and then DPM stop (note this is recommended as DPC should be stopped after the real time frame/chirp H/W events stop due
to mmWave stop)

5.3.2.2. Data processing flow with local domain control

In this deployment, the core (MSS or DSS) that runs the actual data processing chain (DPC) also controls it. Application calls DPM APIs for init, data
processing IOCTL for configuration, start and stop. DPM reports back status from DPC using the application registered report callback function.
Application provides an execution context (task) for the DPM/DPC to run. DPC provides back the processing results (point cloud, tracked objects, etc)
to the application in this execution context.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 73 of 90

5.3.2.2.1. Figure 17: Data processing flow with local domain control (init/config)

5.3.2.2.2. Figure 18: Data processing flow with local domain control (start/chirp/frame/stop)

5.3.2.3. Data processing flow with remote domain control

In this deployment, the data processing chain runs on a chosen data core while the control for it exists on the other core. Application code on control
core and data core calls DPM APIs for init and sync'ing with each other. The control core calls data processing IOCTL for configuration, start and stop
APIs. The H/W events are received on the data core. DPM reports back status from DPC using the application registered report callback function on
both control and data cores. DPC provides back the processing results (point cloud, tracked objects, etc) to the data core application code which can
send the result to the control core using DPM send result API.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 74 of 90

5.3.2.3.1. Figure 19: Data processing flow with remote domain control (init/config)

5.3.2.3.2. Figure 20: Data processing flow with remote domain control (start/chirp/frame/stop)

5.3.2.4. Distributed Data processing flow and control

In this deployment, the data processing chain is split across cores along with the control. Application code on both cores call DPM APIs for init and
sync'ing with each other. Either core can call data processing IOCTL for configuration, start and stop APIs. DPM reports back status from DPC using
the application registered report callback function on both cores. Partial results from the DPC running on one core can be passed onto the DPC
running on other core using the DPM relay result API. DPC can provide back the final processing results (point cloud, tracked objects, etc) to the same
core's application code which can then send the result to the application running on other core using DPM send result API. Following ladder diagrams
shows just one of the many ways of splitting the DPC across two cores.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 75 of 90

5.3.2.4.1. Figure 21: Distributed Data processing flow and control (init/config)

 |

5.3.2.4.2. Figure 22: Distributed Data processing flow and control (start/chirp/frame/stop)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 76 of 90

5.4. Software hooks for power optimization

There are possibilities of reducing power by techniques such as clock gating of unused peripherals, underclocking, clock gating or power gating during
IDLE time.

The power optimization hooks and supporting functions can be enabled by the user through CLI commands.

5.4.1.1. CLI commands for enabling power optimization hooks

CLI Command Command Details Command Parameters Usage in example

powerMeasHwaDynamicClockGating Clock gates the unused
computation engines in HWA.

<enable>

0 - Disabled

1 - Enabled

Supported

powerMeasHwaStateAfterFrameProc Clock gates or power gates
HWA after the AoA frame
processing is completed.

Clock is ungated in frame start
ISR.

It is powered up as soon as
DSP wakes up.

<enable>

0 - No optimization

1 - HWA Power gating
enabled

2 - HWA Clock gating
enabled

Supported

In the provided example, HWA Power
gating can only be enabled when DSP is
power gated.

User should ensure HWA is powered up
and configurations are done before the
frame start so that the processing chain is
not affected.

AWR2X44P SW supports only HWA
clock gating (Option 1 is not supported).

powerMeasDspStateAfterFrameProc

Clock gates or power gates
DSP core after the set DSP
activity time elapses.

<enable>

0 - No optimization

1 - DSP Power gating
enabled

2 - DSP Under clocking
enabled (Switches to XTAL
after DSS Loading Time)

Supported

DSP Loading should not be 0 for enabling
clock or power gating.

<wakeuptime>

Time at which DSP is
powered up by MSS in
milliseconds

Applicable only when DSP is Power gated.

Ensure DSP is powered up and initialized
before the start of next frame.

Option supported only in AWR294X

<cgWithPd>

0 - Clock is not gated when
DSP is powered down

Applicable only when DSP is Power Gated.

Option supported only in AWR294X

This section is applicable for AWR294X and AWR2X44P only.

AWR294X: The power measurement example at mmwave_mcuplus_sdk_<ver>/ti/demo/awr294x/power_measurement demonstrates the
usage of power optimization techniques. It uses TDM processing chain for object detection.

AWR2X44P: The mmw demo (TDM / DDM) at mmwave_mcuplus_sdk_<ver>/ti/demo/awr2x44P has the power optimization techniques
integrated in it and can be enabled using the below mentioned CLIs.

Refer demo documentation for more details.

AWR294X; Once the DSP powers up, it starts execution
from the reset vector.

AWR2X44P:

This software provides context save-restore feature
for optimized DSP power gating.
With this, DSP resumes execution from the last saved
context on power up, instead of executing the entire
boot up sequence. This helps in more power saving
by reducing the DSP wake up time every frame.

Do not connect to DSS
core through JTAG
when DSP Power
gating is enabled.
DSP Underclocking
and Power Gating
features on
AWR2X44P are valid
only when
MSS_AOA_ENABLED
= 0

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 77 of 90

1 - DSP clock is gated after
it is powered down and
restored by MSS when it is
powered up

powerMeasPerClockGating Unused peripherals are clock
gated.

<enable>

0 - Disabled

1 - Enabled

Supported

Provided example clock gates the below
peripherals:

MSS: SPIA , I2C, MII100, MII10

DSS: RTIB, SCIA, CBUFF

CSIRX, OBSCLKOUT, PMICCLKOUT,
TRCCLKOUT

RSS: CSI2A

powerMeasMssLoading

Loads MSS for a given
percentage of frame period.
Useful for measuring power at
fixed MSS activity.

MSS performs multiplication
operation during MSS active
time when no other task is
running.

This command is valid for
AWR294X device only.

<enable>

0 - Disabled

1 - Enabled

Supported

<percent>

MSS activity in percentage

Supported

powerMeasDspLoading

Loads DSS for a given
percentage of frame period.
Useful for measuring power at
fixed DSS activity.

DSS performs dummy dot
product operation during DSS
active time when no other task
is running.

This command is valid for
AWR294X device only.

<enable>

0 - Disabled

1 - Enabled

Supported

<percent>

DSS activity in percentage

Supported

Ensure that frame processing is completed
within the DSS activity time

powerMeasDigTempRead Prints DSP, HWA and HSM
temperature values.

Useful for monitoring
temperature during power
measurement.

This command is valid for
AWR294X device only.

None Supported

digTempRead Prints DSP, HWA and HSM
temperature values.

Useful for monitoring
temperature during power
measurement.

This command is valid for
AWR2X44P device only.

None Supported

powerMeasBssPrintTemp Prints BSS temperature

Useful for monitoring
temperature during power
measurement.

