cadence

Cadence Driver Porting Guide

Product Version 1.5
August 2020

© 1996-2020 Cadence Design Systems, Inc. All rights reserved.
Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the
appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call
800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This document is protected by copyright law and international treaties and contains trade secrets and proprietary
information owned by Cadence. Unauthorized reproduction or distribution of this document, or any portion of it, may result in civil and criminal
penalties. Except as specified in this permission statement, this document may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This document contains the proprietary and confidential
information of Cadence or itslicensors, and is supplied subject to, and may be used only in accordance with, awritten agreement between
Cadence and its customer.

Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this
document subject to the following conditions:

1. This document may not be modified in any way.

2. Any authorized copy of this document or portion thereof must include all original copyright, trademark, and other proprietary notices and this
permission statement.

3. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use,
and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE AND DOES NOT REPRESENT

A COMMITMENT ON THE PART OF CADENCE. EXCEPT ASMAY BE EXPLICITLY SET FORTH IN A WRITTEN AGREEMENT
BETWEEN CADENCE AND ITS CUSTOMER, CADENCE DOES NOT MAKE, AND EXPRESSLY DISCLAIMS, ANY
REPRESENTATIONS OR WARRANTIES ASTO THE COMPLETENESS, ACCURACY OR USEFULNESS OF THE INFORMATION
CONTAINED IN THISDOCUMENT. CADENCE DOES NOT WARRANT THAT USE OF SUCH INFORMATION WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS, AND CADENCE DISCLAIMSALL IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. CADENCE DOES NOT ASSUME ANY LIABILITY FOR DAMAGES OR COSTS OF
ANY KIND THAT MAY RESULT FROM USE OF SUCH INFORMATION. CADENCE CUSTOMER HAS COMPLETE CONTROL AND
FINAL DECISION-MAKING AUTHORITY OVER ALL ASPECTS OF THE DEVELOPMENT, MANUFACTURE, SALE AND USE OF
CUSTOMER’S PRODUCT, INCLUDING, BUT NOT LIMITED TO, ALL DECISIONS WITH REGARD TO DESIGN, PRODUCTION,
TESTING, ASSEMBLY, QUALIFICATION, CERTIFICATION, INTEGRATION OF CADENCE PRODUCTS, INSTRUCTIONS FOR USE,
LABELING AND DISTRIBUTION, AND CADENCE EXPRESSLY DISAVOWS ANY RESPONSIBILITY WITH REGARD TO ANY SUCH
DECISIONS REGARDING CUSTOMER'S PRODUCT.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227- 14 and
DFAR252.227-7013 et seq. or its Successor.

Cadence Driver Porting Guide
Cadence Design Systems

Table of Contents

N o3 01/ 1 S PP RTPRT 1
A @ V= 4T Y PP 2
2.1, DOCUMENE PUIMOSE ... eeeeitieet ettt ettt ettt et e e et et e e et e e et e e e na e eaa e enes 2

2.2, CPS OVEIVIBIW ..ttt et e e et e e e et e et e et ta e e et e e et e e et ne e e e e eanaeeeaeaennnns 2

