cadence

USB Super Speed softwaredriver quick start
guide

Product Version 2.0.7
August 2020

© 1996-2020 Cadence Design Systems, Inc. All rights reserved.
Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the
appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call
800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This document is protected by copyright law and international treaties and contains trade secrets and proprietary
information owned by Cadence. Unauthorized reproduction or distribution of this document, or any portion of it, may result in civil and criminal
penalties. Except as specified in this permission statement, this document may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This document contains the proprietary and confidential
information of Cadence or itslicensors, and is supplied subject to, and may be used only in accordance with, awritten agreement between
Cadence and its customer.

Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this
document subject to the following conditions:

1. This document may not be modified in any way.

2. Any authorized copy of this document or portion thereof must include all original copyright, trademark, and other proprietary notices and this
permission statement.

3. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use,
and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE AND DOES NOT REPRESENT

A COMMITMENT ON THE PART OF CADENCE. EXCEPT ASMAY BE EXPLICITLY SET FORTH IN A WRITTEN AGREEMENT
BETWEEN CADENCE AND ITS CUSTOMER, CADENCE DOES NOT MAKE, AND EXPRESSLY DISCLAIMS, ANY
REPRESENTATIONS OR WARRANTIES ASTO THE COMPLETENESS, ACCURACY OR USEFULNESS OF THE INFORMATION
CONTAINED IN THISDOCUMENT. CADENCE DOES NOT WARRANT THAT USE OF SUCH INFORMATION WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS, AND CADENCE DISCLAIMSALL IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. CADENCE DOES NOT ASSUME ANY LIABILITY FOR DAMAGES OR COSTS OF
ANY KIND THAT MAY RESULT FROM USE OF SUCH INFORMATION. CADENCE CUSTOMER HAS COMPLETE CONTROL AND
FINAL DECISION-MAKING AUTHORITY OVER ALL ASPECTS OF THE DEVELOPMENT, MANUFACTURE, SALE AND USE OF
CUSTOMER’S PRODUCT, INCLUDING, BUT NOT LIMITED TO, ALL DECISIONS WITH REGARD TO DESIGN, PRODUCTION,
TESTING, ASSEMBLY, QUALIFICATION, CERTIFICATION, INTEGRATION OF CADENCE PRODUCTS, INSTRUCTIONS FOR USE,
LABELING AND DISTRIBUTION, AND CADENCE EXPRESSLY DISAVOWS ANY RESPONSIBILITY WITH REGARD TO ANY SUCH
DECISIONS REGARDING CUSTOMER'S PRODUCT.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227- 14 and
DFAR252.227-7013 et seq. or its Successor.

1. Terms and abbreviations

Thedriver Cadence USB Super Speed software driver.
The hardware Cadence USB Super Speed hardware controller.
The user Entity that isusing the driver.

The application, user's application A piece of software that is using the driver to carry out
a particular task. This piece of software is developed and
maintained by the user.

The software A combination of the driver and the application.
The platform, user's platform A piece of hardwarethat the user isrunning the software on.
2. Overview

Thisdocument isaquick start guide for Cadence USB Super Speed software driver intended to be
run with Cadence USB Super Speed hardware controller.

This document is to provide the user with information required for integrating the driver with the
application.

This document also describes the means of configuration of the driver.
3. Composition

The driver is composed of three modules:

e host - cdn_xhci.c,

* device - cusbd.c,

 dual role device - usb_ssp drd.c.

Each of those modules supports different part of the hardware controller.

Host and device modules can be used separately or together with dual role device module.

4. Integration

This section describes how the driver should be integrated with user's application.

USB SSdriver quick start guide Cadence Design Systems, Inc. 1

4.1. Hardware abstraction layer required by the driver

The driver operates using hardware abstraction layer declared in cps.h. A definition of functions
declared in cps.hisdelivered with the driver asareference codein file cps.c. Hardware abstraction
layer code is platform specific. The user can use definitions from cps.c but must make sure that
those definitions are suitable for user's platform. The user is required to provide uncached access
to the memory used by the hardware. Hardware abstraction layer code should be then complied
and linked with user's application.