This command is valid for
AWR294X device only.

None Supported

anaTempRead Prints BSS temperature

Useful for monitoring
temperature during power
measurement.

This command is valid for
AWR2X44P device only.

None Supported

powerMeasRunCal <enableCal> Supported

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 78 of 90

Runtime Calibration
Configuration

This command is valid for
AWR294X device only.

0 - Disable run time
calibrations

1 - Enable run time
calibrations

<enablePeriodicity>

0 - Disable periodic
calibrations

1 - Enable periodic
calibrations

Supported

<Periodicity>

In number of frames

Valid only if periodicity is enabled

5.5. mmWave SDK - TI components

The mmWave SDK functionality broken down into components are explained in next few subsections. For detailed documentation on each of these
modules, refer to the top level documentation located at . mmwave_mcuplus_sdk_<ver>/docs/mmwave_sdk_module_documentation.html

Device Support AWR294X AWR2544 AWR2X44P

Demo Directory ti\demo\ \mmw\awr294x ti\demo\ \mmw\awr2544 ti\demo\ \awr2x44P

Binary prefix awr294x_mmw_demo awr2544_mmw_demo awr2x44P_mmw_demo

EVM AWR294X AWR2544 AWR2X44P

Platform selection in Visualizer AWR294X Not Supported AWR294X

mmWave API/RF control R5F (MSS) R5F (MSS) R5F (MSS)

Instrumentation via LVDS based streaming Yes Yes Yes

Ethernet-based streaming of object data Yes Yes (Compressed 1D FFT data) Yes

Range Proc DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by DSP)

Doppler Proc DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by DSP)

CFAR DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by DSP)

AoA DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by DSP)

Range Proc DDMA DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by M4/DSP)

Doppler Proc DDMA DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by M4/DSP)

Range CFAR Proc DDMA DPU HWA based DPU (driven by DSP) NA HWA based DPU (driven by M4/DSP)

Range Proc Real2X DPU NA HWA based DPU (driven by R5F) NA

5.5.1. Demos

5.5.1.1. mmWave Demo

This demo is located at folder. The millimeter wave demo shows some of the radar sensing mmwave_mcuplus_sdk_<ver>/ti/demo/ /mmw<platform>
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via . This section captures the high level layout mmwave_mcuplus_sdk_<ver>/ docs/mmwave_sdk_module_documentation.html
of the demo supported on various mmWave devices. For details on individual components (control layer, datapath layer, etc), refer to the remaining
sub-sections under " ".mmWave SDK - TI components

5.5.2. Drivers

Please refer to the MCU_PLUS_SDK documentation ()for more details.mcu_plus_sdk_<platform>_<version>/docs/api_guide_<platform>/index.html

5.5.3. mmWaveLink

mmWaveLink is a control layer and primarily implements the protocol that is used to communicate between the Radar Subsystem (RADARSS) and
the controlling entity which can be either Master subsystem (MSS R5F) and/or DSP subsystem (DSS C66x). It provides a suite of low level APIs that
the application (or the software layer on top of it) can call to enable/configure/control the RADARSS. It provides a well defined interface for the
application to plug in the correct communication driver APIs to communicate with the RADARSS. it acts as driver for Radar SS and exposes services
of Radar SS. It includes APIs to configure HW blocks of Radar SS and provides communication protocol for message transfer between MSS/DSS and
RADAR SS.

The mmwavelink comes as a part of the DFP package. Please refer to the folder for more information.mmwave_dfp_<version>\docs

5.5.4. mmWave API

mmWaveAPI is a higher layer control running on top of mmWaveLink and LLD API (drivers API). It is designed to provide a layer of abstraction in the
form of simpler and fewer set of APIs for application to perform the task of mmWave radar sensing. In mmwave devices with dual cores, it also

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 79 of 90

provides a layer of abstraction over IPC to synchronize and pass configuration between the MSS and DSS domains. The source code for mmWave
API layer is present in the folder. Documentation of the API is available via doxygen placed at mmwave_mcuplus_sdk_<ver>\ti\control\mmwave

 mmwave_mcuplus_sdk_<ver>\ti\control\mmwave\docs\doxygen\html\index.html and can be easily browsed via mmwave_mcuplus_sdk_<ver>\
 The component's unit test code, running on top of FreeRTOS is also provided as part of the docs\mmwave_sdk_module_documentation.html.

package: .mmwave_mcuplus_sdk_<ver>\ti\control\mmwave\test\

5.5.4.1.1. Figure 24: mmWave API - Internal software design

There are two modes of configurations which are provided by the mmWave module.

5.5.4.2. Full configuration

The "full" configuration mode implements the basic chirp/frame sequence of mmWave Front end and is the recommended mode for application to use
when using the basic chirp/frame configuration. In this mode the application will use the entire set of services provided by the mmWave control
module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS
Asynchronous Event Management
Start & Stop services
Configuration of the RADARSS for Frame, advanced frame, advance chirp with legacy frame, advance chirp with advance frame &
Continuous mode
Configuration synchronization between the MSS and DSS

In the full configuration mode; it is possible to create multiple profiles with multiple chirps. The following APIs have been added for this purpose:-

Chirp Management:

MMWave_addChirp
MMWave_delChirp

Profile Management:

MMWave_addProfile
MMWave_delProfile

Advance Chirp Management:

MMWave_addAdvChirpParam
MMWave_addAdvChirpLUTData
MMWave_delAdvChirp

mmWave Front End Calibrations

mmWave API, by default, enables all init/boot time time calibrations for mmWave Front End. There is a provision for user to provide custom
calibration mask in MMWave_open API and/or to provide a buffer that has pre-stored calibration data.

When application requests the one-time and periodic calibrations in MMWave_start API call, mmWave API enables all the available one-
time and periodic calibrations for mmWave Front End.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 80 of 90

5.5.5. Datapath Interface (DPIF)

DPIF defines the standard interface points in the detection processing chain. Key interfaces defined in this layer are:

Input ADC data
Radar Cube
Detection Matrix
Point cloud and its side info

The source code for DPIF is present in the folder.mmwave_mcuplus_sdk_<ver>\ti\datapath\dpif

5.5.6. Data Processing Units (DPUs)

Data Translating function(s) from one interface point to the other are called “Data Processing Units”. Splitting the data processing chain into
processing units promote re-use of certain processing blocks across multiple chains. Detailed documentation on these modules can be easily browsed

 via mmwave_mcuplus_sdk_<ver>/ docs/mmwave_sdk_module_documentation.html .