2.3. Common Driver INterface OVEIVIEWiieeiiei et e e eeens 3

P U L S 1 o 1= PSPPI 4
24.1. Bare-Metal ArChITECIUNE ... et et e e e eaas 4

2.4.2. Microkernel ArChitECIUIEoiiue e e e eans 5

A | @ SN (o ol = (1 (= P 5

2.5, CONCUITENCY IMOTEIS ...ttt ettt e et e et e e e ena e e e enenns 6

3. CommON DIIVEr INEEITACE et e e et e et e e e e e eanns 8
TN B @V 4= SR PT 8

3.2. Driver INitialization & SEAIUDccoeunieiiii et 8

3.3. Concurrency MOAel DELEIIScoouuieiiiii e 9

4. Sample CPS implementation for Bare Metalc.uuiiiiiiiiiiii e 10
I @< oV PP 10

4.2, SAMPIE COUE ...ttt e et e e et e e e et e e e e e e eb s 10

5. Sample CPS implementation fOr LINUXoieertneeiiteeeeii et e e e et e e e ee e eeeans 11
I I @Y= Y= T PSP 11

5.2, SAMPIE COUE ...ttt ettt ettt e s 11

Cadence Driver Porting Guide Cadence Design Systems, Inc. iv

List of Figures

2.1. Pictorial Representalion Of CPSccooutiiiiiii e et et e et e et e e e e e e aaes
2.2. Bare-MeEtal ATCRITECIUIE . oviie it e et e e eans
2.3. MICrOKEMEl ATChITECIUNE ... ittt ettt e e e e et e et e e e aeans
2.4, FUIL OS ATCNITECIUIE ...uviieeieeee ettt ettt e e et e et e e et e e et e e et e e et e et et e et e et et eet et st eaaetaesaeaaennns
3.1. Driver Initialization & SLArtUP SEQUENCEcoeiti ittt ettt e e et e e ettt e e e eet e e eerb e eees

Cadence Driver Porting Guide Cadence Design Systems, Inc.

Chapter 1. Acronyms

AP Application Programming | nterface.
Core Driver Cadence Firmware component that provides | P programming abstraction.
CPS Cadence Platform Services. A set of basic platform-specific access functions acting as hardware

abstraction layer for the core driver to operate.

Cadence Driver Porting Guide Cadence Design Systems, Inc. 1

Chapter 2. Overview

2.1. Document Purpose

The purpose of this document isto outline how to perform the following porting tasks related to Cadence drivers:
 Implementing CPS for your platform. This need be done only once to enable all Cadence driversfor your platform.
 Implementing the Common Driver Interface for your platform. Thisisthe platform-specific code to connect agiven

Cadencedriver to therest of your system. Depending on your platform, aspects of thiswill be specific to the platform
or the layer above the driver.

2.2. CPS Overview

Cadence Core Drivers are built on a common hardware abstraction layer, called Cadence Platform Services (CPS).
Thisiswhere all aspects specific to a CPU are handled. Specifically, the following is handled by CPS:

 Uncached access (i.e. writing through the cache with order preserved) to memory, used for hardware registers and
DMA descriptors.

e Trandating addresses (if needed) between the CPU's view (when running the driver), and hardware's view. Thisis
used for things such as DMA descriptors, where a buffer address as seen by hardware may be different than that
seen by the CPU (e.g. if an MMU is being used).

 Cache flush/invalidate operations (if needed), for example if the hardware needs to access memory directly for
DMA operations.

Cadence Driver Porting Guide Cadence Design Systems, Inc. 2

Overview

Figure 2.1. Pictorial Representation of CPS

CPS

Uncached write

Uncached read

Address
translation

‘address” write

A\

‘address” read

v/ 1l

VAVAN

Cache flush/invalidate

OR

Each platform requires an implementation of CPS. Once CPSisimplemented for aplatform, all Cadence Core Drivers

V VY

M

RAM or

memary-

mapped
11O

e

‘NOP”

—

Cache
Operations

—,

‘NOP"

can use it on that platform. This reduces porting effort in case you acquire further drivers from Cadence.

2.3. Common Driver Interface Overview

Several important aspects of using adriver depend heavily on the platform:

» How the RAM used by the driver must be allocated. On a simple system, it may be sufficient to reserve a block of
RAM dtatically, while on a full memory-protected OS, it may be necessary to use akernel allocation function.

» How the memory-mapped 1/O range for the hardware's registers is obtained. On a simple system, it may be hard-
wired, while on other systems it may be necessary to call a mapping function. If the hardware is on a plug-and-
play bus such as PCI, the bus enumerator may assign this, requiring a fundamentally different way of connecting

the driver.

* How theinterrupt number/vector for the hardware is obtained. On a simple system, it may be hard-wired, while on
other systemsit may be necessary to call amapping function. If the hardware is on a plug-and-play bus such asPCl,

the bus enumerator may assign this, requiring a fundamentally different way of connecting the driver.

Due to the above considerations, for maximum portability:

 Cadence drivers never alocate memory - this must be done by your integration code and passed to the driver.

Cadence Driver Porting Guide Cadence Design Systems, Inc.

Overview

 Cadence drivers never assume alocation for the underlying hardware's registers - this must be determined by your
integration code and passed to the driver.

» Cadence drivers never assume aparticular interrupt "topology" - your integration code must arrange for the driver's
ISR to be called upon receipt of the underlying hardware's interrupt.