Thedriver requires at |east the following hardware abstraction layer functions to be implemented:
» CPS_CacheFlush,

» CPS_Cachelnvalidate,

» CPS DelayNs,

» CPS MemoryBarrier,

» CPS_UncachedRead64,

» CPS_UncachedWrite64,

» CPS UncachedRead32,

» CPS_UncachedWrite32,

» CPS WriteReg32,

« CPS_ReadReg32.

4.2. Callbacks of dual role device module of the driver

Dual role device module of thedriver doesnot call directly any functions of host or device modules
of the driver. Instead, dual role device module of the driver is using callbacks to user application
code. This mechanism makes dual role device module of the driver flexible and allows the user to
control host and device modules of the driver according to the use case of the application.

Dual role device module of the driver executes callbacks whenever it requiresto interact with host
or device module of the hardware. Those callbacks are supposed to call API functions of host or
device modules of the driver. Dua role device module of the driver will return an error in case
arequired callback is missing. The user is responsible for defining those callbacks. The user is
responsible for providing those callbacks to the driver during driver initialization.

The driver is delivered with a reference application code. The user should use this code as a
reference for writing user's own callbacks.

USB SSdriver quick start guide Cadence Design Systems, Inc. 2

4.3. Driver’s interrupt handler for the hardware interrupt

Each module of the driver supplies user with user accessible interrupt handler. USBSSP_|sr for
host module of the drvier, CUSBD _Isr for device module of the driver and USB_SSP DRD Isr
for dual role device module of the driver. Those functions are designed to be an interrupt service
routines for the hardware.

4.3.1. Host and device modules of the driver used separately

When using host and device modules of the driver separately, function USBSSP _Isr or CUSBD _|sr
should be called in user's application on hardware interrupt.

4.3.2. Host and device modules of the driver used with dual role
device module of the driver

When using host and device modules of the driver together with dual role device module of
the driver, only USB_SSP_DRD_|sr function should be called in user's application on hardware
interrupt.

Function USB_SSP DRD _|sr detects if an interrupt is caused by dual role device module of the
hardware. If theinterrupt iscaused by dual roledevice modul e of the hardware then dual roledevice
module of the driver will handle thisinterrupt. If the interrupt is caused by host or device module
of the hardware then appropriate callback will be called by dual role device module of the driver
based on current mode of operation of dual role device module of the driver. The user isrequired
to define an interrupt handling procedures for host and device as callbacks in user application.

4.4. The driver build process

The driver is delivered with a makefile that can be used to build the driver into a statically linked
library. This statically linked library should be then linked to user's application by the user. The
user should customize delivered makefile to meet the requirements of user's platform.

4.5. Driver's initialization procedure

The driver is delivered with a reference application code. The user should use this code as a
reference for writing user's own initialization procedure of the driver.

4.6. Using the driver in user's application

The user should reference usb_ss drd _driver_guide.pdf for alist of user accessible functions of
the driver. Only those functions should be called by user's application.

Some of user defined functions are blocking ie. they will not return until a certain transfer is
performed. The user should not call those functions in an interrupt handler. The user should
reference usb_ss drd_driver_guide.pdf where each blocking function is documented.

USB SSdriver quick start guide Cadence Design Systems, Inc. 3

The driver is delivered with a reference application code. The user should use this code as a
reference for a call sequence of user accessible functions.

5. Memory size and allocation options in the driver
The driver requires four specific memory regions for operation:

* USBSSP_DriverResourcesT - Private data of host module of the driver. This memory hasto be
allocated and set to zero by the user.

» USBSSP_XhciResourcesT - Memory shared by the driver and by the hardware. This can be
alocated by the driver or by the user based on configuration of the driver.

 CUSBD PrivateData - Private data of device module of the driver. This memory has to be
allocated and set to zero by the user.

« USB _SSP DRD_PrivData - Private data of dual role device module of the driver. This memory
has to be allocated and set to zero by the user.

Details about memory configuration options in the driver and memory allocation are described in
following sections.

