
Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 1 of 83

MMWAVE SDK User Guide

Product Release 3.6 LTS

Release Date: June 13, 2022

Document Version: 1.0

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 2 of 83

DOCUMENT LICENSE
This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License (CC BY-SA 3.0). To view a copy of this license,
visit or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, http://creativecommons.org/licenses/by-sa/3.0/us/
California, 94105, USA.

COPYRIGHT
Copyright (C) 2014 - 2020 Texas Instruments Incorporated - http://www.ti.com

DISCLAIMER
This mmWave SDK User guide is generic and contains details about all the mmWave devices that are supported by TI in general. However, note that
not all mmWave devices may be supported in a given mmWave SDK release. Please refer to the mmWave SDK Release notes to understand the list
of devices/platforms supported in a given mmWave SDK release.

 This software product is used to configure TI’s mmWave devices, including RF emissions parameters for such devices. Note NOTICE:
that many countries or regions impose regulations governing RF emissions. Users are responsible for understanding local RF emission
regulations and operating the product within those regulations.

http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.ti.com/

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 3 of 83

CONTENTS

1 Out-of-box mmWave Experience
2 System Overview

2.1 mmWave Suite
2.2 mmWave Demos
2.3 External Dependencies
2.4 Terms used in this document
2.5 Related documentation/links

3 Getting started
3.1 Programming mmWave devices
3.2 Loading images onto mmWave EVM

3.2.1 Demonstration Mode
3.2.2 CCS development mode

3.3 Running the Demos
3.3.1 mmWave Demo
3.3.2 mmWave demo with LVDS-based instrumentation

3.4 Configuration (.cfg) File Format
3.5 Running the prebuilt unit test binaries (.xer4f and .xe674)

4 How-To Articles
4.1 How to identify the COM ports for mmWave EVM
4.2 How to flash an image onto mmWave EVM
4.3 How to erase flash on mmWave EVM
4.4 How to connect mmWave EVM to CCS using JTAG

4.4.1 Emulation Pack Update
4.4.2 Device support package Update
4.4.3 Target Configuration file for CCS (CCXML)

4.4.3.1 Creating a CCXML file
4.4.3.2 Connecting to mmWave EVM using CCXML in CCS

4.5 Developing using SDK
4.5.1 Build Instructions
4.5.2 Setting up build environment

4.5.2.1 Windows
4.5.2.2 Linux

4.5.3 Building demo
4.5.3.1 Building demo in Windows
4.5.3.2 Building demo in Linux

4.5.4 Advanced build
4.5.4.1 Building drivers/control/alg components
4.5.4.2 "Error on warning" compiler and linker setting

5 MMWAVE SDK deep dive
5.1 System Deployment
5.2 Typical mmWave Radar Processing Chain
5.3 Typical Programming Sequence

5.3.1 RF Control Path
5.3.1.1 Single RF Control (MSSRADARSS or DSSRADARSS)
5.3.1.2 Co-operative RF control ((MSS+DSS)<->RADARSS)

5.3.2 Data Path
5.3.2.1 Data processing flow with local domain control
5.3.2.2 Data processing flow with remote domain control
5.3.2.3 Distributed Data processing flow and control

5.4 mmWave SDK - TI components
5.4.1 Demos

5.4.1.1 mmWave Demo
5.4.2 Drivers
5.4.3 OSAL
5.4.4 mmWaveLink
5.4.5 mmWave API

5.4.5.1 Full configuration
5.4.5.2 Minimal configuration

5.4.6 Datapath Interface (DPIF)
5.4.7 Data Processing Units (DPUs)
5.4.8 Data Path Manager (DPM)
5.4.9 Data processing chain (DPC)
5.4.10 mmWaveLib
5.4.11 Group Tracker
5.4.12 Board/EVM Configuration
5.4.13 RADARSS Firmware
5.4.14 CCS Debug Utility

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 4 of 83

5.4.15 HSI Header Utility
5.4.16 Rtrim Utility
5.4.17 Lib Sleep Utility
5.4.18 mmWave SDK - System Initialization

5.4.18.1 ESM
5.4.18.2 SOC
5.4.18.3 Pinmux

5.4.19 Usecases
5.4.19.1 Data Path tests using Test vector method
5.4.19.2 CSI-2 based streaming of ADC data
5.4.19.3 Basic configuration of Front end and capturing ADC data in L3 memory

6 Appendix
6.1 Memory usage
6.2 Register layout
6.3 Enable DebugP logs
6.4 Shared memory usage by SDK demos
6.5 mmWave Device Image Creator
6.6 mmw Demo: cryptic message seen on DebugP_assert
6.7 How to execute Idle instruction in idle task when using SYSBIOS
6.8 Range Bias and Rx Channel Gain/Offset Measurement and Compensation
6.9 Guidelines on optimizing memory usage
6.10 How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled
6.11 Enabling L3 cache for DSP/C674x on mmWave devices
6.12 DSPlib integration in mmWave C674x based application (Using 2 libraries simultaneously)

6.12.1 Integrating individual functions from each library
6.12.2 Patching the installation

6.13 SDK Demos: miscellaneous information
6.14 Data size restriction for a given session when sending data over LVDS
6.15 CCS Debugging of real time application

6.15.1 Inter-chirp debugging
6.15.2 Inter-frame debugging
6.15.3 Using non-real time chain test code
6.15.4 Using printfs in real time
6.15.5 Viewing hardware registers
6.15.6 Viewing expressions/memory in real time

6.16 Size of Enum

LIST OF FIGURES

Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

Figure 2: Chirp Diagram
Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports
Figure 4: Creating a mmWave device CCXML in CCS
Figure 5: Connecting to mmWave Device in CCS

Figure 6: Autonomous mmWave sensor (Standalone mode)
Figure 7: SDK Layered block diagram
Figure 8: Typical mmWave radar processing chain
Figure 9: Typical mmWave radar processing chain using mmWave SDK components
Figure 10: Scalable data processing chain using mmWave SDK
Figure 11: Typical mmWave radar control flow
Figure 12: mmWave Isolation mode: Detailed Control Flow (Init sequence)
Figure 13: mmWave Isolation mode: Detailed Control Flow (Config sequence)
Figure 14: mmWave Isolation mode: Detailed Control Flow (start sequence)
Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)
Figure 16: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)
Figure 17: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)
Figure 18: Typical mmWave Detection Processing Layers
Figure 19: Data processing flow with local domain control (init/config)
Figure 20: Data processing flow with local domain control (start/chirp/frame/stop)
Figure 21: Data processing flow with remote domain control (init/config)
Figure 22: Data processing flow with remote domain control (start/chirp/frame/stop)
Figure 23: Distributed Data processing flow and control (init/config)
Figure 24: Distributed Data processing flow and control (start/chirp/frame/stop)
Figure 25: mmWave SDK Drivers - Internal software design
Figure 26: mmWaveLink - Internal software design
Figure 27: mmWave API - Internal software design
Figure 28: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with MSS and DSS cores and module in co-operative mode)
Figure 29: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with single core or when module is used in isolation mode)
Figure 30: DPU - Internal software design
Figure 31: DPU - typical call flow

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 5 of 83

Figure 32: Datapath manager (DPM) - internal software design

Figure 33: Sample ROV log with debug prints

LIST OF TABLES

Table 1: mmWave SDK Demos - CLI commands and parameters
Table 2: Supported drivers and their functionality

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 6 of 83

1.
2.
3.

