
Jacinto Connected Cars on AWS:
Getting Started Guide

Version 2021.10.25.1

1 Overview

Jacinto 7 processors are popular choices by top-tier automotive suppliers for vehicle compute, addressing
the rapid growth of telematics applications such as Vehicle-to-cloud (V2C), Vehicle-to-infrastructure (V2I)
and Vehicle-to-Vehicle (V2V) technologies. With the tremendously increased volume of vehicle data, it is
essential to have a reliable cloud infrastructure to manage and extract intelligence based on these data,
and provide valuable services to end users and critical road data to vehicle manufactures for
maintenance, over-the-air updates, and Artificial Intelligence (AI) model improvements.

Amazon Web Services (AWS) Connected Mobility Solutions (CMS) provides a suite of solutions for OEMs
and mobility service providers to quickly deploy services on the AWS cloud.

Figure 1 shows an example TCU/Domain Controller software architecture based on the DRA82x Processor
SDK. A TCU can be deployed as a single IOT device (a Thing) or each of the domains can be a separate
device. A Greengrass core is deployed, for filtering, analyzing, and buffering of telematics data at the
vehicle premise. Greengrass also buffers vehicle data when network is not available as the vehicle moves.

Figure 1: Vehicle Compute (Telematics) Architecture based on DRA82X Gateway Processors

In this guide, we walk through detailed steps to install AWS Greengrass application on the DRA829 and
DRA821 device EVMs, connect to AWS IOT core, and then integrate with Fleet Management demo with
CMS solutions.

This guide is primarily written based on TI Processor SDK (https://www.ti.com/tool/PROCESSOR-SDK-
J721E) and the J721E EVM, with additional instructions given for:

• TDA4VM processor starter kit for Edge AI vision systems (SK-TDA4VM)

• DRA821x/J7200 EVM

• Subsequent Processor SDK releases from TI

• Subsequent Greengrass releases from AWS

https://www.ti.com/tool/PROCESSOR-SDK-J721E
https://www.ti.com/tool/PROCESSOR-SDK-J721E

Therefore, attention shall be given on minor changes in future release configurations.

2 Required Hardware Platform (Target Board)

Required target boards including the Jacinto 7 Common Processor board and one of the Jacinto 7
evaluation modules:

• Common Processor board for Jacinto™ 7 processors (J721EXCPXEVM,
https://www.ti.com/tool/J721EXCPXEVM)

• TDA4VM and DRA829V system-on-module (J721EXSOMXEVM,
https://www.ti.com/tool/J721EXSOMXEVM)

• DRA821 system-on-module (J7200XSOMXEVM, https://www.ti.com/tool/J7200XSOMXEVM)

• TDA4VM processor starter kit for Edge AI vision systems (SK-TDA4VM, https://www.ti.com/tool/SK-

TDA4VM).
Note that the Common Processor Board is required for either TDA4 or DRA821 SOM modules, but the SK-
TDA4VM does not require the Common Processor Board.

Refer to the Quick Start Guide here and the User's Guide here for important information regarding setting
up the TDA4 EVM as well as technical specifications. Similar documentation for DRA821 and SK-TDA4VM
can be found in the product pages listed above.

3 Prepare Software on Target Board

Greengrass 2.x can be installed to the standard DRA82x Linux file system. This section provides
instructions to:

• Create a standard boot SD card

• Build and Install Greengrass
If a user already has a bootable SD card or obtained required binary packages for Greengrass, steps to
build them can be skipped.

These build and installation steps are also verified with Greengrass v1.1, with slight difference of
dependent packages.

3.1 Creating a standard boot SD card

Note: SDK version numbers in URLs given in this section may be updated to the latest versions as needed.
Additionally, for DRA821 and SK-TDA4VM, use their specific SDK releases.