5.1. USBSSP_DriverResourcesT

The driver provides options for limiting driver's memory size. Following table holds driver's
parameters that influence the size of memory required by the driver. Next to those parameters the
table lists non-default values of the parameters for minima memory size. Setting macros listed
in the table below to values listed in the table below will limit the scope of hardware features
supported by the driver.

All presented macros are defined in file cdn_xhci_if.h.

Tablel. Driver'sconfiguration macrosvaluesfor minimal memory footprint.

#def i ne value |description

USBSSP_| NTERRUPTER _COUNT 1U Disable al interrupters except one.

USBSSP_DEMO TB undefined | Disable memory allocation for the hardware
in the driver.

USBSSP_SCRATCHPAD BUFF _NUM| 32U |Lower numbers of scratchpads.
USBSSP_MAX_EP_CONTEXT _NUM 4U Lower number of contexts per endpoint.
USBSSP_MAX_EP_NUM STRM EN 1U Lower number of streams per endpoint.
USBSSP_NMAX DEVI CE_SLOT _NUM 1U Lower number of device slots to minimum.

USB SSdriver quick start guide Cadence Design Systems, Inc. 4

#def i ne value |description

USBSSP_MAX_ STREMS PER EP 1U Lower number of maximum streams.
USBSSP_STREAM ARRAY_SI ZE U Lower size of stream array.

DEBUG undefined | Disable debug aid.

Host module of the driver memory footprint is 8780 B when driver's memory configuration is set
to above values (compiled with armv7m-none-eabi-gcc).

5.2. USBSSP_XhciResourcesT

5.2.1. Enable allocation of memory for the host module of hardware
by the driver

By default host module of the driver will not allocate the memory for the host module of the
hardware.

To make host module of the driver allocate memory for host module of the hardware define
USBSSP_DEMO_TB. Host module of the driver will allocate memory for the host module of the
hardware by calling afunction USBSSP_SetMemResCallback. This option is useful for testing.

If USBSSP_DEMO_TB is defined, host module of the driver will allocate memory for a single
instance of host module of the hardware corresponding to a device slot.

Host module of the driver memory footprint is 32116 B when memory for host module of the
hardwareisallocated by host module of the driver and the rest of memory configuration parameters
are set to their default values (compiled with armv7m-none-eabi-gcc).

5.2.1.1. Force the driver to use hardware memory allocated externally

Even if memory for host module of the hardware is allocated by the host module of the driver
(i.e. USBSSP_DEMO_TB is defined), user's application can make host module of the driver use a
different memory region. Thisis done be setting xhciMemRes to the appropriate memory pointer
by user's application.

Memory for host module of the hardware needs to be initialized to zero prior to first use. In case
the driver-based memory allocation is used, this clean up is performed by the driver, using function
cleanMemRes() defined in file xhci_mem alloc.c delivered with the driver. User isrequired to set
memory for the host module of the hardware to zero if the user forced the driver to use memory
for host module of the hardware alocated outside of the driver.

5.2.2. Disable allocation of the hardware memory by the driver

Host module of the driver will not allocate memory for host module of the hardware if
USBSSP_DEMO_TB isundefined. It can be achieved with the following code.

USB SSdriver quick start guide Cadence Design Systems, Inc. 5

#undef USBSSP_DEMD TB

Host module of the driver memory footprint is 9352 B when allocation of memory for host module
of the hardwareis disabled and the rest of memory configuration parameters are set to their default
values (compiled with armv7m-none-eabi-gcc).

If host module of the driver is configured not to allocate the memory for host module of the
hardware, then the user is responsible for allocating the memory for host module of the hardware.

Memory for the hardware needs to be initialized to zero prior to first use. User is responsible for
doing that.

5.3. USB_SSP_DRD_PrivData

Memory for this structure should only be alocated by the user only if the user is using dual role
device module of the driver.

USB SSP_DRD_PrivData structure holds pointers to USBSSP_DriverResourcesT and
CUSBD_PrivateData. The user should allocate memory for USBSSP_DriverResourcesT and
CUSBD_PrivateData separately. User should then feed pointers to alocated host and device
structures by setting corresponding pointers in structure USB_SSP_DRD_Config which has to be
passed as an argument to dual role device initialization procedure USB_SSP _DRD _Init.