1.
2.

1.

2.

3.

a.

Out-of-box mmWave Experience

To experience the mmWave technology offered by TI, you will need to procure the following

Hardware
mmWave TI EVM
Power supply cable as recommended in TI EVM user guide
PC

Software
Pre-flashed mmWave Demo running on TI EVM (See instructions in this user guide on how to update the flashed demo)
Chrome browser running on PC

Next, to visualize the data flowing out of TI mmWave devices, follow these steps

Connect the EVM to a power outlet via the power cable and to the PC via the included USB cable. EVM should be powered up and
connected to PC now.
On your PC, browse to in Chrome browser and follow the prompts to install one-time software. https://dev.ti.com/mmWaveDemoVisualizer
[No other software installation is needed at this time]
The Visualizer app should detect and connect to your device via COM ports automatically (except for the very first time where users will need
to confirm the selection via OptionsSerial Port). Select the right Platform and SDK version and start your evaluation!

 Hint : Use HelpAbout to know your Platform and SDK version

For details on how to evaluate, any troubleshooting needs and/or to understand the know-how behind these steps, continue reading this SDK User
Guide...

If the flashed demo on the EVM is an old version and you would like to upgrade to latest demo, continue reading this SDK User Guide...

https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 7 of 83

System Overview

The mmWave SDK is split in two broad components: mmWave Suite and mmWave Demos.

mmWave Suite

mmWave Suite is the foundational software part of the mmWave SDK and would encapsulate these smaller components:

Drivers
OSAL
mmWaveLink
mmWaveLib
mmWave API
Data processing layer (manager, processing units)
RADARSS Firmware
Board Setup and Flash Utilities

mmWave Demos

SDK provides demos that depict the various control and data processing aspects of a mmWave application. Data visualization of the demo's output on
a PC is provided as part of these demos. These demos are example code that are provided to customers to understand the inner workings of the
mmWave devices and the SDK and to help them get started on developing their own application.

mmWave Processing Demo with TI Gallery App - " "mmWave Demo Visualizer

External Dependencies

All tools/components needed for building mmWave sdk are included in the mmwave sdk installer. But the following (for external components
debugging) are not included in the mmWave SDK.

CCS (for debugging)
DCA100EVM CLI in mmWave Studio

Please refer to the mmWave SDK Release Notes for detailed information on these external dependencies and the list of platforms that are supported.

Terms used in this document

Terms
used

Comment

xWR This is used throughout the document where that section/component/module applies to both AWR and IWR variants

BSS This is used in the source code and sparingly in this document to signify the RADARSS. It is also interchangeably referred to as the
mmWave Front End.

MSS Master Sub-system. It is also interchangeably referred to as Cortex R4F.

DSS DSP Sub-system. It is also interchangeably referred to as DSS or C674x core.

Related documentation/links

Other than the documents included in the mmwave_sdk package the following documents/links are important references.

SoC links:
Automotive mmWave Sensors
Industrial mmWave Sensors

Evaluation Modules (EVM) links:
Automotive Evaluation modules (Booster Pack, DEVPACK)
Industrial Evaluation modules (Booster Pack, ISK)

https://dev.ti.com/mmWaveDemoVisualizer
http://software-dl.ti.com/ra-processors/esd/MMWAVE-STUDIO/latest/index_FDS.html
http://www.ti.com/sensors/mmwave/awr/overview.html
http://www.ti.com/sensors/mmwave/iwr/overview.html
http://www.ti.com/sensors/mmwave/awr/tools-software.html
http://www.ti.com/sensors/mmwave/iwr/tools-software.html

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 8 of 83

1.

2.

Getting started

The best way to get started with the mmWave SDK is to start running one of the various demos that are provided as part of the package. TI mmWave
EVM comes pre-flashed with the mmWave demo. However, the version of the pre-flashed demo maybe older than the SDK version mentioned in this
document. Users can follow this section and upgrade/run the flashed demo version. The demos (source and pre-built binaries) are placed at

 folder.mmwave_sdk_<ver>/packages/ti/demo/<platform>

mmWave Demo

This demo is located at folder. The millimeter wave demo shows some of the radar sensing mmwave_sdk_<ver>/packages/ti/demo/ /mmw<platform>
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via . This demo ships out detected objects and other real-mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html
time information that can be visualized using the TI Gallery App - 'mmWave Demo Visualizer' hosted at . https://dev.ti.com/mmWaveDemoVisualizer
The version of the mmWave Demo running on TI mmWave EVM can be obtained from the Visualizer app using the HelpAbout menu.

Device
Support

AWR1843AOP xWR1843 xWR6843AOP

(QM/SIL2/ASILB)

xWR6443

xWR6843 (QM/SIL2
/ASILB)

xWR6843

(QM/SIL2/ASILB)

xWR1642

Demo
Directory

ti\demo\ \mmwxwr18xx ti\demo\xwr18xx
\mmw

ti\demo\ \mmwxwr64xx ti\demo\xwr64xx
\mmw

ti\demo\xwr68xx
\mmw

ti\demo\xwr16xx
\mmw

Binary
prefix

xwr18xxAOP_mmw_demo xwr18xx_mmw_demo xwr64xxAOP_mmw_demo xwr64xx_mmw_demo xwr68xx_mmw_demo xwr16xx_mmw_demo

EVM AWR1843AOPEVM AWR1843BOOST,

IWR1843BOOST

IWR6843AOPEVM AWR6843ISK,

IWR6843ISK

IWR6843ISK AWR1642BOOST,

IWR1642BOOST

Platform
selection
in
Visualizer

xwr18xx_AOP xwr18xx xwr68xx_AOP xwr64xx xwr68xx xwr16xx

Following sections describe the general procedure for booting up the device with the demos and then executing it.

Programming mmWave devices

Here is a little insight into the mmWave devices and the programmable cores they offer. For more detailed information, please refer to the Technical
reference manual for the respective mmWave device. These details are needed when loading the binaries using CCS and/or to understand the
various terminologies that exist in the "Getting started" section.

xWR14xx

xWR14xx has one cortex R4F core available for user programming and is referred to in this section as MSS or R4F. The demos and the unit tests
executable are provided to be loaded on MSS/R4F.

xWR16xx/xWR18xx/xWR68xx/xWR64xx

These devices have one cortex R4F core and one DSP C674x core available for user programming and are referred to as MSS/R4F and DSS/C674X
respectively. The demos have 2 executables - one for MSS and one for DSS which should be loaded concurrently for the demos to work. See

 section for more details. The unit tests may have executables for either MSS or DSS or both. These executables are meant to be Running the Demos
run in standalone operation. This means MSS unit test executable can be loaded and run on MSS R4F without downloading any code on DSS.
Similarly, DSS unit test execuable can be loaded and run on DSS C674x without downloading any code on DSS. The exceptions to this are the
Mailbox unit test named "test_mss_dss_msg_exchange", mmWave unit tests under full and minimal and datapath manager (DPM) unit tests.

Loading images onto mmWave EVM

User can choose either one of these modes for loading images onto the EVM.

Demonstration Mode

This mode should be used when either upgrading the factory flashed binaries on the EVM to latest SDK version using the pre-built binaries provided in
the SDK release or for field deployment of mmWave sensors.