Range Processing (ADC data to Radar Cube): This processing unit performs (1D FFT+ optional DC Range Calib) processing on the chirp
(RF) data during the active frame time and produces the processed data in the radarCube. This processing unit is standardized in the
mmWave SDK. It provides implementation based on HWA. HWA based implementation can be instantiated either on R5F or C66x. The
source code for Range DPU is present in the folder. Documentation of the API is mmwave_mcuplus_sdk_<ver>\ti\datapath\dpu\rangeproc
available via doxygen and placed at . The mmwave_mcuplus_sdk_<ver>\ti\ \docs\doxygen\html\index.htmldatapath\dpu\rangeproc
component's unit test code, running on top of FreeRTOS is also provided as part of the package: mmwave_mcuplus_sdk_<ver>\ti\

 .test\ datapath\dpu\rangeproc\
Doppler Processing (Radar Cube to Detection Matrix): This processing unit performs (2D FFT + Energy Sum) processing on the radar Cube
during the inter frame and produced detection matrix. In addition to this, when static clutter removal is enabled, this processing unit reads

This Range FFT out data from the radar cube and performs static clutter removal, before performing the 2D FFT + Energy Sum processing.
processing unit is offered as reference implementation and users of SDK could either re-use these as is in their application/processing chain
or create variations of these units based on their specific needs. HWA based implementation can be instantiated either on R5F or
C66x. DSP based implementation incorporates static clutter algorithm for optimal memory/mips usage and user can skip using the
standalone static clutter DPU. The source code for Doppler DPU is present in the

 folder. Documentation of the API is available via doxygen and placed at mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc\dpu\dopplerproc
.mmwave_mcuplus_sdk_<ver>\ti\ proc\docs\doxygen\html\index.htmldatapath\dpc\dpu\doppler

CFAR + AoA (Detection Matrix to Point Cloud): They are offered as two independent DPUs and collectively run CFAR algorithm, peak
grouping, field-of-view filtering, doppler compensation, max velocity enhancement and angle (azimuth+elevation) estimation on the detection
matrix during inter frame to produce the point cloud. These processing units are offered as reference implementation and users of SDK could
either re-use these as is in their application/processing chain or create variations of these units based on their specific needs. HWA based
implementation can be instantiated either on R5F or C66x.

The source code for CFAR DPU is present in the folder. Documentation mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc\dpu\cfarproc
of the API is available via doxygen and placed at mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc\dpu\cfar

. The component's unit test code, running on top of FreeRTOS is also provided as part of the proc\docs\doxygen\html\index.html
package: .mmwave_mcuplus_sdk_<ver>\ti\ test\ datapath\dpc\dpu\cfarproc\
The source code for AoA DPU is present in the folder. Documentation of the API mmwave_sdk_<ver>\ti\datapath\dpc\dpu\aoaproc
is available via doxygen and placed at . mmwave_mcuplus_sdk_<ver>\ti\ proc\docs\doxygen\html\index.htmldatapath\dpc\dpu\aoa
The component's unit test code, running on top of FreeRTOS is also provided as part of the package:

 .mmwave_mcuplus_sdk_<ver>\ti\ test\ datapath\dpc\dpu\aoaproc\

Each DPU presents the following high level design:

mmWave API doesn't expose the mmwavelink's LDO bypass API (rlRfSetLdoBypassConfig/rlRfLdoBypassCfg_t) via any of its API. If this
functionality is needed by the application (either because of the voltage of RF supply used on the TI EVM/custom board or from monitoring
point of view), user should refer to mmwavelink doxygen (mmwave_mcuplus_sdk_<ver>\ti\ \docs\doxygen\html\index.control\mmwavelink

) on the usage of this API and call this API from their application before calling MMWave_open().html

mmWave_open

Although mmWave_close API is provided, it is recommended to perform mmWave_open only once per power-cycle of the sensor.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 81 of 90

5.5.6.1.1. Figure 25: DPU - Internal software design

All external DPU APIs start with the prefix DPU_. DPU unique name follows next.
Ex: DPU_RangeProcHWA_init

Standard external APIs: init, config, process, ioctl, deinit are provided by each DPU.
Init: one time initialization of DPU
Config: complete configuration of the DPU: hardware resources, static and dynamic (if supported by DPU)

static config: config that is static during ongoing frames
dynamic config: config that can be changed from frame to frame but only when process is not ongoing - ideally interframe
time after DPC has exported the results for the frame

Process: the actual processing function of the DPU
Ioctl: control interface that allows higher layer to switch dynamic configuration during interframe time
De-init: de-initialization of DPU

All memory allocations for I/O buffers and scratch buffers are outside the DPU since mmWave applications rely on memory overlay technique
for optimization and that is best handled at application level
All H/W resources must be allocated by application and passed to the DPU. This helps in keeping DPU platform agnostic as well as allows
application to share the resources across DPU when DPU processing doesn't overlap in time.
DPUs are OS agnostic and use OSAL APIs for needed OS services.

A typical call flow for DPUs could be represented as follows. The timing of config and process API calls with respect to chirp/frame would vary
depending on the DPU functionality, its usage in the chain, DPC implementation and overlap of hardware resources.

5.5.6.1.2. Figure 26: DPU - typical call flow

5.5.7. Data Path Manager (DPM)

DPM is the foundation layer that enables the "scalability" aspect of the architecture. This layer absorbs all the messaging complexities (cross core and
intra core) and provide standard APIs for integration at the application level and also for integrating any "data processing chain". Application layer will
be able to call the DPM APIs from any domain (MSS or DSS) and control the configuration and execution of the "data processing chain". The APIs
offered by DPM will be available on both MSS and DSS. The various deployments that it can cater to (but not limited to) are:

Datapath control on R5F and datapath execution is split between R5F/HWA and DSP (Distributed)
Datapath control on R5F and datapath execution is on R5F using HWA (Local)
Datapath control on R5F and datapath execution is on DSP (with and without HWA) (Remote)

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 82 of 90

Datapath control on DSP and datapath execution is on DSP+HWA (Local)
Datapath control on DSP and datapath execution is on DSP (Local)

5.5.7.1.1. Figure 27: Datapath manager (DPM) - internal software design

The source code for DPM is present in the folder. Documentation of the API is available via doxygen and mmwave_mcuplus_sdk_<ver>\ti\control\dpm
placed at . The component's unit test code, running on top of mmwave_mcuplus_sdk_<ver>\ti\ \docs\doxygen\html\index.html control\dpm
FreeRTOS is also provided as part of the package: .mmwave_mcuplus_sdk_<ver>\ti\ test\ \control\dpm

5.5.8. Data processing chain (DPC)

DPC is a separate layer within the datapath that encapsulates all the data processing needs of a mmwave application and provides a well defined
interface for integration with the application. In the SDK, there is a reference implementation that corresponds to the generic "object detection" chain
which was already a part of the OOB demo in past releases. This chain will conform to the standard DPM dictated API definitions. Internally this layer
will use the functionality exposed by Data processing units (DPUs), datapath interface and datapath manager (DPM) to realize the data flow needed
for the "object detection" chain. The source code for objectdetection DPC is present in the

 folder. Documentation of the API is available via doxygen placed at mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc\objectedetection
mmwave_mcuplus_sdk_<ver>\ti\ \<deployment_type>\docs\doxygen\html\index.html datapath\dpc\objectedetection and can be easily browsed via