Setup of structure USBSSP_XhciResourcesT is independent of dual role device module of the
driver. Refer to Section 5.2 for details about memory allocation for host module of the hardware.

When dual role device module of the driver executes a callback it will pass a pointer to its
USB SSP DRD_PrivData structure. Thisway, code of acallback has accessto private data of host
and device module of the driver.

6. Safety mechanisms implemented in the driver

6.1. Parameter pointer check

User accessible functions of the driver will return a non-zero error value if passed pointer is not
valid.

6.2. Version of hardware

During initialization the driver (function USB_SSP DRD_Start) will read values of hardware
identification registers. If values of those registers match versions of the hardware supported by
the driver, then the driver will proceed with further initialization of the hardware. Otherwise the
driver will return anon-zero error code.

USB SSdriver quick start guide Cadence Design Systems, Inc. 6

6.3. Memory alignment check

During initialization the driver will check if memory supplied by the user isaligned correctly. The
driver will return a non-zero error code if the memory is misaligned.

Following array holds alignment requirements for memory used by the hardware. The alignment
requirements are checked for all the itemsin the below array by the driver except for DMA.

Table 2. Alignment requirementsfor memory used by the hardware

Name of memory region alignment
Input context 64 bytes
Output context 64 bytes
Scratchpad buffer 64 bytes
Command ring 64 bytes
Event ring 64 bytes
Event ring segment entry 64 bytes
DMA 4 bytes

6.4. Timeout for waiting for a register value to change
Due to hardware runtime errors, values of the registers might not change as expected.

Thedriver hasbeen protected against hanging in aninfiniteloop whilewaiting for aregister valueto
change. Number of loop iterationsis limited to avalue of define USBSSP_ DEFAULT_TIMEOUT
for host module of the driver and to CUSBD _DEFAULT TIMEOUT for device module.
Driver’'s function will return non-zero error code if number of iterations will reach
USBSSP_DEFAULT_TIMEOUT for host module and CUSBD _DEFAULT_TIMEOUT for device
module.

Values of USBSSP_DEFAULT TIMEOUT and CUSBD_DEFAULT_TIMEOUT are platform
dependent. The user should tune them to make the driver operate in the user’ s system.

6.5. Limit for the number of consecutive events handled by the driver

Due to hardware runtime error, an endless stream of incoming hardware events might occur.
The driver was designed to work in a single threaded environment. This makes it vulnerable to
being stuck in the event handler if hardware constantly indicates the occurrence of an unprocessed
hardware event.

The driver has been protected against such hardware error. Driver's interrupt handler will
return a non-zero error code if a number of consecutive events reaches the value of
USBSSP. CONSECUTIVE_EVENTSdefine.

USB SSdriver quick start guide Cadence Design Systems, Inc. 7

	USB Super Speed software driver quick start guide
	
	1. Terms and abbreviations
	2. Overview
	3. Composition
	4. Integration
	4.1. Hardware abstraction layer required by the driver
	4.2. Callbacks of dual role device module of the driver
	4.3. Driver’s interrupt handler for the hardware interrupt
	4.3.1. Host and device modules of the driver used separately
	4.3.2. Host and device modules of the driver used with dual role device module of the driver

	4.4. The driver build process
	4.5. Driver's initialization procedure
	4.6. Using the driver in user's application

	5. Memory size and allocation options in the driver
	5.1. USBSSP_DriverResourcesT
	5.2. USBSSP_XhciResourcesT
	5.2.1. Enable allocation of memory for the host module of hardware by the driver
	5.2.1.1. Force the driver to use hardware memory allocated externally

	5.2.2. Disable allocation of the hardware memory by the driver

	5.3. USB_SSP_DRD_PrivData

	6. Safety mechanisms implemented in the driver
	6.1. Parameter pointer check
	6.2. Version of hardware
	6.3. Memory alignment check
	6.4. Timeout for waiting for a register value to change
	6.5. Limit for the number of consecutive events handled by the driver