Follow the procedure mentioned in the section ()How to flash an image onto mmWave EVM . Use the mmwave_sdk_<ver>/packages/ti/demo
 as the METAIMAGE1 file name./<platform>/<demo> /<platform>_<demo>.bin

Remove the "SOP2" jumper or toggle the SOP2 switch to OFF and reboot the device to run the demo image every time on power up. No
other image loading step is required on subsequent boot to run the demo.

CCS development mode

https://dev.ti.com/mmWaveDemoVisualizer
https://www.ti.com/tool/AWR1843AOPEVM
https://www.ti.com/tool/AWR1843BOOST
https://www.ti.com/tool/IWR1843BOOST
https://www.ti.com/tool/IWR6843AOPEVM
https://www.ti.com/tool/AWR6843ISK
https://www.ti.com/tool/IWR6843ISK
https://www.ti.com/tool/IWR6843ISK
https://www.ti.com/tool/AWR1642BOOST
https://www.ti.com/tool/IWR1642BOOST

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 9 of 83

1.
a.

b.
2.

a.
b.
c.

i.
ii.

d.
i.
ii.

e.
f.

1.

2.

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .bin files keep changing
constantly and frequent flashing of image onto the board is not desirable. This mode allows you to flash once and then use CCS to download a
different image to the device's RAM on every boot.

This mode is the recommended way to run the unit tests for the drivers and components which can be found in the respective test directory for that
component. See section for location of each component's test codemmWave SDK - TI components

EVM and CCS setup
Follow the procedure mentioned in the section: .How to flash an image onto mmWave EVM Use mmwave_sdk_<ver>/packages/ti

 as the METAIMAGE1 filename for the one-time flash. /utils/ccsdebug /<platform>_ccsdebug.bin
Follow the steps in to setup the environment for CCS connectivity.How to connect mmWave EVM to CCS using JTAG

With "SOP2" jumper removed or SOP2 switch toggled to off, after every power cycle/reboot of the EVM, follow these steps to load the
application:

Power up the EVM
Launch ccxml file created in step 1.b above.
If the test requires an application to run on MSS

Connect CCS to Cortex_R4_0
Load the MSS program. (for example: xwr16xx_<module>_mss.xer4f prebuilt executables provided in the SDK release
package)

If the test requires an application to run on DSP
Connect CCS to C674X_0
Load the DSS program. (for example: prebuilt executables provided in the SDK release xwr16xx_<module>_dss.xe674

 package)
Run the R4 and/or C674 cores
To reload, disconnect the connected cores, power cycle and connect again

Running the Demos

Follow this subsection to experience the mmWave functionality using the out-of-box mmWave demo. Before you proceed further, make sure that you
have loaded the right demo binary using the section above, set the EVM to functional mode and powered up the device. Connect the EVM to the PC
using its XDS110 micro-USB port/cable.

mmWave Demo

Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

Power on the EVM in functional mode with right binary loaded (see above) and connect it to the PC as shown above with the USB section
cable.
Browse to the TI gallery app "mmWave Demo Visualizer" at or use the direct link http://dev.ti.com/gallery https://dev.ti.com

. Use HelpREADME.md from inside this app for more information on how to run/configure this app./mmWaveDemoVisualizer

boot-up sequence

When the mmWave device boots up in functional mode, the device bootloader starts executing and checks if a serial flash is attached to
the device. If yes, then it expects valid MSS application (and a valid RADARSS firmware and/or DSS application) to be present on the
flash. During development phase of mmWave application, flashing the device with the application under development for every small
change can be cumbersome. To overcome this, user should perform a one-time flash as mentioned in the steps below. The actual user
application under development can then be loaded and reloaded to the MSS program memory (TCMA) and/or DSP L2/L3 memory (only for
mmWave devices with DSP) directly via CCS in the device's functional mode.

Refer to Help inside Code Composer Studio (CCS) to learn more about connecting, loading, running the cores, in general.

http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 10 of 83

2.

a.

b.

i.

a.

b.

c.

d.

e.
f.

i.
ii.

iii.
3.

First Time Setup

If this is the first time you are using this App, you may be requested to install a plug-in and the TI Cloud Agent Application. This
step will also install the right needed for UART port detection.XDS110 drivers
Once the demo is running on the mmWave sensors and the USB is connected from the board to the PC, the app will try to
automatically detect the COM ports for your device.

If auto-detection doesn't work, then you will need to configure the serial ports in this App. Run the device manager on
the PC and locate the following COM ports as shown in the section "How to identify the COM ports for mmWave EVM"
below. In the Visualizer App, go to the Menu->Options->Serial Port and perform the settings as shown below.

CFG_port: Use COM port number for " ": Baud: 115200. This is the XDS110 Class Application/User UART
port where runs for all the demos.CLI (command line interface)
Data_port: Use COM port " ": Baud: 921600. This is the port on which XDS110 Class Auxiliary Data port
binary data generated by the processing chain in the mmWave demo will be received by the PC. This is the
detected object list and its properties (range, doppler, angle, etc). User can leverage higher baud rates than
921600 by selecting "custom" in the Baud Rates drop down and setting the desired value (max: 3125000).
Recommended values are: 1834000 or 3125000. Note that the sensor should be in stopped or rebooted state
for the changes to take effect. Visualizer communicates with the sensor over CLI port to configure it to the user
provided baud rate in this dialog box.

At this point, this app will automatically try to connect to the target (mmWave Sensor). Note that depending on mmWave SDK
version (mmWave SDK 3.3 and prior) running on the device, only the CFG_port will show connected on successful operation while
the DATA_port may show as "connecting..". DATA_port will be marked connected only after device is configured and sending out
detected point cloud. If CFG_port does not connect or if the connection fails, you should try to connect to the target by clicking in the
bottom left corner of this App. If that fails as well, redo the serial port configuration as shown in "First time Setup" panel above.

After the App is connected to the target, you can select the configuration parameters (Frequency Band, Platform, etc) in the "Setup
details" and "Scene Selection" area of the tab.CONFIGURE
Besides selecting the configuration parameters, you should select which plots you want to see. This can be done using the "check
boxes" in the "Plot Selection" area. Adjust the frame rate depending on number of plots you want to see. For selecting heatmap
plots, set frame rate to less than or equal to 4 fps. When selecting frame rate to be 25-30fps, for better GUI performance, select only
the scatter plot and statistics plot.
Once the configuration is selected, you can send the configuration to the device (use "SEND CONFIG TO MMWAVE DEVICE"
button).
After the configuration is sent to the device, you can switch to the view/tab and the plots that you selected will be shown.PLOTS
You can switch back from "Plots" tab to "Configure" tab, reconfigure your "Scene Selection", "Object Detection" and/or "Plot
Selection" values and re-send the configuration to the device to try a different profile. After a new configuration has been selected,
just press the "SEND CONFIG TO MMWAVE DEVICE" button again and the device will be reconfigured. This can be done without
rebooting the device. If you change the parameters in the "Setup Details", then you will need to take further action before trying the
new configurations

If Platform is changed: make sure the COM ports match the TI EVM/platform you are trying to configure and visualizer
If SDK version is changed: make sure the mmW demo running on the connected TI EVM matches the selected SDK
version in the GUI
If Antenna Config is changed: make sure the TI EVM is rebooted before sending the new configuration.

If board is rebooted, follow the steps starting from 1 above.

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown below. Please
use the correct COM port number from your setup for following steps.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 11 of 83

3.