Step 1:
Download latest Processor SDK at:
https://www.ti.com/tool/PROCESSOR-SDK-J721E (DRA829/TDA4)
https://www.ti.com/tool/PROCESSOR-SDK-J7200 (DRA821x)
https://www.ti.com/tool/download/PROCESSOR-SDK-LINUX-SK-TDA4VM (SK-TDA4VM)

and install to a Linux host. Detailed instructions are available at:
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-
jacinto7/08_00_00_08/exports/docs/linux/Overview/Download_and_Install_the_SDK.html

Step 2:
Use the supplied shell script to prepare the SD card with boot files and Linux file system, by issue:

sudo <SDK_INSTALL_DIR>/bin/mksdboot.sh --device /dev/sdX --sdk <SDK INSTALL DIR>

#Replace the /dev/sdX with appropriate device name of the SD card

Refer to the SDK Getting Started Guide at:
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-
jacinto7/08_00_00_08/exports/docs/linux/Overview/Processor_SDK_Linux_Formatting_SD_Card.html

https://www.ti.com/tool/J721EXSOMXEVM
https://www.ti.com/tool/J7200XSOMXEVM
https://www.ti.com/tool/SK-TDA4VM
https://www.ti.com/tool/SK-TDA4VM
https://www.ti.com/lit/pdf/SPRUIS8
https://www.ti.com/lit/pdf/spruis4
https://www.ti.com/tool/PROCESSOR-SDK-J721E
https://www.ti.com/tool/PROCESSOR-SDK-J7200
https://www.ti.com/tool/download/PROCESSOR-SDK-LINUX-SK-TDA4VM
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Overview/Download_and_Install_the_SDK.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Overview/Download_and_Install_the_SDK.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Overview/Processor_SDK_Linux_Formatting_SD_Card.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Overview/Processor_SDK_Linux_Formatting_SD_Card.html

in case errors or further details are needed.

Alternatively, the out-of-box demo software, such as:
https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-
jacinto7/08_00_00_12/exports/docs/psdk_rtos/docs/user_guide/out_of_box_j721e.html

also provide binary and instructions to prepare bootable Linux SD card.

Step 3:
Test the SD card. Insert the prepared card to the MicroSD card slot on the common processor board, and
confirm the board is configured for SD card boot:
SW8[1-10]: 10000010 (Switch 1 to 8 order, “1” = ON)

SW9: All switches in OFF

If having trouble booting the SD card, try one-time reset the u-boot environment variables by:

1. Stop the boot at u-boot
2. Issue following command at u-boot:

env default –a –f

saveenv

3. Power off and reboot
Additional details and troubleshooting can be referenced at:
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-
jacinto7/08_00_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-Memory.html

3.2 Build and Install Greengrass

This section we build the Greengrass and required dependencies and install to the target filesystem on
the SD card created in the previously section.

If you are using a preinstalled SD card from the EVM kit, you may following Step 1 in Section 3.1 to install
Processor SDK Linux on a host PC first.

Step 1:
Download the toolchain to the host Linux PC:

mkdir $HOME/toolchains

wget https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-

9.2-2019.12-x86_64-arm-none-linux-gnueabihf.tar.xz

tar xvf gcc-arm-9.2-2019.12-x86_64-arm-none-linux-gnueabihf.tar.xz -C $HOME/toolchains

wget https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-

9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz

tar xvf gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz -C $HOME/toolchains

Step 2:
Update Yocto build layers with the latest meta-aws release

On the host PC, edit:
<SDK_INSTALL_DIR>yocto-build/build/processor-sdk-linux/processor-sdk-linux-<SDK_VERSION>.txt

Update meta-aws release tag to "10b45cf5d9459122e55d2e9891e8fea7b4f38911". Latest tag can be
obtained from:
 https://github.com/aws/meta-aws/tree/dunfell

make sure to choose the branch that matches the Yocto build (dunfell).

https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_00_00_12/exports/docs/psdk_rtos/docs/user_guide/out_of_box_j721e.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-rtos-jacinto7/08_00_00_12/exports/docs/psdk_rtos/docs/user_guide/out_of_box_j721e.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-Memory.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_00_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-Memory.html
https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-arm-none-linux-gnueabihf.tar.xz
https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-arm-none-linux-gnueabihf.tar.xz
https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz
https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz
https://github.com/aws/meta-aws/tree/dunfell