. The component's unit test code, running on top of FreeRTOS is mmwave_mcuplus_sdk_<ver>/ docs/mmwave_sdk_module_documentation.html
also provided as part of the package . See section on mmwave_mcuplus_sdk_<ver>\ti\ \test\ datapath\dpc\objectedetection\objdethwa Data Path tests

 for more details on this test.using Test vector method

5.5.9. mmWaveLib

mmWaveLib is a collection of algorithms that provide basic functionality needed for FMCW radar-cube processing. It contains optimized library
routines for C66x DSP architecture only. This component is not available for cortex R5F (MSS). These routines do not encapsulate any data
movement/data placement functionality and it is the responsibility of the application code to place the input and output buffers in the right memory (ex:
L2) and use EDMA as needed for the data movement. The source code for mmWaveLib is present in the

. Documentation of the API is available via doxygen placed at mmwave_mcuplus_sdk_<ver>\packages\ti\alg\mmwavelib folder
mmwave_mcuplus_sdk_<ver>\packages\ti\alg\mmwavelib\docs\doxygen\html\index.html mmwave_mcuplus_sdk_<ver>and can be easily browsed via

 The component's unit test code, running on top of FreeRTOS is also provided as part of the /docs/mmwave_sdk_module_documentation.html.
package: .mmwave_mcuplus_sdk_<ver>\packages\ti\alg\mmwavelib\test\

Functionality supported by the library:

Collection of algorithms that provide basic functionality needed for FMCW radar-cube processing.
Windowing (16-bit complex input, 16 bit complex output, 16-bit windowing real array)
Windowing (16-bit complex input, 32 bit complex output, 32-bit windowing real array)
log2 of absolute value of 32-bit complex numbers
vector arithmetic (accumulation)
CFAR-CA, CFAR-CASO, CFAR-CAGO (logarithmic input samples)
16-point FFT of input vectors of length 8 (other FFT routines are provided as part of DSPLib)
single DFT value for the input sequences at one specific index
Twiddle table generation for 32x32 and 16x16 FFTs: optimized equivalent functions of dsplib for generating twiddle factor
FFT Window coefficients generation
DFT sine/cosine table generation for DFT single bin calculation
Single bin DFT with windowing.
Variation of the windowing functions with I/Q swap since most of the fixed point FFT functions in DSPLib only support one format of
complex types.

CFAR algorithms
Floating-point CFAR-CA:

mmwavelib_cfarfloat_caall supports CFAR cell average, cell accumulation, SO, GO algorithms, with input signals in floating
point formats;
mmwavelib_cfarfloat_caall_opt implements the same functionality as mmwavelib_cfarfloat_caall except with less cycles,
but the detected objects will not be in the ascending order.

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 83 of 90

mmwavelib_cfarfloat_wrap implements the same functionality as mmwavelib_cfarfloat_caall except the noise samples for
the samples at the edges are the circular rounds samples at the other edge.
mmwavelib_cfarfloat_wrap_opt implements the same functionality as mmwavelib_cfarfloat_wrap except with less cycles,
but the detected objects will not be in the ascending order.

CFAR-OS: Ordered-Statistic CFAR algorithm
mmwavelib_cfarOS accepts fixed-point input data (16-bit log-magnitude accumulated over antennae). Search window size
is defined at compile time.

Peak pruning for CFAR post-processing
mmwavelib_cfarPeakPruning: Accepts detection matrix and groups neighboring peaks into one.
mmwavelib_cfarPeakQualifiedInOrderPruning: Accepts the list of CFAR detected objects and groups neighboring peaks
into one.
mmwavelib_cfarPeakQualifiedPruning: Same as mmwavelib_cfarPeakQualifiedInOrderPruning, but with no assumption for
the order of cfar detected peaks

Floating-point AOA estimation:
mmwavelib_aoaEstBFSinglePeak implements Bartlett beamformer algorithm for AOA estimation with single object detected, it also
outputs the variance of the detected angle.
mmwavelib_aoaEstBFSinglePeakDet implements the save functionality as mmwavelib_aoaEstBFSinglePeak without the variance of
detected angle calculation.
mmwavelib_aoaEstBFMultiPeak also implements the Bartlett beamformer algorithm but with multiple detected angles, it also
outputs the variances for every detected angles.
mmwavelib_aoaEstBFMultiPeakDet implements the same functionality as mmwavelib_aoaEstBFMultiPeak but with no variances
output for every detected angles.

DBscan Clustering:
mmwavelib_dbscan implements density-based spatial clustering of applications with noise (DBSCAN) data clustering algorithm.
mmwavelib_dbscan_skipFoundNeiB also implements the DBSCAN clustering algorithm but when expanding the cluster, it skips the
already found neighbors.

Clutter Removal:
mmwavelib_vecsum: Sum the elements in 16-bit complex vector.
mmwavelib_vecsubc: Subtract const value from each element in 16-bit complex vector.

Windowing:
mmwavelib_windowing16xl6_evenlen: Supports multiple-of-2 length(number of input complex elements), and
mmwavelib_windowing16x16 supports multiple-of-8 length.
mmwavelib_windowing16x32: This is updated to support multiple-of-4 length(number of input complex elements). It was multiple-of-
8 previously.

Floating-point windowing:
mmwavelib_windowing1DFltp: support fixed-point signal in, and floating point signal out windowing, prepare the floating point data
for 1D FFT.
 mmwavelib_chirpProcWin2DFxdpinFltOut, mmwavelib_dopplerProcWin2DFxdpinFltOut: prepare the floating point data for 2D FFT,
with fixed point input. The difference is mmwavelib_chirpProcWin2DFxdpinFltOut is done per chip bin, while
mmwavelib_dopplerProcWin2DFxdpinFltOut is done per Doppler bin.
mmwavelib_windowing2DFltp: floating point signal in, floating point signal out windowing to prepare the floating point data for 2D
FFT.

Vector arithmetic
Floating-point and fixed point power accumulation: accumulates signal power. Alternate API to right shift the output vector along with
accumulation is also provided.
Histogram: mmwavelib_histogram right-shifts unsigned 16-bit vector and calculates histogram.
Right shift operation on signed 16-bit vector or signed 32-bit vector

mmwavelib_shiftright16 shifts each signed 16-bit element in the input vector right by k bits.
mmwavelib_shiftright32 shifts each signed 32-bit element in the input vector right by k bits.
mmwavelib_shiftright32to16 right shifts 32-bit vector to 16-bit vector

Complex vector element-wise multiplication.
mmwavelib_vecmul16x16: multiplies two 16-bit complex vectors element by element. 16-bit complex output written in place
to first input vector.
mmwavelib_vecmul16x32, mmwave_vecmul16x32_anylen : multiplies a 16-bit complex vector and a 32-bit complex vector
element by element, and outputs to the 32-bit complex output vector.
mmwave_vecmul32x16c: multiplies 32bit complex vector with 16bit complex constant.