Thisisthe Common Driver Interface.

2.4. Use Model

Choosing any aspect of a computing platform, one can find a spectrum of possible implementations. It is simply not
possible to list every situation. Instead, the following three classifications of systems are intended to serve as arough
guideline for the tasks required to enable a Cadence driver for your platform.

2.4.1. Bare-Metal Architecture

The following depicts the typical scenario for asimple "bare-metal" platform (a platform not using an MMU, without
aformalized porting layer or technology stacks):

Figure 2.2. Bare-Metal Architecture

Client (Customer's Software)

g 1L /\

Cadence Cadence
Driver 1 [* Driver N [*

e e

CPS (Cadence Platform Services)

S TS VA

Vi
h d.l.
ArEWarE 1 Cadence Cadence IRQ

[P 1 : [: RAM : [: P M cantroller

Y

In such a system, it is likely that your custom software will use the driver API directly, and you may have direct
control over the interrupt controller setup. Sincethereisno MMU it islikely that there will be no data cache available.
Implementing CPS on such a platform will typically involve:

» Using simple constructs such as
(vol atile uint32_t)address = val ue

for the memory-mapped 1/O functions

 Using the same for the address-trand ation functions

Cadence Driver Porting Guide Cadence Design Systems, Inc. 4

Overview

 Implementing do-nothing functions for cache flush and invalidate

Implementing the integration code on such a platform will generally be straightforward unless the hardware is on a
plug-and-play bus.

2.4.2. Microkernel Architecture

If you are using an RTOS or microkernel, there may or may not be a standard stack for agiven technology. If thereisa
standard stack, it islikely you would want to create a small adapter layer to convert between the Cadence driver's API
and the lowest layer of that stack. We will again assume no MMU is being used on such a platform. Also on such a
platform, itislikely that thereis somelevel of support from the kernel or BSP for programming the interrupt controller
attaching handlers, and possibly memory-mapped /O services exist.

Figure 2.3. Microkernel Architecture

Client (Customer's Software) Client (Adapter) Stack
Cadence Cadence
Driver 1 [* Driver N

4 ZAN

CPS5 (Cadence Platform Services)

Kernel/BSP

N T S,
- =

Cadence RAM Cadence . IR
P 1 <:D @ PN ™ controller

hardware

iis

Implementing CPS on such a platform will typicaly involve:

» For memory-mapped 1/0O, either using simple constructs as in the bare-metal example, or calling service functions
in the kernel or BSP

 Using the same for the address-trandation functions
» Implementing do-nothing functions for cache flush and invalidate

Implementing the integration code on such a platform will generally be straightforward unless the hardware is on a
plug-and-play bus.

2.4.3. Full OS Architecture

If you are using a full memory-protected OS (definitely an MMU being used), there will typically be a standard stack
for agiven technology. Therefore, you will likely want to create a small adapter layer to convert between the Cadence

Cadence Driver Porting Guide Cadence Design Systems, Inc. 5

Overview

driver's APl and the lowest layer of that stack. Also on such a platform, it is typical that interrupt attachment and
memory-mapped 1/0 access will be abstracted for you.

Figure 2.4. Full OS Architecture

Client (Adapter) Stack Client (Adapter) Stack
Cadence Cadence
Driver 1 Driver N

4> 11 4

CP5 (Cadence Flatform Services)

Kernel (with BSP underneath)

N, Tl S, ..
4 g A4

i

.

Cadence RAM Cadence IRQ
IP 1 <:> \,/I:> PN > controller

&

hardware

r

Implementing CPS on such a platform will typicaly involve:

» For memory-mapped |/O, calling service functions in the kernel. This usually involves mapping the hardware's
addressable region at driver initialization and then using it, either directly or through 1/0 services, in other driver
functions.

* For the address-trand ation functions, calling trand ation functions in the kernel

 Implementing cacheflush/invalidate functionsusing the OSif the hardware accessesmemory directly, e.g. for DMA.

On thistype of platform, it will be necessary to wrap the Cadence driver to create a driver package which follows the
rules of the OS driver framework. This usually means:

 Creating an initialization function conforming to the framework's rules, in which you acquire resources and call the
Cadence driver'sinit function. All Cadence drivers provide probe and init functions to aid in resource acquisition.