Step 3:
Add Greengrass as a yocto build layer

cd <SDK_INSTALL_DIR>yocto-build

./oe-layertool-setup.sh -f configs/processor-sdk-linux/processor-sdk-linux-

<SDK_VERSION>.txt

cd build

echo "INHERIT += \"own-mirrors\"" >> conf/local.conf

echo "SOURCE_MIRROR_URL = \"https://software-dl.ti.com/processor-sdk-mirror/sources/\""

>> conf/local.conf

echo "ARAGO_BRAND = \"psdkla\"" >> conf/local.conf

echo "DISTRO_FEATURES_append = \" virtualization\"" >> conf/local.conf

echo "IMAGE_INSTALL_append = \" docker\"">> conf/local.conf

echo "IMAGE_INSTALL_append = \" greengrass-bin\"">> conf/local.conf

echo "IMAGE_INSTALL_append = \" corretto-11-bin\"">> conf/local.conf

. conf/setenv

Step 4:
Build Greengrass packages
Issue build commands from:
cd <SDK_INSTALL_DIR>yocto-build/build

For DRA829/TDA4VM:
TOOLCHAIN_BASE=<TOOLCHAIN_BASE> MACHINE=j7-evm bitbake -k greengrass-bin

For DRA821:
TOOLCHAIN_BASE=<TOOLCHAIN_BASE> MACHINE=j7200-evm bitbake -k greengrass-bin

For Greengrass V1.1, user shall replace greengrass-bin with greengrass.

Note that TOOLCHAIN_BASE need to be updated with path where user's toolchain is installed.

Upon successful build, installers will be at:

<SDK_INSTALL_DIR>yocto-build/build/arago-tmp-external-arm-glibc/deploy/ipk/aarch64

 greengrass_<VERSION>_aarch64.ipk

 sqlite3_<VERSION>_aarch64.ipk

corretto-11-bin_<VERSION>_aarch64.ipk

Note that sqlite3 package is only required for Greengrass Version 1.1, and corretto is only required by
Greengrass Version 2.x. Copy these installer binaries to a directory on the target SD card.

Debug Information

In case of misconfigurations or errors, user can remove all source and build files by manually deleting the
following directories:

cd <SDK_INSTALL_DIR>yocto-build

rm -Rf build sources

then restart from Step 2 above.

Step 5:
Install Greengrass to target file system

Boot the board with the SD card, go to the directory where the installers are copied to, issue:

opkg install corretto-11-bin_<VERSION>_aarch64.ipk

opkg install greengrass_<VERSION>_aarch64.ipk

opkg install sqlite3_<Version>_aarch64.ipk [only needed for V1.1]

Once this completes, verify that java has been installed using the command:

java – version

java -jar <GG_Install_Dir>/lib/Greengrass.jar --version

where <GG_Install_Dir> is the installed Greengrass directory. If this command executes successfully, the
pre-requisites for Greengrass v2 are complete.

Alternatively, latest Greengrass software may be downloaded and installed with the following command
on the host:
wget https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

unzip greengrass-nucleus-latest.zip -d <GGCoreInstall>

rm greengrass-nucleuslatest.zip

Replace <GGCoreInstall> with the folder that you want to use.

4 Setup Your AWS Account and Permissions

Step 1:
Setup an AWS account

If you don’t have an AWS account, please refer to the instructions at Set up your AWS Account. Follow
the steps outlined in the following sections to create your account and a user and get started:

• Sign up for an AWS account and

• Create a user and grant permissions.

• Open the AWS IoT console
Pay special attention to the Notes. Note that certain AWS services used in the demo are configured
beyond the free-tier and may incur cost. Therefore, it is not recommended to use the free-tier account.

Step 2:
Create an IAM user account

It is recommended to deploy CMS under an IAM user account, instead of using the root account. To
create a IAM user:

1. Log in to the AWS root account just created, go to the AWS management console and choose
IAM services

2. Under Access management, select Users and Add a new user, then following the prompt to
create a new user

3. Make sure to save the access key ID and Secret Access Key. Note the secret access key can only
be saved when a user is created.