Sum of absolute value of 16-bit vector elements
mmwavelib_vecsumabs returns the 32-bit sum.

Max power search on 32-bit complex data
mmwavelib_maxpow outputs the maximum power found and returns the corresponding index of the complex sample
mmwavelib_powerAndMax : Power computation combined with max power search

Peak search for Azimuth estimation on 32-bit float vector
mmwavelib_multiPeakSearch : Multiple peak search in the azimuth FFT output
mmwavelib_secondPeakSearch : Second peak search in the azimuth FFT output

DC (antenna coupling signature) Removal on 32-bit float complex vector
Vector subtraction for 16-bit vectors

Matrix utilities
Matrix transpose for 32-bit matrix: Similar to DSPLib function but optimized for matrix with rows larger than columns

5.5.10. Group Tracker

The algorithm is designed to track multiple targets, where each target is represented by a set of measurement points (point cloud output of CFAR
detection layer). Each measurement point carries detection information, for example, range, angle, and radial velocity. Instead of tracking individual
reflections, the algorithm predicts and updates the location and dispersion properties of the group. The group is defined as the set of measurements
(typically, few tens; sometimes few hundreds) associated with a real life target. This algorithm is supported for both R5F and C66x. The source code
for gtrack is present in the folder. Documentation of the API is available via doxygen placed at mmwave_mcuplus_sdk_<ver>\packages\ti\alg\gtrack

 mmwave_mcuplus_sdk_<ver>\packages\ti\alg\gtrack \docs\doxygen<2d|3D>\html\index.html and can be easily browsed via
. The component's unit test code, running on top of FreeRTOS is also mmwave_mcuplus_sdk_<ver>\docs\mmwave_sdk_module_documentation.html.

provided as part of the package: .mmwave_mcuplus_sdk_<ver>\packages\ti\alg\gtrack\test\

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 84 of 90

5.5.11. CCS Debug Utility

This is a simple binary that can flashed onto the board to facilitate the development phase of mmWave application using TI Code Composer Studio
(CCS). See section for more details. There is an executable for both R5F (MSS) and C6 (DSS) and is combined into one CCS Development mode
metaImage for flashing along with RADARSS firmware. When the appimage for CCS Debug is flashed onto the EVM, the cores can be connected to,
reset, and have programs be loaded to them on Code Composer Studio.

Platform Metaimage Content

AWR294x R5F(MSS) + C66(DSS) + RSS Patch

AWR2544 R5F(MSS) + RSS Patch

AWR2x44P R5F(MSS) + DSS_CM4 + C66(DSS) + RSS Patch

5.5.12. HSI Header Utility

An optional utility library is provided for user to create a header that it can attach to the data being shipped over LVDS. This library accepts the CBUFF
session configuration and creates a header with appropriate information filled in and passes it back to the calling application. The calling application
can then supply this created header to CBUFF APIs. This config inside the header is intended to help user parse the LVDS on the receiving end. The
source code for this utility is present in the folder. Documentation of the API is available via mmwave_mcuplus_sdk_<ver>\packages\ti\utils\hsiheader
doxygen placed at mmwave_mcuplus_sdk_<ver>\packages\ti\utils\hsiheader\docs\doxygen\html\index.html and can be easily browsed via
mmwave_mcuplus_sdk_<ver>\docs\mmwave_sdk_module_documentation.html. Note that HSI Header Utility is currently available for the CBUFF
streaming test case but not the OOB Demo for AWR294X.

5.5.13. PMIC Read Write Utility (AWR2544, AWR294X and AWR2X44P)

This is a generic application which can be used to configure PMIC. It can perform the following functions based on user input:

1. Read all registers: Reads and prints all PMIC register contents on UART interface
2. Write to a register: Writes to user provided register address and reads back register content to verify written value.
3. Read a register: Read and print user provided register address on UART interface

The source code for this utility is present in the folder. Documentation is available via mmwave_mcuplus_sdk_<ver>\ti\utils\test\pmic_read_write
doxygen placed at mmwave_mcuplus_sdk_<ver>\ti\utils\test\pmic\docs\doxygen\html\index.html and can be browsed via
mmwave_mcuplus_sdk_<ver>\docs\mmwave_sdk_module_documentation.html.

5.5.14. Secondary Bootloader

A simple metaimage creation utility is provided in the SDK (for UNIX and mmwave_mcuplus_sdk_<ver>\scripts\unix\generateMetaImage.sh
 for Windows). The source code for the SBL comes as a part of the SDK can mmwave_mcuplus_sdk_<ver>\scripts\windows\generateMetaImage.bat

be found in the folder. Please refer to the SDK documentation for more details. <sdk_path>\packages\ti\boot\sbl

5.5.15. mmWave SDK - System Initialization

The source code for Pinmux module is generated by sysconfig. Please refer mmwave_mcuplus_sdk_<ver>/mcu_plus_sdk_<platform>_<ver>/docs
 for details. /api_guide_<platform>/SYSCONFIG_INTRO_PAGE.html

5.5.16. Usecases

5.5.16.1. Data Path tests using Test vector method

The data path processing on mmWave device for 1D, 2D and 3D processing consists of a coordinated execution between the MSS, HWA/DSS and
EDMA. This is demonstrated as part of the object detection processing chain and millimeter wave demo. The demo runs in real-time and has all the
associated framework for RADARSS control etc with it.

The unit tests located at) are stand-alone tests that allow data path mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc \objectdetection\<chain_type>\test
processing chain to be executed in non real-time. This allows developer to use it as a debug/development aid towards eventually making the data
path processing real-time with real chirping. Developer can easily step into the code and test against knowns input signals. The core data path
processing source code in object detection chain and the processing modules (DPUs) is shared between this test and the mmw demo. Most of the
documentation is therefore shared as well and can be looked up in the object detection DPC and mmw demo documentation.

The tests also provide a test generator, which allows user to set objects artificially at desired range, doppler and azimuth bins, and noise level so that
output can be checked against these settings. It can generate one frame of data. The test generation and verification are integrated into the tests,
allowing developer to run a single executable that contains the input vector and also verifies the output (after the data path processing chain), thereby
declaring pass or fail at the end of the test. The details of test generator can be seen in the doxygen documentation of these tests located at

and can be easily browsed via mmwave_mcuplus_sdk_<ver>\ti\ \docs\doxygen\html\index.html datapath\dpc \objectdetection\<chain_type>\test
 mmwave_mcuplus_sdk_<ver>/ docs/mmwave_sdk_module_documentation.html .