Inner workings of the GUI

In the background, GUI performs the following steps:

Creates or reads the configuration file and sends to the mmWave device using the COM port called . It saves the information CFG_port
locally to be able to make sense of the incoming data that it will display. Refer to the for details on the configuration file CFG Section
contents.
Receives the data generated by the demo on the visualization/Data COM port and processes it to create various displays based on the
GUI configuration in the cfg file.

The format of the data streamed out of the demo is documented in mmw demo's doxygen mmwave_sdk_<ver>
under section: "Output information sent to host".\packages\ti\demo\ \mmw\docs\doxygen\html\index.html <platform>

On every reconfiguration, it sends a 'sensorStop' command to the device first to stop the active run of the mmWave device. Next, it sends
the command 'flushCfg' to flush the old configuration before sending the new configuration. It is mandatory to flush the old configuration
before sending a new configuration. Additionally, it is mandatory to send all the commands for that demo/platform even if the user desires
the functionality to be disabled i.e. no commands are optional.

Advanced GUI options

User can configure the device from their own configuration file or the saved app-generated configuration file by using the " LOAD CONFIG
FROM PC AND SEND" button on the tab. Make sure the first two commands in this config file are "sensorStop" followed by PLOTS
"flushCfg".
User can temporarily pause the mmWave sensor by using the "STOP" button on the plots tab. The sensor can be restarted by using the
"START" button. In this case, sensor starts again with the already loaded configuration and no new configuration is sent from the App.
User can simultaneously plot and record the processed/detected objects data coming out of the DATA_port using the "RECORD
START" button in the plots tab. Set the max limits for file size or record time as per your requirements to prevent infinite capturing of data.
The saving of data can be manually stopped using the "Record Stop" button (if the max limits are not reached). Sample python scripts to
parse the point cloud output of the demo are provided in mmwave_sdk_<ver>\packages\ti\demo\parser_scripts
. mmw_demo_example_script.py is the top level example script that uses the parser module provided in parser_mmw_demo.py. User can
customize the mmw_demo_example_script.py to parse their captured files and process it as per their requirements. As an example, the
scripts dumps the point cloud from all the frames in an xls file.
User can use the "PLAYBACK START" button to playback the data and config file recorded via "RECORD START" button in the plots
tab. User should make sure the data file and the config file used in this playback are the matching set. This feature can only be used when
sensor device is either not connected or stopped.
Once the demo has started and plots are active, user can tune the demo using the "Real Time tuning tab" or "Advanced commands" tab
and then save the tuned profile using "EXPORT TUNED PROFILE" button on the PLOTS tab.

Console Messages window in Visualizer

Console message window echoes the following debug information for the users

Every command that is sent to the TI mmWave EVM and the response back from the EVM
Any runtime assert conditions detected by the demo running on TI mmWave EVM after the sensor is started. This is helpful when mmW
demo is flashed onto the EVM and CCS connectivity is not available. It spits out file name and line number to allow users to browse to the
source code and understand the error.

At times, a negative error code is spit out in the error message (either in Visualizer console or in the CCS console window). To understand
or decode that error, please refer to the mmWave demo doxygen ((browse via mmwave_sdk_<ver>\

).docs\mmwave_sdk_module_documentation.html
Init time calibration status after the first sensorStart is issued post reboot for debugging boot time or start failures

COM port after reboot

Whenever TI EVM is power-cycled (rebooted), you will need to use the bottom left serial port connection icon inside TI gallery app
 Note that if you used the CLI COM port directly to for disconnecting and reconnecting the COM ports."mmWave Demo Visualizer"

send the commands (instead of TI gallery app) you will have to close the CLI teraterm window and open a new one on every
reboot.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 12 of 83

Here is an example of plots that mmWave Demo Visualizer produces based on the config that is passed to the demo application running on mmWave
.sensor

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 13 of 83

1.

2.

3.

4.

mmWave demo with LVDS-based instrumentation

To enable mmW demo in the instrumentation usecase where high bandwidth data is shipped from the device to a PC over ethernet and saved onto
the filesystem, please follow the following steps

Power on the EVM in functional mode with right binary loaded (see above) and connect it to the PC as shown above with the USB section
cable. Connect mmWave EVM to DCA1000 EVM by following User's Guide. Place SW2.5 in DCA1000EVM Data Capture Card
CONFIG_VIA_SW mode to be able to use the remainder of the instructions specified here.
Browse to the TI gallery app "mmWave Demo Visualizer" at or use the direct link http://dev.ti.com/gallery https://dev.ti.com

. /mmWaveDemoVisualizer
Default profile in Visualizer disables the LVDS streaming. To enable it, please export the chosen profile and set the appropriate enable bits in
lvdsStreamCfg command. See " " section for details on the command format, usage and dependencies.Configuration (.cfg) File Format

Example: Enable H/W and S/W stream with header

lvdsStreamCfg -1 1 1 1

Create a JSON file with any name but with extension .json with following parameters. See section "JSON Config File"
in TI_DCA1000EVM_CLI_Software_UserGuide.pdf. Sample JSON file is shown below.

http://www.ti.com/lit/spruij4
http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 14 of 83

4.

a.
b.

c.
d.

datacard_config.json

{
 "DCA1000Config": {
 "dataLoggingMode": "multi",
 "dataTransferMode": "LVDSCapture",
 "dataCaptureMode": "ethernetStream",
 "lvdsMode": 2,
 "dataFormatMode": 3,
 "packetDelay_us": 10,
 "ethernetConfig": {
 "DCA1000IPAddress": "192.168.33.180",
 "DCA1000ConfigPort": 4096,
 "DCA1000DataPort": 4098
 },
 "ethernetConfigUpdate": {
 "systemIPAddress": "192.168.33.30",
 "DCA1000IPAddress": "192.168.33.180",
 "DCA1000MACAddress": "12.34.56.78.90.12",
 "DCA1000ConfigPort": 4096,
 "DCA1000DataPort": 4098
 },
 "captureConfig": {
 "fileBasePath": "C:\\mySavedData",
 "filePrefix": "datacard_record",
 "maxRecFileSize_MB": 1024,
 "sequenceNumberEnable": 1,
 "captureStopMode": "infinite",
 "bytesToCapture": 1025,
 "durationToCapture_ms": 1000,
 "framesToCapture": 5
 },
 "dataFormatConfig": {
 "MSBToggle": 0,
 "reorderEnable": 1,
 "laneFmtMap": 0,
 "dataPortConfig": [
 {
 "portIdx": 0,
 "dataType": "complex"
 },
 {
 "portIdx": 1,
 "dataType": "complex"
 },
 {
 "portIdx": 2,
 "dataType": "complex"
 },
 {
 "portIdx": 3,
 "dataType": "complex"
 },
 {
 "portIdx": 4,
 "dataType": "complex"
 }
]
 }
 }
}

This json file should match user's setup and the profile.cfg that is used to configure the mmW demo running on mmWave EVM.

User should customize "ethernetConfig" block to match their setup
"dataLoggingMode" in json file should be set to "raw" if header is disabled via <enableHeader> field in lvdsStreamCfg command in
profile.cfg. "dataLoggingMode" in json file should be set to "multi" if header is enabled via <enableHeader> field in lvdsStreamCfg

.command in profile.cfg
"lvdsMode" in json file should be set to 2 since xwr16xx/xwr18xx/xwr68xx device have 2 lvds lanes.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 15 of 83

4.

d.

e.
f.
g.
h.

5.

a.

b.

6.

7.

8.

a.