Step 3 (optional):
Install the AWS Command Line Interface

Installing the AWS CLI is needed to complete the instructions in this guide.
To install the AWS CLI on your host machine, refer to the instructions at Installing the AWS CLI v2.
AWS CLI can also be installed to the target board. See instructions later.

https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

5 Provision Greengrass to IOT Core (Automated Provisioning)

It is recommended that you use the quick installation option, leaving the task of setting up Greengrass to
the installer.
To enable this, the --provision true option will be used. For more details, refer
to https://docs.aws.amazon.com/greengrass/v2/developerguide/quick-installation.html

Step 1:
Provide your credentials

On the target board, set AWS access credentials:
export AWS_ACCESS_KEY_ID=<the access key id for your user>

export AWS_SECRET_ACCESS_KEY=<the secret access key for your user>

Those two key parameters are from your account – those credentials are for the user you want to act as.

Step 2:
Boot the DRA8xx target board, go to the installed Greengrass directory. Run the installer as shown
below. Update values below to reflect the configuration of your device, account and region.

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \

-jar ./GGCoreInstall/lib/Greengrass.jar \

--aws-region region \

--thing-name MyGreengrassCore \

--thing-group-name MyGreengrassCoreGroup \

--tes-role-name GreengrassV2TokenExchangeRole \

--tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias \

--component-default-user ggc_user:ggc_group \

--provision true \

--setup-system-service true \

--deploy-dev-tools true

You may replace thing-name, thing-group-name with your own. If all goes well, amongst other messages
you will see the following output on the device console:

Successfully configured Nucleus with provisioned resource details!

Configured Nucleus to deploy aws.greengrass.Cli component

Successfully set up Nucleus as a system service

NOTE: Pay special attention to installer messages in the console output. Some manual instructions (such
as attaching a policy) may be given.

Verify the following:

The GreengrassV2TokenExchangeRoleAccess policy has been attached to the role

GreengrassV2TokenExchangeRole.

The local development tools (specified by the --deploy-dev-tools true option) take some time

to deploy.

If you installed AWS CLI on a host, the following command can be used to check the status of this
deployment:

aws greengrassv2 list-effective-deployments --core-device-thing-name MyGreengrassCore

When the status is SUCCEEDED, run the following command to verify that the Greengrass CLI is

https://docs.aws.amazon.com/greengrass/v2/developerguide/quick-installation.html

installed and runs on your device. Replace /greengrass/v2 with the path to the base folder on your device
as needed.
/greengrass/v2/bin/greengrass-cli help

Step 3
Create Hello World Component

In Greengrass v2, components can be created on the edge device and uploaded to the cloud, or vice
versa.

Follow the instructions online under the section To create a Hello World component to create, deploy,
test, update and manage a simple component on your device.

Step 4
Upload the Hello World component

Follow the instructions online at Upload your component to upload your component to the cloud, where
it can be deployed to other devices as needed.

Troubleshooting

Refer to the instructions at Troubleshooting Greengrass v2 for information on:

• How to View AWS IoT Greengrass Core software logs

• How to View component logs

• AWS IoT Greengrass Core software issues

• AWS IoT Greengrass cloud issues

• Core device deployment issues

• Core device component issues

You can also refer to Logging and Monitoring to learn how to log API calls, gather system health telemetry
data, and check core device status.

6 Deploy CMS Fleet Management Demo to the AWS Account

To visually demonstrate connectivity of the DRA8xx EVM as an IOT Device, we deploy AWS CDF and CMS
Fleet Management demo to visualize data sent to the IOT core.

Refer to: Section 1, Build and Deploy CMS from Source
Connected Mobility Solution Developer Guide: Documents and tools for building CMS-based Solutions
To be published at:
https://aws.amazon.com/solutions/implementations/aws-connected-vehicle-solution

Note that a Fleet Manager UI web access URL will be given at the end of the deployment, for user to log in
and view the map interface.

To verify correct functionality of the Fleet Manager, one can publish single vehicle data to the CMS, or use
a software simulation to add vehicles to the Fleet. See

Section 6: Connecting a Telematics Source (TCU) to CMS with AWS Greengrass from source
Connected Mobility Solution Developer Guide: Documents and tools for building CMS-based Solutions
To be published at:

https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/getting-started.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/troubleshooting.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/logging-and-monitoring.html
https://aws.amazon.com/solutions/implementations/aws-connected-vehicle-solution

https://aws.amazon.com/solutions/implementations/aws-connected-vehicle-solution

for detailed instructions.