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 85 of 90

1.

2.

3.

4.
a.

6. Appendix

6.1. Memory usage

The map files of demo and driver unit test application captures the memory usage of various components in the system. They are located in the same
folder as the corresponding .xer5f/.xe66 and .bin files. Additionally, the doxygen for mmW demo summarizes the usage of various memories available
on the device across the demo application and other SDK components. Refer to the section "Memory Usage" in the

 documentation.mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\docs\doxygen\html\index.html

6.2. Shared memory usage by SDK demos

Unlike earlier devices like the 18xx, AWR294X do not have a specific HSRAM (Handshake RAM). For the purpose of the demo, 32 KB of the L3
memory (defined in) is reserved as shared memory between the MSS and the DSS so that mmwave_mcuplus_sdk_<ver>\ti\common\sys_common.h
the MSS can read the results populated post the DPC execution.

mmWave Device Image Creator

Refer mmwave_mcuplus_sdk_<ver>/mcu_plus_sdk_<platform>_<ver>/docs/api_guide_<platform>/TOOLS_BOOT.html for details.

6.3. Range Bias (TDM Demo) and Rx Channel Gain/Offset Measurement and Compensation

Refer to the section "Range Bias and Rx Channel Gain/Offset Measurement and Compensation" in the
 documentation for the procedure and mmwave_mcuplus_sdk_<ver>\ti\datapath\dpc\objectdetection\<chain_type>\docs\doxygen\html\index.html

internal implementation details. To execute the procedure using Visualizer GUI, here are the steps:

Set the target as explained in the demo documentation and update the
 appropriately.mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\profiles\<chain_type>\profile_calibration.cfg

Set up Visualizer and mmW demo as mentioned in the section .Running the Demos
Use the "Load Config From PC and Send" button on plots tab to send the
mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\profiles\<chain_type>\profile_calibration.cfg.
The Console messages window on the Configure tab will dump the "compRangeBiasAndRxChanPhase (TDM)" and "compRxChanPhase
(DDM)" to be used for subsequent runs where compensation is desired.
Copy and save the string for that particular mmWave sensor to your PC.

TDM:
You can use "compRangeBiasAndRxChanPhase" command in the "Advanced config" tab in the Visualizer and tune any
running profile in real time. Alternatively, you can add this to your custom profile configs and use it via the "Load Config
From PC and Send" button.

DDM:
You can add "antennaCalibParams" command to your custom profile configs and use it via the "Load Config From PC and
Send" button.

6.4. Guidelines on optimizing memory usage

Depending on requirements of a given application, there may be a need to optimize memory usage, particularly given the fact that the mmWave
devices do not have external RAM interfaces to augment on-chip memories. Below is a list of some optimizations techniques, some of which are
illustrated in the mmWave SDK demos (mmW demo). It should be noted, however, that the demo application memory requirements are dictated by
requirements like ease/flexibility of evaluation of the silicon etc, rather than that of an actual embedded product deployed in the field to meet specific
customer user cases.

On R5F, compile your application with ARM thumb option (depending on the compiler use). If using the TI ARM compiler, the option to do
thumb is Another relevant compiler option (when using TI compiler) to play with to trade-off code size versus speed is code_state=16 . --

 opt_for_speed=0-5 . For more information, refer to . The pre-built drivers in the SDK are already ARM Optimizing Compiler User's Guide
built with the thumb option. The demo code and BIOS libraries are also built with thumb option. Note the code_state=16 flag and the ti.targets.
arm.elf. target in the . R5Ft mmwave_mcuplus_sdk_<ver>\ti\ common\mmwave_sdk.mak
On C66X, compile portions of code that are not in compute critical path with appropriate -mfX option. The -mf3 options is presently used in
the SDK drivers, demos and BIOS cfg file. This option does cause compiler to favor code size over performance and hence some cycles
impact are to be expected. However, on mmWave device, using mf3 option only caused about 1% change in the CPU load during active and
interframe time and around 3-5% increase in config cycles when benchmarked using driver unit tests. For more details on the "mf" options,
refer to The TI C6000 compiler user guide at . Another option to consider is -mo (this is used in C6000 Optimizing Compiler Users Guide
SDK) and for more information, see section "Generating Function Subsections (--gen_func_subsections Compiler Option)" in the compiler
user guide.
Even with aggressive code size reduction options, the C66X tends to have a bigger footprint of control code than the same C code compiled
on R5F. So if feasible, partition the software to use C66X mainly for compute intensive signal-processing type code and keep more of the
control code on the R5F. An example of this is in the mmw demo, where we show the usage of mmwave API to do configuration (of
RADARSS) from R5F instead of the C66X (even though the API allows usage from either domain). In mmw demo, this prevents linking of

 (in) and mmwavelink (in mmwave_mcuplus_sdk_<ver>\ti\control) code that is involved in mmwave mmwave_mcuplus_sdk_<ver>\ ti\control
configuration (profile config, chirp config etc) on the C66X side as seen from the .map files of mss and dss located along with application
binary.
If there is no requirement to be able to restart an application without reloading, then following suggestions may be used:

one time/first time only program code can be overlaid with data memory buffers used after such code is executed. Note: Ability to
place code at function granularity requires to use the aforementioned -mo option.

http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/sprui04c/sprui04c.pdf

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 86 of 90

4.

b.

5.

6.

a.
b.

c.

the linker option may be used to eliminate the section overhead. For more details, see compiler user guide --ram_model .cinit
referenced previously. Presently, ram model cannot be used on R5F due to bootloader limitation but can be used on C66X. The
SDK uses ram model when building C66X executable images (unit tests and demos).

On C66X, smaller L1D/L1P cache sizes may be used to increase static RAM. The L1P and L1D can be used as part SRAM and part cache.
Smaller L1 caches can increase compute time due to more cache misses but if appropriate data/code is allocated in the SRAMs, then the
loss in compute can be compensated (or in some cases can also result in improvement in performance). In the demos, the caches are sized
to be 16 KB, allowing 16 KB of L1D and 16 KB of L1P to be used as SRAM. Typically, the L1D SRAM can be used to allocate some buffers
involved in data path processing whereas the L1P SRAM can be used for code that is frequently and more fully accessed during data path
processing. Thus we get overall 32 KB more memory. The caches can be reduced all the way down to 0 to give the full 32 KB as SRAM: how
much cache or RAM is a decision each application developer can make depending on the memory and compute (MIPS) needs.
When modeling the application code using mmW demo as reference code, it might be useful to trim the heaps in mmW demo to claim back
the unused portion of the heaps and use it for code/data memory. Ideally, a user can run their worst case profile that they would like to
support using mmW demo, record the heap usage/free metrics for (L1D, L2)/TCMB and L3 heaps on 'sensorStart'. These values can then be
used to resize or re-allocate heap globals (example: gDPC_ObjDetTCM, gMmwL3, etc) in

. The freed up space in DSS could be used as follows:mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw

Free heap space in L1D could be used to move some of the L2 buffers to L1D. The freed L2 space can be used for code/data.
Free heap space in L2 could be trimmed by changing the heap's global variable (ex: gMmwL2) definition and used for code/data
memory (note that code memory by default is L2 so no other change is required to get more code space).
Free heap space in L3 could be trimmed by changing the heap's global variable (ex: gMmwL3) definition and used for code/data
space.