"dataFormatMode" in json file should match the 12/14/16 bit selection in <numADCBits> field in "adcCfg" command in profile.cfg. As
one would realize, value of "dataFormatMode" is ("adcCfg""numADCBits" + 1) .
User should customize "captureConfig" as per their needs.
"MSBToggle" should be set to 0.
"reorderEnable" should be set to 1.
"dataPortConfig" should set all dataType to "complex" since mmW demo configures all CBUFF/LVDS session to be complex.

Assuming the file created in previous step is called "datacard_config.json", invoke the following commands from a command prompt (DOS or
bash) on the PC to which the DCA1000 EVM is connected:

 Windows:

Windows::DCA1000EVM CLI Commands

@REM configure DCA1000EVM
DCA1000EVM_CLI_Control.exe fpga datacard_config.json

@REM configure CLI application with the record related settings
DCA1000EVM_CLI_Control.exe record datacard_config.json

@REM start record and wait for the data over ethernet
DCA1000EVM_CLI_Control.exe start_record datacard_config.json

Linux:

Linux::DCA1000EVM CLI Commands

configure DCA1000EVM
./DCA1000EVM_CLI_Control fpga datacard_config.json

#configure CLI application with the record related settings
./DCA1000EVM_CLI_Control record datacard_config.json

#start record and wait for the data over ethernet
./DCA1000EVM_CLI_Control start_record datacard_config.json

See for details on operating the Visualizer. Configure the mmW demo running on the mmWave EVM using the Visualizer previous section
and profile.cfg that has lvds streaming turned on. To avoid getting timeout error from DCA1000EVM_CLI_Control, execute this step from the
Visualizer within 30 secs of sending the "start_record" command using DCA1000EVM_CLI_Control.
With successful invocation of DCA1000EVM_CLI_Control and Visualizer, the mmWave EVM will send UART stream to get plotted on the
Visualizer and LVDS stream to PC to be saved in a file as configured in "captureConfig" JSON block.
Use the following command to stop the LVDS stream capture before issuing "sensorStop" to the mmW demo running on mmWave EVM. One
could send the sensorStop to mmWave EVM followed by stop_record to DCA1000EVM_CLI_Control.exe however this would generate an
errorcode related to record process not running and it can be safely ignored.

Windows:

How to get DCA1000 CLI Utility for Windows

The Windows based CLI (prebuilt binary) can be obtained from mmWave Studio package. Please download and install
mmWave Studio () version 2.1 or later from and browse to MMWAVE-STUDIO http://www.ti.com/tool/MMWAVE-STUDIO
the installed folder: C:\ti\mmwave_studio_<ver>\mmWaveStudio\PostProc.

Documentation and source code for this utility is provided under C:
\ti\mmwave_studio_<ver>\mmWaveStudio\ReferenceCode\DCA1000 for reference.

How to get DCA1000 CLI Utility for Linux

The Linux based CLI sourcecode can be obtained from mmWave Studio package. Please download and install mmWave
Studio () version 2.1 or later from and browse to the MMWAVE-STUDIO http://www.ti.com/tool/MMWAVE-STUDIO
installed folder: C:\ti\mmwave_studio_<ver>\mmWaveStudio\ReferenceCode\DCA1000. Copy the 'SourceCode' folder to
a linux machine and use the instructions from C:
\ti\mmwave_studio_<ver>\mmWaveStudio\ReferenceCode\DCA1000\Docs\TI_DCA1000EVM_CLI_Software_UserGuide.
pdf to build the utility for your linux distribution.

http://software-dl.ti.com/ra-processors/esd/MMWAVE-STUDIO/latest/index_FDS.html
http://www.ti.com/tool/MMWAVE-STUDIO
http://software-dl.ti.com/ra-processors/esd/MMWAVE-STUDIO/latest/index_FDS.html
http://www.ti.com/tool/MMWAVE-STUDIO

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 16 of 83

8.

a.

b.

9.

a.

b.

i.

ii.

Windows::Stop DCA1000EVM_CLI

DCA1000EVM_CLI_Control.exe stop_record datacard_config.json

Linux

Linux::Stop DCA1000EVM_CLI

./DCA1000EVM_CLI_Control stop_record datacard_config.json

See section "Output Files" in C:
\ti\mmwave_studio_<ver>\mmWaveStudio\\ReferenceCode\DCA1000\Docs\TI_DCA1000EVM_CLI_Software_UserGuide.pdf to understand
the files saved during this transfer. On little endian PCs, <File_Prefix>_<Raw/Header Mode>_<iteration>.bin contains value in little endian
format. A fread of 16 bit on little endian PCs will read correct data with no more formatting required. For the high-level data format details
corresponding to the H/W session data format configurations, refer to the corresponding slides in mmwave_sdk_<ver>\docs\

. See section "Streaming data over LVDS" in mmW demo doxygen (browse via ti\drivers\cbuff\docs\CBUFF_Transfers.pptx
) for details on data format of the streamed data.mmwave_sdk_<ver>\docs\mmwave_sdk_module_documentation.html

For the "raw" mode, the data filename would be <File_Prefix>_Raw_<iteration>.bin. Raw mode is only supported for H/W session
and the saved data is directly payload with no header or extra bytes/padding.
For the "multi" mode (or the header enabled mode), see HSIHeader structure returned by HSIHeader_createHeader create API in
mmW demo for the header IDs used.

By default, for mmW demo, the first enabled stream (i.e. for H/W stream if H/W is enabled or for S/W stream if H/W is
enabled) will have the ID: HSI_HEADER_ID1 : 0x0CDA0ADC0CDA0ADCU and hence the filename would
be <File_Prefix>_hdr_0ADC_<iteration>.bin. See below for one such example file content and its interpretation.

By default, for mmW demo, the second enabled stream (i.e. for S/W stream if H/W is also enabled) will have the
ID: HSI_HEADER_ID2 : 0x09CC0CC909CC0CC9U and hence the filename would be <File_Prefix>_hdr_0CC9_<iteration>.
bin. See below for one such example file content and its interpretation.

Sample datacard_record_hdr_0ADC_0.bin for H/W session with CP_ADC_CQ format

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 17 of 83

9.

b.

ii.

Sample datacard_record_hdr_0CC9_0.bin for S/W session

Sample Data parser implementation

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 18 of 83

Sample python based scripts are provided in to help parse the demo output data file mmwave_sdk_<ver>\packages\ti\demo\parser_scripts
saved by DCA1000 data card CLI. lvds_example_script.py is the top level example script that uses the parser module provided in
parser_lvds_demo_captured_file.py. User can customize the lvds_example_script.py to parse their captured files and process it as per their
requirements. As an example, the scripts dumps the point cloud from all the frames in an xls file.