7 Simulate Vehicle Telemetry Data from Target Board to IoT Core

At this point, we successfully provisioned a Greengrass core on the DRA82x board. We are ready to
generate some simulated vehicle telematics data to the IOT core from the Greengass core on the target
board. We use aws-sample software, aws-connected-mobility-solution-telemetry-device-demo to achieve
this goal.

Step 1:
Install latest aws-cms-telemetry-demo to DRA8xx target board. On the DRA8xx console, issue:

git clone https://github.com/aws-samples/aws-cms-telemetry-demo

this will install latest application on the board.

Step 2:
If this is the first the board is connecting to this AWS account, create AWS account credentials, by issuing:

$ mkdir ~/.aws

$ cat >> ~/.aws/config

[default]

aws_access_key_id=YOUR_ACCESS_KEY_HERE

aws_secret_access_key=YOUR_SECRET_ACCESS_KEY

region=YOUR_REGION (such as us-west-2, us-west-1, etc)

Step 3:
Install AWS CLI on the DRA8xx EVM:

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-aarch64.zip" -o

"awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

see
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#ARM
if you run into any debug issues.

Step 4:
Install required Python packages. Go to the installed aws-cms-telemetry-demo directory, execute:

python3 -m pip install -r requirements.txt

This will install all required python packages shown below:

appdirs==1.4.4

awscrt==0.9.15

awsiotsdk==1.5.3

boto3==1.16.43

botocore==1.19.43

certifi==2020.12.5

chardet==4.0.0

distlib==0.3.1

filelock==3.0.12

idna==2.10

importlib-metadata==3.4.0

jmespath==0.10.0

pbr==5.5.1

pyfiglet==0.8.post1

python-dateutil==2.8.1

requests==2.25.1

https://aws.amazon.com/solutions/implementations/aws-connected-vehicle-solution
https://github.com/aws-samples/aws-cms-telemetry-demo
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html#ARM

s3transfer==0.3.3

six==1.15.0

stevedore==3.3.0

typing-extensions==3.7.4.3

urllib3==1.26.2

virtualenv==20.3.0

virtualenv-clone==0.5.4

virtualenvwrapper==4.8.4

zipp==3.4.0

Step 5:
Customize the GPS data file in the similar.

Refer to Appendix I, Creating Some Telemetry to build a customized latLong.csv file and replace the one in
the demo. This will allow the demo to generate vehicle trip data of your desire locations.

Step 6:
Obtain CDFStackName from AWS

We would like the simulator to publish vehicle telematics data to the existing CMS that we deployed in
previous steps. Thus we need to give the following information:

Template profile: default (from Section 6)

stackName: cms-development (from Section 6)

UserName: user name to log into the FleetManager web UI (from Section 6)

Password: password to log into the FleetManager Web UI (from Section 6)

CDFStackName (see below)

 To obtain the CDFStackName, log into AWS management console, select CloudFormation, click on Stacks
on the left pane, uncheck “View Nested” on the right pane, click on “cms-development”, then click on
“Resources” menu, and click the weblink for CDF ID, then you will see the CDF stack ID. See screenshot
below.

Step 7:
Set up DRA8xx as a vehicle. In the demo directory, issue:

python3 ./setupSingleVehicle.py –SkipSetupProvisioning Templates --profile=default --

stackName=cms-development --VIN=LSH14J4C4LA046512 --FirstName=DRA8 --LastName=Jacinto --

Username=jacinto --Password=Jacinto# --CDFstackName cms-development-CDF-1D2B6HBATEVMH

Note the option –SkipSetupProvisioning tells the script to use existing CMS deployment.
Upon successful execution, user shall see the vehicle on the Fleet Manager UI screen, and also given a
web UI URL, which should be the same as the URL before.

Step 8:

Generate simulated trip data

python3 ./generateTelemetry.py --profile=default --VIN LSH14J4C4LA046512

This script execute simulated trip/route data and publish to the CMS, where the trip can be shown on the
Fleet Manager UI.

User shall be able to see live motion of the vehicle on the Fleet Manager web UI.