When using TI compilers for both R5F and C66x, the map files contain a nice module summary of all the object files included in the application. Users
can use this as a guide towards identifying components/source code that could be optimized. See one sample snapshot below:

Module summary inside application's .map file

MODULE SUMMARY

 Module code ro data rw data
 ------ ---- ------- -------

 C:/mmwave_app_sdk/ti/control/dpm/lib/libdpm_awr294x.ae66
 dpm_msg.oe66 2592 80 0
 dpm_core.oe66 2080 32 0
 dpm_mailbox.oe66 736 20 24
 dpm_pipe.oe66 704 16 0
 dpm_listlib.oe66 224 0 0
 dpm_awr294x.oe66 64 0 0
 +--+----------------------------+--------+---------+---------+
 Total: 6400 148 24

6.5. How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled

To achieve L3 heap overlaid with the code to be copied into L1P at init time, L3 heap is in PAGE 1 and code is in Page 0. PAGE 0 is the only loadable
page whereas PAGE 1 is just a dummy page to allocate uninitialized sections to implement overlay. As a result the ".const" section (which is loadable
section) cannot simply be allocated to PAGE 1 to go after the heap. If the .const is allocated in PAGE 0, then it will overlap the heap and will be
overwritten once heap is allocated. To resolve this, the HIGH feature of the linker could be used is used to push the const table to the highest address
ensuring no overlap with L3 heap. The suggested changes would be as follows:
1. Shrink the L3 heap by the size of the table (but L3 heap must still be bigger than the size of the L1P cache).
2. Place the table in a named section and allocate the named section in the HIGH space of PAGE 0 of L3RAM.

This ensures that the table will be allocated at the high address and will not be overlapping with L3 heap or the L1P intended code which are located
at the low address.

Sample code is shown below.

In application C file:

#define TABLE_LENGTH 4
#define TABLE_ALIGNMENT 8 /* bytes */

/*! L3 RAM buffer, shrunk by table */
#pragma DATA_SECTION(gMmwL3, ".l3data");
#pragma DATA_ALIGN(gMmwL3, 8);
uint8_t gMmwL3[<DSS L3 RAM size> - TABLE_LENGTH*sizeof(float) - TABLE_ALIGNMENT];

#pragma DATA_SECTION(gArray, ".l3data_garray");
#pragma DATA_ALIGN(gArray, TABLE_ALIGNMENT);

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 87 of 90

const float gArray[TABLE_LENGTH] = {1.5, 3.2, 0.8, -9.6};

In linker command file:
 .l3data_garray: load=L3SRAM PAGE 0 (HIGH)

6.6. Enabling L3 cache for DSP/C66x on mmWave devices

In a given usecase for mmWave devices, if L3 RAM is not fully utilized for Radar Cube storage, then the remaining free L3 memory could ideally be
used for code and other internal data storages for the application. However, access to L3 memory from DSP/C66x core in mmWave devices is slower
than accessing L1/L2. The cache-based memory system of C66x can be efficiently used in such cases. Refer to C66x DSP Cache User Guide (

) for more details on the L1P/L1D/L2 two-level hierarchy that exists within the C66x memory architecture. https://www.ti.com/lit/ug/sprugy8/sprugy8.pdf
L1P, L1D and L2D can be partitioned into SRAM and cache. L1P, L1D and L2 cache size can be set through linker command file -please refer to

 for more details. L2 SRAM addresses are always cached in L1P and L1D. mmwave_mcuplus_sdk_<ver>/ti/platform/<platform>/c66x_linker.cmd
However, external memory addresses (ex: code/data in L3) by default are configured as non-cacheable in L1D and L2 caches. Cacheability for
external memory addressed (ex: L3) must first be explicitly enabled by the user using the MAR registers. Note that L1P cache is not affected by this
configuration and always caches external memory addresses.

Cache writeback: To maintain cache coherency between different masters (CPU, DMA, R5F, etc), content in cache needs to be written back
to memory after it is changed before triggering the other master to access that memory location.
Cache Invalidate: Before reading the content from the physical memory that was updated by another master, the content in cache needs to
be invalidated, so that updated data from memory can be loaded in cache.
Code in L3: mmWave code can be placed from L2 to L3 (via linker command file) with no explicit need for cache enablement and/or cache
operations during real time. The only setting that needs to be adjusted is the size of L1P cache and that should be balanced against the need
for L1P SRAM to place real time optimized functions (and avoid any cache misses, etc).
Data in L3: If data cache is enabled for L3 memory via the MAR registers, then at first, one needs to take care of cache invalidates and
writebacks for existing data structures in L3 memory. Radarcube and detection matrix are the primary data structures placed in L3 memory in
case of a typical mmwave application on our device. Typically Radarcube is accessed (read/write) only via EDMA during the Range and
Doppler FFT. Post that, it is more common for the DSP core to access the radarcube directly (i.e. no EDMA) and primarily it is a read access.
In such scenario, the Radarcube can be invalidated at the end of current frame but before the start of next frame (i.e. when EDMA master
begins to access radarcube). If the Radarcube was modified by the core directly (write operation) during the interframe time, then cache
writeback_invalidate is needed at the end of current frame but before the start of next frame. Same consideration would apply for detection
matrix. Next, mmWave internal data structures that are accessed purely by DSP can also be moved from L2 to L3 (via linker command file).
No explicit cache writeback/invalidations are required for such structures. If user chooses to place the frame results structures in L3 (point
cloud, etc) which are shared with MSS (R5F), then cache writeback+invalidate needs to be performed before signaling the MSS about
availability of frame results. : If the analysis of L3 data access pattern between the DSP, MSS and EDMA shows that cache writebackNote
/invalidate of all L3 data content can be done towards the end of the current frame, then performing writeback+invalidate on entire L1D cache
might be a better option than calling such API on individual structures.

6.7. SDK Demos: miscellaneous information

A detailed explanation of the mmW demo is available in the demo's docs folder:
Some miscellaneous details are captured here:mmwave_mcuplus_sdk_<ver>\ti\demo\<platform>\mmw\docs\doxygen\html\index.html.