Sample C code implementation of data parsing with header enabled is provided at mmwave_sdk_<ver>
. Use the readme.txt in that location for build and run instructions. (Note that serialize.cpp is \packages\ti\utils\hsiheader\test\data_card.cpp

no longer required if "reorderEnable" is set to 1).

data_card.out datacard_record_hdr_0ADC_0.bin

Debug: File: datacard_record_hdr_0ADC_0.bin
**
Debug: [Detected] Data ID1 with mmWave SDK Version: 3.2.0.3 Platform: XWR16xx
Debug: Header size: 32 Padding size: 6
Debug: Channel-0123 Non-Interleaved Mode 16bit CP + ADC + CQ
Debug: Single Chirp Mode
Debug: ADC: 480 CP: 2
Debug: CQ0: 0 CQ1: 120 CQ2: 64
Debug: User1: 0 User2: 0 User3 : 0
Debug: Application Header: 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
CP [Channel 1] :: 0 0
ADC [Channel 1 First 8 bytes]:: 1696 1100 1456 756 1997 322 1091 -665
ADC [Channel 1 Last 8 bytes]:: -890 -43 332 1396 817 -594 -271 237
CP [Channel 2] :: 1 0
ADC [Channel 2 First 8 bytes]:: -1772 -1399 -1794 -469 -956 -79 -899 -355
ADC [Channel 2 Last 8 bytes]:: -884 324 94 938 799 -163 797 -809
CP [Channel 3] :: 2 0
ADC [Channel 3 First 8 bytes]:: 1182 3225 2220 3055 2561 1824 2152 555
ADC [Channel 3 Last 8 bytes]:: -692 827 -1 546 226 539 632 894
CP [Channel 4] :: 3 0
ADC [Channel 4 First 8 bytes]:: -444 -419 451 -85 -29 -719 -345 -131
ADC [Channel 4 Last 8 bytes]:: -730 383 244 -161 -435 550 765 -322
CQ1 :: 119 24929 27239 28009 30827 -31378 -26511 -24469 -24982 -23957 -23703 -23443
-23448 -22678 -21390 -21904 -21392 -20370 -20369 -21393 -21903 -22166 -22168 -22165 -22679 -22164
-21655 -21400 -18831 -18573 -18572 -18835 -19091 -19858 -20886 -20629 -21401 -21399 -20629 -21144
-20631 -19609 -19860 -18828 -17550 -19094 -20631 -19856 -18323 -19091 -18075 -18587 -18322 -17557
-18836 -18841 -19097 -19083 -17807 -18838 -20377 -20118 -19097 -20633 -19868 -17054 -17817 -18073
-19609 -20121 -19094 -19859 -20123 -20377 -20124 -17052 -18328 -21917 -21915 -21914 -22169 -20888
-20891 -21660 -21914 -20627 -22426 -22683 -22940 -22428 -20631 -21919 -21918 -22940 -22683 -20114
-21913 -23194 -23706 -22936 -23451 -23967 -22429 -21916 -22169 -22169 -22170 -22169 -21911 -21392
-23194 -23452 -23450 -22425 -20373 -24222 -24477 -23194 -21913 -22933
CQ2 :: 119 0
0 20784 -3576 32369 5283
**

data_card.out datacard_record_hdr_0CC9_0.bin

Debug: File: datacard_record_hdr_0CC9_0.bin
**
Debug: [Detected] Data ID2 with mmWave SDK Version: 3.2.0.3 Platform: XWR16xx
Debug: Header size: 56 Padding size: 30
Debug: No Channel Enabled Non-Interleaved Mode 16bit User
Debug: Continuous Mode
Debug: ADC: 0 CP: 0
Debug: CQ0: 0 CQ1: 0 CQ2: 0
Debug: User1: 4 User2: 464 User3 : 116
Debug: Application Header: 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
User0 :: 1 0 0 58
User1 :: -28599 -16951 11112 16329
User2 :: 305 771 374 784
**

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 19 of 83

Configuration (.cfg) File Format

Each line in the .cfg file describes a command with parameters. The various commands and their arguments are described in the table below
(arguments are in sequence). For mmW demo, users can create their own config files from the Visualizer GUI by using the "Save Config to PC"
button or starting from the few sample profiles provided in the directory.mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles

Most of the parameters described below are the same as the mmwavelink API specifications (see doxygen
.) Additionally, users can refer to the chirp diagram below to mmwave_sdk_<ver>\packages\ti\control\mmwavelink\docs\doxygen\html\index.html

understand the chirp and profile related parameters or the appnote http://www.ti.com/litv/pdf/swra553

Figure 2: Chirp Diagram

Configuration command Command details Command Parameters Usage in mmW
demo

xwr16xx/xwr18xx
/xwr64xx/xwr68xx

dfeDataOutputMode The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<modeType>
1 - frame based chirps
2 - continuous chirping
3 - advanced frame config

only option 1 and 3 are
supported

channelCfg Channel config message to RadarSS. See mmwavelink doxgen
for details.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<rxChannelEn>
Receive antenna mask e.g for 4
antennas, it is 0x1111b = 15

4 antennas supported

Converting configuration from older SDK release to current SDK release

As new versions of SDK releases are available, there are usually changes to the configuration commands that are supported in the new
release. Now, users may have some hand crafted config file which worked perfectly well on older SDK release version but will not work as
is with the new SDK release. If user desires to run the same configuration against the new SDK release, then there is a script
mmwDemo_<platform>_update_config.pl provided in the directory that mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles
they can use to convert the configuration file from older release to a compatible version for the new release. Refer to the perl file for details
on how to run the script. Note that users will need to install perl on their machine (there is no strict version requirement at this time). For any
new commands inserted by the script, there will be a comment preceeding that line which is similar to something like this: "Inserting new
mandatory command. Check users guide for details."

http://www.ti.com/litv/pdf/swra553

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 20 of 83

<txChannelEn>
Transmit antenna mask

Refer to the antenna
layout on the EVM
/board to determine the
right Tx antenna mask
needed to enable the
desired virtual antenna
configuration.

For example, in
IWR6843 ISK, the 2
azimuth antennas can
be enabled using
bitmask 0x5 (i.e. tx1
and tx3). The azimuth
and elevation antennas
can both be enabled
using bitmask 0x7 (i.e.
tx1, tx2 and tx3).

For example, in
xWR1642BOOST, the 2
azimuth antennas can
be enabled using
bitmask 0x3 (i.e. tx1
and tx2).

<cascading>
SoC cascading, not applicable, set
to 0

n/a

adcCfg ADC config message to RadarSS. See mmwavelink doxgen for
details.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<numADCBits>
Number of ADC bits (0 for 12-bits,
1 for 14-bits and 2 for 16-bits)

only 16-bit is supported

<adcOutputFmt>
Output format :
0 - real
1 - complex 1x (image band filtered
output)
2 - complex 2x (image band
visible))

only complex modes
are supported

adcbufCfg adcBuf hardware config. The values in this command can be
changed between sensorStop and sensorStart.

This is a mandatory command.
<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1.

For advanced frame
mode, it should be set
to either the intended
subframe number or -1
to apply same config to
all subframes.

<adcOutputFmt>
ADCBUF out format
0-Complex,
1-Real

only complex modes
are supported

<SampleSwap>
ADCBUF IQ swap selection:
0-I in LSB, Q in MSB,
1-Q in LSB, I in MSB

only option 1 is
supported

<ChanInterleave>
ADCBUF channel interleave
configuration:
0 - interleaved(only supported for
XWR14xx),
1 - non-interleaved

only option 1 is
supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 21 of 83

<ChirpThreshold>
Chirp Threshold configuration used
for ADCBUF buffer to trigger ping
/pong buffer switch.