8 Sending an Instant Text Message upon Vehicle Event (future plan
only)

In this demo, a Lambda function in the IOT core triggers an instant text message when a vehicle event is
sent to the IOT core. A preconfigured cell phone number is provided.

9 Enable Edge Inference as Greengrass Component (future plan only)

In this demo, a set of simulated inverter motor operating data is injected to a CAN interface on the target
board, simulating a vehicle TCU where powertrain module data is collected. A set of Lambda functions are
deployed in the Greengrass core, which perform model-based machine learning and predictive
maintenance using the analytics engines on the processor. A subset of the operating data is also sent to
the IOT core via Greengrass, allowing the ML model to be refined and then deployed on the edge device.

This demo integrated two existing TI demos:

• Gateway demo that integrates CAN and Ethernet bridges

• Predictive maintenance

Appendix I: Create some Telemetry

To create a CSV of lat/long coordinates to create a proper simulation of a vehicle along a route, the
quickest implementation is to utilize an online maps resource and export a route.
This will provide the most accurate data to simulate your trips and begin build upon other features
available in CMS. Below is the procedure to develop that data to be stored in assets/latLong.csv as
exported.

1. Go to maps.google.com
2. Click on the hamburger menu and select 'Your Places'
3. At the bottom of the sidebar, select 'CREATE MAP'
4. When the map creation interface loads in a new tab, click the 'Add directions' under the search

bar
5. Put in two local landmarks in the city of your choice and the route should appear on the map
6. Click on the 'Untitled Map' dot menu, and select 'Export to KML/KMZ'
7. Select the dropdown and select just the route directions and select download.
8. Find the Placemark/coordinates within the markup language and copy that section (without the

tags) into your latLong.csv

Appendix II: Manual provisioning steps

Instead of automatic provisioning, an AWS account owner may choose to create a Thing in the AWS
management console, obtain credentials, and authenticate the Thing with the credentials. This methods is
useful to add an IOT device to an existing account.

More details of this approach is available at:
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html.

Step 1
Create an AWS IoT thing to represent your Greengrass Core device

Go to the AWS IoT console
In the navigation pane on the left, choose Manage.
Choose Things
Under You don't have any things yet, choose Register a thing, or if your account already has some things,
choose Create.

Under Creating AWS IoT things, choose Create a single thing.

On the Add your device to the thing registry page, in the Name field, enter a name for your thing, such as
J7GGCore.

When naming things, choose the name carefully, because you can't change a thing name after you create
it.

You can skip the Thing Type and Add this thing to a group steps for now.
Choose Next

Under Add a certificate for your thing, choose Create certificate.
Under Certificate Created!, choose each of the Download links to download the following onto your host
machine:
 A certificate for this thing
 A public key
 A private key
You also need to download the root CA certificate: RSA 2048 bit key: Amazon Root CA 1
Choose Activate to activate the certificate.
Choose Done for now. The policy will be attached later.

The certificates and keys will be required later.

Step 2:
Create a Policy

The Greengrass core device needs explicit permissions to access AWS services and resources as well as the
operations it can perform on them. Granting permissions is done by creating and attaching an AWS IoT
policy that defines the AWS IoT permissions for your Greengrass core device.

Go to the AWS IoT console
In the navigation pane on the left, choose Secure.
Choose Policies
Choose Create
Give the policy a name
Under Add statements, choose Advanced mode
Paste the following into the template text box, overwriting all the template text

{

 "Version": "2012-10-17",

 "Statement": [

https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html.
http://console.aws.amazon.com/iot
https://www.amazontrust.com/repository/AmazonRootCA1.pem
http://console.aws.amazon.com/iot

 {

 "Effect": "Allow",

 "Action": [

 "iot:Publish",

 "iot:Subscribe",

 "iot:Receive",

 "iot:Connect",

 "greengrass:*"

],

 "Resource": [

 "*"

]

 }

]

}

NOTE:
The policy example shown allows access to all MQTT topics and Greengrass operations, so your device
works with custom applications and future changes that require new Greengrass operations. It is
recommended that you restrict this policy to grant the least privileges required by your use case.

Choose Create to create the policy and save it. You will see a confirmation message "Successfully created
policy".