In demos that use HWA as the only processing node and elevation is enabled during run-time via configuration file, the number of detected
objects are limited by the amount of HWA memory that is available for post processing.
Output packet of mmW demo data over UART is in TLV format and its length is a multiple of 32 bytes. This enables post processing
elements on the remote side (PC, etc) to process TLV format with header efficiently.

6.8. CCS Debugging of real time application

It is relatively easier to debug code before real-time starts because single-stepping or adding break-points does not affect the debugging since there is
no real-time data and deadline to process the data. But once real-time starts, which is after sensor is started, such debugging can be intrusive and
problematic. Below are some tips that may be helpful in real-time debugging, some of them are relevant to the out of box demos but may be applied in
user applications if relevant.

6.8.1. Inter-chirp debugging

In out of box demos and many application specialized demos based on the SDK provided by TI (through the TI resource explorer), the inter-chirp
processing is based on HWA or DSP but not a mix of the two. In the case of HWA which also is what is used for processing in the current demo, the
CPU/CPUs are idling with respect to inter-chirp processing so there is no need to halt. If one intends to stop and examine the state of HWA-EDMA
during any of the intermediate processing steps, the design would have to be changed to issue a HWA or EDMA interrupt to the CPU that configured
these (typically MSS CPU) at this intermediate state and the interrupt could read out some state and store in global variables that could be examined
later. If code is halted using a break-point in the interrupt, the EDMA will automatically halt but HWA will not unless HWA is waiting on EDMA, so HWA
could continue to run even if the CPU is halted. The current radar SoCs do not have the feature to halt the HWA when any of the CPUs are halted.

In case of DSP doing the inter-chirp processing, there can be a need to single-step/break the processing. However, (unlike the MSS CPU) when DSP
is halted, the RadarSS (front end) doesnt halt and the chirping activity does not stop. Because of this, the DSP will miss the chirp processing deadline
and the code is typically written to throw an exception. So basically halted debug is not useful unless a single chirp is configured and problem can be
recreated with a single chirp. There might be other limitations in the demo code that may prevent a single chirp configuration (e.g minimum number of
doppler bins). Other techniques shown in below sections (real-time logging, using non real-time unit test bench) may be more practical but have their
own limitations. In most implementations however, 1D processing uses a hardened component from the SDK - the range DPU - so the need for real-
time debugging in the active chirping period is low.

6.8.2. Inter-frame debugging

https://www.ti.com/lit/ug/sprugy8/sprugy8.pdf

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 88 of 90

As there is no RadarSS chirping activity when MSS CPU is halted, it is possible to do halted debug in MSS during inter-frame debugging without
running out of real-time. But on DSP, the device behavior is the opposite i.e. the chirping will continue even if DSP is in halted state, so stepping in the
DSP will cause an inter-frame deadline miss exception when running the out of box demo and other special demos that are implemented similarly.
One technique that may be helpful in this situation is if the problem can be observed in the first frame itself, configure the chirping profile to do only
one frame (frameCfg CLI command). This way after the active frame period, there is no chirp overrun (of the next frame) pressure when single-
stepping in the inter-frame processing.

6.8.3. Using non-real time chain test code

See section on details about the non-real time chain that is provided with the mmWave SDK. Users can "Data Path tests using Test vector method"
use these tests to step through the OOB processing chain in non-real time mode and debug or learn the components of the OOB processing chain.

6.8.4. Viewing hardware registers

During debug, there may be a need to examine registers of HWA, EDMA, external I/O peripherals etc. These can be done using View->Registers
menu and when a core is selected, the register view will display all registers that the core can see organized into various categories. An example is
shown below:

Individual hardware entities can be expanded further in the view to see registers specific to the hardware entity. The following picture illustrates
viewing a certain PARAM set in instance #0 of the EDMA (TPCC0), note how the bit fields are automatically parsed and displayed in a user friendly
manner which saves the burden of manually parsing or developing special parsing tools and facilitates quick debugging. Default number formats of bit
fields are binary which is not always convenient, this can be changed by selecting the field/fields and right-clicking to see the number format menu as
shown in the example below where the A and B counts of EDMA are about to be chosen for Decimal format. Once chosen, the GUI will remember the
user choice for that specific field so user does not have to repeat this action in future debug sessions.

In the above picture, one can also see the "Watch" menu item. If this is selected, then the two fields of interest will appear in the Expressions view, this
is a convenient way to see some fields of interest during debug without having to navigate the register structure again (although when a particular
structure such as PARAM set #16 above is expanded, if the top level TPCC0 is shrunk and expanded again, the PARAM #16 is shown expanded as
before because GUI remembers sub-structure expansion/non-expansion state).

6.8.5. Viewing expressions/memory in real time

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 89 of 90

When debugging real time application (for example: mmw demo) in CCS, if the continuous refresh of variables in the Expression or Memory browser
window is enabled without enabling the silicon real-time mode as shown in the picture, the code may crash at a random time showing the message in
the console window. To avoid this crash, please put CCS in to “Silicone Real-time” mode after selecting the target core.

Continuous refresh:

Crash in Console window:

Enable “Silicone Real-time” mode:

6.9. Shared memory

AWR294X and AWR2X44P devices don't have a separate shared Handshake RAM (HSRAM) memory. Hence part of the L3 RAM that is to be
populated in one core and read in the other needs to be made shareable.

6.10. Size of Enum

If a variable of enum type is used to exchange information between ARM and DSP core, then it is necessary to make sure the enum size matches for
the same variable compiled on the two cores. TI ARM compiler's default type for enum is packed, which causes the underlying enumeration type to be
the smallest integer type that accommodates the enumeration constants. By default, the TI C6000 (DSP) compiler uses a 32-bit integer to store enum

 This could cause an enum define that takes values 1 to 4 (for example) to be of size 1 byte on objects with enumeration values smaller than 32 bits.
R5F and of size 4 bytes on C66x. For devices where DSP and ARM coexist such as , they must be set to ensure that enum types are consistent

Ibetween ARM and DSP. n mmWave SDK command makefile, flags R5F_XSFLAGS_ENUM_TYPE and R5F_CFLAGS_ENUM_TYPE are used in
conjunction to enforce that enum types are compiled as 32bit integers. It is necessary that all libraries and the application code for a given core are

Copyright (C) 2025, Texas Instruments Incorporated
http://www.ti.com

MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

Page 90 of 90

compiled with the same compiler option for enum type else there will be a linker warning and one will encounter errors that cannot be detected until
run time.

Linker warning for incompatible enumeration type

warning #16027-D: object files have incompatible enumeration types ("xxxx" = packed, "yyyy" = 32-bit)

(xxxx and yyyy will be the names of actual object files that do not have matching enum type)

Please note that the R5F custom application using mmwave SDK pre-built libraries should be compiled with "--enum_type=int" option
specified to the compiler.

	MMWAVE MCUPLUS SDK User Guide (4.7.1.4)