Valid values:

0-8 for demos that use DSP for 1D
FFT and LVDS streaming is
disabled

only 1 for demos that use HWA for
1D FFT

xwr16xx demo: Values
0-8 are supported since
it uses DSP for 1D FFT.
However, only value of
1 is supported when
LVDS streaming is
enabled.

xwr64xx/xwr68xx
/xwr18xx: only value of
1 is supported since
these demos use HWA
for 1D FFT

profileCfg Profile config message to RadarSS and datapath. See
mmwavelink doxgen for details.
The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

<profileId>
profile Identifier

Legacy frame
(dfeOutputMode=1):
could be any allowed
value but only one valid
profile per config is
supported

Advanced frame
(dfeOutputMode=3):
could be any allowed
value but only one
profile per subframe is
supported. However,
different subframes can
have different profiles

<startFreq>
"Frequency Start" in GHz (float
values allowed)

Examples:

77

61.38

any value as per
mmwavelink doxgen
/device datasheet but
represented in GHz.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<idleTime>
"Idle Time" in u-sec (float values
allowed)

Examples:

7

7.15

any value as per
mmwavelink doxgen
/device datasheet but
represented in usec.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<adcStartTime>
"ADC Valid Start Time" in u-sec
(float values allowed)

Examples:

7

7.34

any value as per
mmwavelink doxgen
/device datasheet but
represented in usec.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

txCalibEnCfg Field

This CLI command doesn't expose the txCalibEnCfg field
in the mmwavelink structure. User should follow the
mmwavelink documentation and update the CLI profileCfg
handler function accordingly. The current handler sets the
value to 0 for this field (backward compatible mode)

Combination of numAdcSamples in profileCfg (and
numRangeBins), numDopplerChirps = total number
of chirps/(num TX in MIMO mode) in frameCfg or
subFrameCfg, number of TX and RX antennas in
channelCfg and chirpCfg determine the size of
Radarcube and other internal buffers/heap in the
demo. It is possible that some combinations of
these values result in out of memory conditions for
these heaps and demo will reject such
configuration. Refer to demo and DPC doxygen to
understand the data buffer layout and use the
system printfs on sensorStart in CCS console
window to understand the exact heap usage for a
given configuration.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 22 of 83

<rampEndTime>
"Ramp End Time" in u-sec (float
values allowed)

Examples:

58
216.15

any value as per
mmwavelink doxgen
/device datasheet but
represented in usec

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<txOutPower>
Tx output power back-off code for
tx antennas

only value of '0' has
been tested within
context of mmW demo

<txPhaseShifter>
tx phase shifter for tx antennas

only value of '0' has
been tested within
context of mmW demo

<freqSlopeConst>
"Frequency slope" for the chirp in
MHz/usec (float values allowed)

Examples:

68

16.83

any value greater than 0
as per mmwavelink
doxgen/device
datasheet but
represented in MHz
/usec.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<txStartTime>
"TX Start Time" in u-sec (float
values allowed)

Examples:

1
2.92

any value as per
mmwavelink doxgen
/device datasheet but
represented in usec.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<numAdcSamples>
number of ADC samples collected
during "ADC Sampling Time" as
shown in the chirp diagram above

Examples:

256

224

any value as per
mmwavelink doxgen
/device datasheet.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

<digOutSampleRate>
ADC sampling frequency in ksps.

(<numAdcSamples> /
<digOutSampleRate> = "ADC
Sampling Time")

Examples:

5500

any value as per
mmwavelink doxgen
/device datasheet.

Refer to the chirp
diagram shown above
to understand the
relation between
various profile
parameters and inter-
dependent constraints.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 23 of 83

<hpfCornerFreq1>
HPF1 (High Pass Filter 1) corner
frequency
0: 175 KHz
1: 235 KHz
2: 350 KHz
3: 700 KHz

any value as per
mmwavelink doxgen
/device datasheet

<hpfCornerFreq2>
HPF2 (High Pass Filter 2) corner
frequency
0: 350 KHz
1: 700 KHz
2: 1.4 MHz
3: 2.8 MHz

any value as per
mmwavelink doxgen
/device datasheet

<rxGain>
OR'ed value of RX gain in dB and
RF gain target (See mmwavelink
doxgen for details)

any value as per
mmwavelink doxgen
/device datasheet

chirpCfg Chirp config message to RadarSS and datapath. See
mmwavelink doxgen for details.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

chirp start index any value as per
mmwavelink doxygen

chirp end index any value as per
mmwavelink doxygen

profile identifier should match the
profileCfg->profileId

start frequency variation in Hz (float
values allowed)

only value of '0' has
been tested within
context of mmW demo

frequency slope variation in kHz/us
(float values allowed)

only value of '0' has
been tested within
context of mmW demo

idle time variation in u-sec (float
values allowed)

only value of '0' has
been tested within
context of mmW demo

ADC start time variation in u-sec
(float values allowed)

only value of '0' has
been tested within
context of mmW demo

tx antenna enable mask (Tx2,Tx1)
e.g (10)b = Tx2 enabled, Tx1
disabled.

See note under
"Channel Cfg"
command above.

Individual chirps should
have either only one
distinct Tx antenna
enabled (MIMO) or
same TX antennas
should be enabled for
all chirps

lowPower Low Power mode config message to RadarSS. See
mmwavelink doxgen for details.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values in this
command.

This is a mandatory command.

<don’t_care> set to 0

ADC Mode
0x00 : Regular ADC mode
0x01 : Low power ADC mode (Not
supported for xwr6xxx devices)

use value of '0' or '1'
(depending on
profileCfg-
>digOutSampleRate)

frameCfg frame config message to RadarSS and datapath. See
mmwavelink doxgen for details.

dfeOutputMode should be set to 1 to use this command

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is set to 1.

chirp start index (0-511) any value as per
mmwavelink doxgen but
corresponding chirpCfg
should be defined

chirp end index (chirp start index-
511)

any value as per
mmwavelink doxgen but
corresponding chirpCfg
should be defined

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 24 of 83

number of loops (1 to 255) any value as per
mmwavelink doxgen
/device datasheet but
greater than or equal to
4.

For xwr16xx/xwr68xx
demos where DSP
version of Doppler DPU
is used, the Doppler
chirps (i.e. number of
loops) should be a
multiple of 4 due to
windowing requirement.

Note: If value of 2 is
desired for number of
Doppler Chirps, one
must update the demo
/object detection DPC
source code to use
rectangular window for
Doppler DPU instead of
Hanning window.

number of frames (valid range is 0
to 65535, 0 means infinite)

any value as per
mmwavelink doxgen

frame periodicity in ms (float values
allowed)

any value as per
mmwavelink doxgen
and represented in
msec. However frame
should not have more
than 50% duty cycle (i.
e. active chirp time
should be <= 50% of
frame period). Also it
should allow enough
time for selected UART
output to be shipped out
(selections based on
guiMonitor command)
else demo will assert if
the next frame start
trigger is received from
the front end and
current frame is still
ongoing. User can use
the output of stats TLV
to tune this parameter.

trigger select
1: Software trigger
2: Hardware trigger.

only option for Software
trigger is supported

Frame trigger delay in ms (float
values allowed)

any value as per
mmwavelink doxgen
and represented in
msec.

advFrameCfg Advanced config message to RadarSS and datapath. See
mmwavelink doxgen for details. The dfeOutputMode should be
set to 3 to use this command. See profile_advanced_subframe.

 profile in the mmW demo profiles directory for example cfg
usage.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is set to 3.