Step 3:
Attach the Policy

The policy just created in Create a Policy needs to be attached to the certificate associated with the
Greengrass Core thing created in Create an AWS IoT thing to represent your Greengrass Core device.

Go to the AWS IoT console
In the navigation pane on the left, choose Manage.
Choose Things
In the Search box, enter the name of the Greengrass Core thing
Click on the name of the thing
Choose Security
Under Certificates, choose the certificate shown
In the Actions drop-down menu, choose Attach policy
Find and select the policy you created in Create a Policy
Choose Attach to attach this policy to the certificate. The permissions in the policy are now attached to
the Greengrass Core device.

Step 4:
Retrieve AWS IoT endpoints

Get the AWS IoT data and credentials endpoints for your AWS account, and save them for use later. Your
device uses these endpoints to connect to AWS IoT.

Device Data Endpoint
Go to the AWS IoT console
In the navigation panel on the left, choose Settings
The endpoint can be found under Device data endpoint. It will look similar to this: xxxxxxxxxxxxxx-
ats.iot.xxxxxxxxx.amazonaws.com

Copy and save this endpoint - it will be used in the configuration file for the installer.

http://console.aws.amazon.com/iot
http://console.aws.amazon.com/iot

Credentials Endpoint
The credentials endpoint can be obtained only through the AWS CLI.

Issue the following command:

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The response looks similar to the following example, if the request succeeds.

{

 "endpointAddress": "device-credentials-prefix.credentials.iot.us-

west-2.amazonaws.com"

}

Copy and save this endpoint - it will be used in the configuration file for the installer.

Step 5:
Create a token exchange role and alias

Not all AWS services support certificate based authentication. To authorize calls to such services, the
Greengrass core device will use an IAM service role, called the token exchange role. The device uses the
AWS IoT credentials provider (through the credentials endpoint) to get temporary AWS credentials for
this role.

For more details, refer to Authorizing direct calls to AWS services.

For ease of management, instead of directly using the token exchange role, we will use an AWS IoT role
alias for the Greengrass core device. Role aliases enable you to change the token exchange role for a
device without having to change the device configuration.

Now create a token exchange IAM role and an AWS IoT role alias that points to that role.

Step 6:
Create the access policy for the token exchange role

First create the access policy required by the token exchange role.

Navigate to the AWS IAM console
In the navigation pane on the left, choose Policies
Select Create policy
Select the JSON tab

Paste the following policy document in the text box, replacing the existing template text:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iot:DescribeCertificate",

 "logs:CreateLogGroup",

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html
http://console.aws.amazon.com/iam

 "logs:CreateLogStream",

 "logs:PutLogEvents",

 "logs:DescribeLogStreams",

 "iot:Connect",

 "iot:Publish",

 "iot:Subscribe",

 "iot:Receive",

 "s3:GetBucketLocation"

],

 "Resource": "*"

 }

]

}

Choose Next: Tags
Choose Next: Review
Enter a policy Name and Description
Click on Create policy to create and save the policy.

NOTE – The examples in this document are intended only for dev environments. All devices in
your fleet must have credentials with privileges that authorize only intended actions on specific
resources. The specific permission policies can vary for your use case. Identify the permission
policies that best meet your business and security requirements. For more information, refer to
Example policies and Security Best practices

Step 7:
Create an S3 artifacts access policy

Navigate to the AWS IAM console
In the navigation pane on the left, choose Policies
Select Create policy
Select the JSON tab
Paste the following policy document in the text box, replacing the existing template text:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject"

],

 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET-NAME/*"

 }

]

}

Change DOC-EXAMPLE-BUCKET-NAME to your S3 bucket name.
Choose Next: Tags
Choose Next: Review
Enter a policy Name and Description
Click on Create policy to create and save the policy.

Step 8:
Create the token exchange IAM role

Navigate to the AWS IAM console
In the navigation pane on the left, choose Roles
Select Create Role

https://docs.aws.amazon.com/iot/latest/developerguide/example-iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
http://console.aws.amazon.com/iam
http://console.aws.amazon.com/iam

Choose AWS Service, then scroll below to select IoT
Under Select your use case, choose IoT
Choose Next: Permissions
Choose Next: Tags
Choose Next: Review
Enter a role name and description
Choose Create Role to create the role.