* Creating other functionsto start, stop and destroy thedriver, again calling the corresponding functionsin the Cadence
driver.

» Calling other Cadence driver functions as required, either from driver framework functions or stack functions.
2.5. Concurrency Models

Cadence Core Drivers are architected such that they are portable to platforms which enforce a particular concurrency
model, while also giving you the maximum freedom to choose the model suitable for your application. Also, the

Cadence Driver Porting Guide Cadence Design Systems, Inc. 6

Overview

minimal assumptions made allow for maximum efficiency on simple platforms. Part of the API for most drivers
involves calling back your code. The basic rule is that these callbacks are made from the driver's interrupt handler.
Thisiswhat yields the freedom and portability just mentioned.

Cadence Driver Porting Guide Cadence Design Systems, Inc. 7

Chapter 3. Common Driver Interface

3.1. Overview

Each Cadence Core Driver represents a different technology and accordingly, offers varying functionality. However,
all Cadence drivers share a common framework of functions, to quickly get you beyond the basic bringup and on to
making use of the Cadence technology you have acquired.

The following functions are common to all Cadence drivers:

probe(configurationlnfo, resourceRequirenents) - thisis the first function you should call.
Although the exact signature varies by driver, the pattern isthat you passinformation about how the driver should be
used, and it fillsinformation about the required resources (RAM) to support that configuration. In adynamic system
or where your code is to be ported to a variety of platforms, you may wish to call probe repeatedly to "negotiate”
an acceptable configuration that fits within platform resources. The configuration includes the base address of the
hardware's registers, so the driver may read identification from the hardware during this call (to determine resource
requirements).

init(instanceData, configurationlnfo) - after asuccessful probe(), cal this function, passing a
pointer to an allocated block of RAM of the required size (the required sizeisfilled by probe), and the configuration
again (so the driver may copy anything it must remember).

start (i nstanceDat a) - after asuccessful init, you should attach the driver'sinterrupt handler (isr) and enable
the interrupt at the interrupt controller. Then, call this function to start the driver. It will enable relevant interrupts
at the source.

i sr(instanceDat a) - thisisthedriver'sinterrupt handler, which your code must attach before calling start()

st op(i nstanceDat a) - thiswill disable any hardware interrupts at the source

destroy(instancebDat a) - thiswill internally stop, and put the driver in a non-responsive state until init is
called again

The instanceData parameter is a pointer to a RAM block, allocated by the client before calling i ni t (), based on
the resource requirementsfilled by pr obe() . The reason for this mechanism isto allow for multiple instances of the
driver, in case you have more than one of the same type of Cadence controller in your system.

3.2. Driver Initialization & Startup
The common aspects of driver initialization and startup are illustrated below:

Cadence Driver Porting Guide Cadence Design Systems, Inc. 8

Common Driver Interface

Figure 3.1. Driver Initialization & Startup Sequence

Platform Client Driver

ProbelConfia)

Memdliocidrnveridemsz)

InitfConfia. Mem)

InstalllRQidriverlSR)

Start

Callbacks]

3.3. Concurrency Model Details

Cadencedriversdo not support lock/unlock mechanism. If you are working on multithreaded or multicore environment
you should implement these functions for your system and wrap all calls to the driver.

Cadence Driver Porting Guide Cadence Design Systems, Inc. 9

Chapter 4. Sample CPS implementation for Bare Metal

4.1. Overview

The code here implements the Cadence Porting System for a bare-metal environment. This should be applicable to
most bare-metal systems where thereisno MMU or data cache.

4.2. Sample code

uint32_t CPS_ReadReg32(vol atile uint32_t* address) {
return *address;
}

void CPS_ WiteReg32(volatile uint32_t* address, uint32_t value) {
*address = val ue;
}

uint8_t CPS _UncachedRead8(vol atile uint8_t* address) {
return *address;
}

uint16_t CPS _UncachedReadl6(vol atile uint16_t* address) {
return *address;
}

uint32_t CPS_UncachedRead32(vol atile uint32_t* address) {
return *address;
}

void CPS_UncachedWite8(volatile uint8_t* address, uint8_t value) {
*address = val ue;
}

voi d CPS_UncachedWitel6(volatile uintl6_t* address, uintl16_t value) {
*address = val ue;
}

voi d CPS_UncachedWite32(volatile uint32_t* address, uint32_t value) {
*address = val ue;
}

voi d CPS_BufferCopy(volatile uint8_t *dst, volatile const uint8_t *src, uint32_t size) {
mencpy((voi d*)dst, (void*)src, size);

voi d CPS_Cachel nval i dat e(voi d* address, size_t size, uintptr_t devinfo) {

return;

}

voi d CPS_CacheFl ush(voi d* address, size_t size, uintptr_t devinfo) {
return;

}

Cadence Driver Porting Guide Cadence Design Systems, Inc. 10

Chapter 5. Sample CPS implementation for Linux

5.1. Overview

The code here implements the Cadence Porting System for a Linux environment. This should be applicable to Linux
kernels from 2.6.32 onwards with minor modifications for your system. Note that locks are not implemented in this
sample.

If a Cadence Driver makes use of the CacheFlush() and Cachelnvalidate() functions the driver documentation will
provide details of how to passthe"device" pointer to the Core Driver so that it will be availableto your implementation
of CPS.

5.2. Sample code

uint32_t CPS_ReadReg32(vol atile uint32_t* address) {
return readl (address);

}

void CPS_ WiteReg32(volatile uint32_t* address, uint32_t value) {
writel (val ue, address);

}

uint8_t CPS_UncachedRead8(vol atile uint8_t* address) {
return readb(address);

}

uint16_t CPS_UncachedReadl6(volatile uintl6_t* address) {
return readw(address);

}

uint32_t CPS_UncachedRead32(volatile uint32_t* address) {
return readl (address);

}

voi d CPS_UncachedWite8(volatile uint8_t* address, uint8_t value) {
witeb (value, address);

}

voi d CPS_UncachedWitel6(volatile uintl6_t* address, uintl6_t value) {
witew (val ue, address);

}

voi d CPS_UncachedWite32(volatile uint32_t* address, uint32_t value) {
witel (value, address);

}

voi d CPS_BufferCopy(volatile uint8_t *dst, volatile const uint8_t *src, uint32_t size) {
menmcpy((voi d*)dst, (void*)src, size);

*

/
I nval i dat e cache using Linux DVA sync routines
@aranfin] address Virtual address of buffer to sync. Buffer mnust
be all ocated using dma_nap_single() function
@aranfin] size Size of buffer
@aranfin] device Pointer to struct device* which owns buffer
/
voi d CPS_Cachel nval i dat e(voi d* address, size_t size, uintptr_t device) {
uintptr_t phys_address = __ pa(address);
struct device *dev = (struct device *) device;

E R

Cadence Driver Porting Guide Cadence Design Systems, Inc. 11

Sample CPS implementation for Linux

dma_sync_si ngl e_for_cpu(dev, phys_address, size, DVMA_BI DI RECTI ONAL) ;

}
/**
* Flush cache using Linux DVA sync routines
* @aranfin] address Virtual address of buffer to sync. Buffer must
* be all ocated using dma_nap_single() function
* @aranfin] size Size of buffer
* @aranfin] device Pointer to struct device* which owns buffer

/

voi d CPS_CacheFl ush(voi d* address, size_t size, uintptr_t device) {
uintptr_t phys_address = __ pa(address);

struct device *dev = (struct device *) device;

dmea_sync_si ngl e_for_devi ce(dev, phys_address, size, DVMA Bl DI RECTI ONAL);

Cadence Driver Porting Guide Cadence Design Systems, Inc.

12

	Cadence Driver Porting Guide
	Table of Contents
	Chapter 1. Acronyms
	Chapter 2. Overview
	2.1. Document Purpose
	2.2. CPS Overview
	2.3. Common Driver Interface Overview
	2.4. Use Model
	2.4.1. Bare-Metal Architecture
	2.4.2. Microkernel Architecture
	2.4.3. Full OS Architecture

	2.5. Concurrency Models

	Chapter 3. Common Driver Interface
	3.1. Overview
	3.2. Driver Initialization & Startup
	3.3. Concurrency Model Details

	Chapter 4. Sample CPS implementation for Bare Metal
	4.1. Overview
	4.2. Sample code

	Chapter 5. Sample CPS implementation for Linux
	5.1. Overview
	5.2. Sample code