In the confirmation message at the top of the page - "The role <rolename> has been created", click on the
<rolename>.
Choose the Trust Relationships tab
Select Edit trust relationship

Paste the following policy statement into the text box, overwriting all template text:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "credentials.iot.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

The above trust policy allows the AWS IoT credentials provider to assume the role on behalf of the device.

Choose Update Trust Policy to save the changes.

Select the Permissions tab
Choose Attach Policies
In the Search field, enter the name of the policy you created in Create the access policy for the token
exchange role.
In the search results, select this policy using the checkbox
Choose Attach policy

Repeat the above steps for the policy you created in Create an S3 artifacts access policy.

Step 9:
Create the role alias

Create the role alias to be used by the Greengrass Core device.

Navigate to the AWS IoT console
In the navigation pane on the left, select Secure
Choose Role Aliases
Select Create
Enter a Name for the role alias
Under Select a role to alias, choose the name of the token exchange role.
Select Create role alias

Step 10:

http://console.aws.amazon.com/iot

Create the configuration file

Use a text editor to create a configuration file named config.yaml to provide to the installer.
For example, you can run the following command to use GNU nano to create the config.yaml file.

nano GGCoreInstall/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies system
parameters and Greengrass nucleus parameters.

system:

 certificateFilePath: "/tmp/certs/device.pem.crt"

 privateKeyPath: "/greengrass/v2/private.pem.key"

 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"

 rootpath: "/greengrass/v2"

 thingName: "J7GGCore"

services:

 aws.greengrass.Nucleus:

 componentType: "NUCLEUS"

 version: "2.2.0"

 configuration:

 awsRegion: "us-west-2"

 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"

 iotDataEndpoint: "a302j5u5tb9gbt-ats.iot.us-west-2.amazonaws.com "

 iotCredEndpoint: " c1rlm199xh42f1.credentials.iot.us-west-2.amazonaws.com"

NOTE: Update the values in the above file to reflect the configuration of your device, account and region.

Step 11:
Load the certificates and keys on the device

Create the Greengrass root folder on the device. You install the AWS IoT Greengrass Core software to this
folder later.

sudo mkdir -p /greengrass/v2

Copy the downloaded certificates and keys to the device as follows:
 The device certificate : /tmp/certs/device.pem.crt (or other path)
 The private key: /greengrass/v2/private.pem.key
 The root CA certificate: /greengrass/v2/AmazonRootCA1.pem

Step 12:
Install Greengrass V2, similar to the automatic provisioning

Run the installer as shown below.

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \

-jar ./GGCoreInstall/lib/Greengrass.jar \

--aws-region region \

--thing-name MyGreengrassCore \

--thing-group-name MyGreengrassCoreGroup \

--tes-role-name GreengrassV2TokenExchangeRole \

--tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias \

--component-default-user ggc_user:ggc_group \

--setup-system-service true \

--deploy-dev-tools true

If all goes well, you will see the following output (amongst other messages) on the device console:

Successfully configured Nucleus with provisioned resource details!

Configured Nucleus to deploy aws.greengrass.Cli component

The installer prints Successfully set up Nucleus as a system service if it set up and ran the software as a
service

NOTE: Pay special attention to installer messages in the console output. Some manual instructions (such
as attaching a policy) may be given.

Verify the following:

• The GreengrassV2TokenExchangeRoleAccess policy has been attached to the role
GreengrassV2TokenExchangeRole.

• The policy configured in Create an S3 artifacts access policy has been attached to
GreengrassV2TokenExchangeRole.

The local development tools (specified by the --deploy-dev-tools true option) take some time

to deploy. The following command can be used to check the status of this deployment:

 aws greengrassv2 list-effective-deployments --core-device-thing-name MyGreengrassCore

When the status is SUCCEEDED, run the following command to verify that the Greengrass CLI is
installed and runs on your device. Replace /greengrass/v2 with the path to the base folder on your device
as needed.
 /greengrass/v2/bin/greengrass-cli help

If this does not work, deploy the public component aws.greengrass.Cli from the console. For more details,
refer to the online documentation.

https://docs.aws.amazon.com/greengrass/v2/developerguide/install-gg-cli.html