<numOfSubFrames>
Number of sub frames enabled in
this frame

any value as per
mmwavelink doxgen

<forceProfile>
Force profile

only value of 0 is
supported

<numFrames>
Number of frames to transmit (1
frame = all enabled sub frames)

any value as per
mmwavelink doxgen

<triggerSelect>
trigger select
1: Software trigger
2: Hardware trigger.

only option for Software
trigger is supported

<frameTrigDelay>
Frame trigger delay in ms (float
values allowed)

any value as per
mmwavelink doxgen
and represented in
msec.

subFrameCfg Subframe config message to RadarSS and datapath. See
mmwavelink doxgen for details.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 25 of 83

The dfeOutputMode should be set to 3 to use this command.
See profile in the mmW demo profile_advanced_subframe.cfg
profiles directory for example usage

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is set to 3.

<subFrameNum>
subframe Number for which this
command is being given

value of 0 to
RL_MAX_SUBFRAMES-
1

<forceProfileIdx>
Force profile index

ignored as
<forceProfile> in
advFrameCfg should be
set to 0

<chirpStartIdx>
Start Index of Chirp

any value as per
mmwavelink doxgen but
corresponding chirpCfg
should be defined

<numOfChirps>
Num of unique Chirps per burst
including start index

any value as per
mmwavelink doxgen but
corresponding number
of chirpCfg should be
defined

<numLoops>
No. of times to loop through the
unique chirps

any value as per
mmwavelink doxgen but
greater than or equal to
4

For xwr16xx/xwr68xx
demos where DSP
version of Doppler DPU
is used, the Doppler
chirps (i.e. number of
loops) should be a
multiple of 4 due to
windowing requirement.

Note: If value of 2 is
desired for number of
Doppler Chirps, one
must update the demo
/object detection DPC
source code to use
rectangular window for
Doppler DPU instead of
Hanning window.

<burstPeriodicity>

Burst periodicty in msec (float
values allowed) and meets the
criteria
burstPeriodicity >= ((numLoops)*
(Sum total of time duration of all
unique chirps in that burst)) +
InterBurstBlankTime

any value as per
mmwavelink doxgen
and represented in
msec but subframe
should not have more
than 50% duty cycle
and allow enough time
for selected UART
output to be shipped out
(selections based on
guiMonitor command)

<chirpStartIdxOffset>
Chirp Start address increament for
next burst

set it to 0 since demo
supports only one burst
per subframe

<numOfBurst>
Num of bursts in the subframe

set it to 1 since demo
supports only one burst
per subframe

<numOfBurstLoops>
Number of times to loop over the
set of above defined bursts, in the
sub frame

set it to 1 since demo
supports only one burst
per subframe

<subFramePeriodicity>

subFrame periodicty in msec (float
values allowed) and meets the
criteria
subFramePeriodicity >= Sum total
time of all bursts +
InterSubFrameBlankTime

set to same as
<burstPeriodicity> since
demo supports only one
burst per subframe

guiMonitor Plot config message to datapath.
The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

All parameters below are flags (1 to
enable and 0 to disable)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 26 of 83

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<detected objects>
1 - enable export of point cloud (x,y,
z,doppler) and point cloud sideinfo
(SNR, noiseval)

2 - enable export of point cloud (x,y,
z,doppler)

0 - disable

all values supported

<log magnitude range>
1 - enable export of log magnitude
range profile at zero Doppler
0 - disable

all values supported

<noise profile>
1 - enable export of log magnitude
noise profile
0 - disable

all values supported

<rangeAzimuthHeatMap> or
<rangeAzimuthElevationHeatMap>
range-azimuth or range-azimuth-
elevation heat map related
information

<rangeAzimuthHeatMap>

This output is provided only in
demos that use AoA (legacy) DPU
for AoA processing
1 - enable export of zero Doppler
radar cube matrix, all range bins,
all azimuth virtual antennas to
calculate and display azimuth heat
map.

(The GUI computes the FFT of this
to show heat map)

0 - disable

< rangeAzimuthElevationHeatMap >

This output is provided in demos
that use AoA 2D DPU for AoA
processing (ex: mmW demo
for IWR6843AOP)

1 - enable export of zero Doppler
radar cube matrix, all range bins,
all virtual antennas to calculate and
display azimuth heat map.

(The GUI remaps the antenna
symbols and computes the FFT of
this stream to show azimuth heat
map only).

0 - disable

all values supported

<rangeDopplerHeatMap>
range-doppler heat map
1 - enable export of the whole
detection matrix. Note that the
frame period should be adjusted
according to UART transfer time.
0 - disable

all values supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 27 of 83

<statsInfo>
statistics (CPU load, margins,
device temperature readings, etc)
1 - enable export of stats data.
0 - disable

all values supported

cfarCfg CFAR config message to datapath.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<procDirection>
Processing direction:
0 – CFAR detection in range
direction
1 – CFAR detection in Doppler
direction

all values supported; 2
separate commands
need to be sent; one for
Range and other for
doppler.

<mode>
CFAR averaging mode:
0 - CFAR_CA (Cell Averaging)
1 - CFAR_CAGO (Cell Averaging
Greatest Of)
2 - CFAR_CASO (Cell Averaging
Smallest Of)

all values supported

<noiseWin>
noise averaging window length:
Length of the one sided noise
averaged cells in samples

Make sure 2*(noiseWIn+guardLen)
<numRangeBins for range direction
and 2*(noiseWIn+guardLen)
<numDopplerBins for doppler
direction.

supported

<guardLen>
one sided guard length in samples

Make sure 2*(noiseWIn+guardLen)
<numRangeBins for range direction
and 2*(noiseWIn+guardLen)
<numDopplerBins for doppler
direction.

supported

< >divShift
Cumulative noise sum divisor
expressed as a shift.

Sum of noise samples is divided by
2^<divShift>. Based on <mode>
and <noiseWin> , this value should
be set as shown in next columns.

The value to be used here should
match the "CFAR averaging mode"
and the "noise averaging window
length" that is selected above.

The actual value that is used for
division (2^x) is a power of 2, even
though the "noise averaging
window length" samples may not
have that restriction.

CFAR_CA:
<divShift> = ceil(log (2 2
x <noiseWin>))
CFAR_CAGO/_CASO:
<divShift> = ceil(log2
(<noiseWin>))

In profile_2d.cfg, value
of 3 means that the
noise sum is divided by
2^3=8 to get the
average of noise
samples with window
length of 8 samples in
CFAR -CASO mode.

cyclic mode or Wrapped around
mode.
0- Disabled
1- Enabled

supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 28 of 83

Threshold scale in dB using float
representation.
This is used in conjuntion with the
noise sum divisor (say x).
the CUT comparison for log input is:

CUT > (Threshold scale converted
from dB to Q8) + (noise sum / 2^x)

For example:

15

10.75

Detection threshold is
specified in dB scale.
Maximum value allowed
is 100dB

peak grouping
0 - disabled
1 - enabled

supported

multiObjBeamForming Multi Object Beamforming config message to datapath.

This feature allows radar to separate reflections from multiple
objects originating from the same range/Doppler detection.

The procedure searches for the second peak after locating the
highest peak in Azimuth FFT. If the second peak is greater than
the specified threshold, the second object with the same range
/Doppler is appended to the list of detected objects. The
threshold is proportional to the height of the highest peak.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<Feature Enabled>
0 - disabled
1 - enabled

supported

<threshold>
0 to 1 – threshold scale for the
second peak detection in azimuth
FFT output. Detection threshold is
equal to <thresholdScale>
multiplied by the first peak height.
Note that FFT output is magnitude
squared.

supported

calibDcRangeSig DC range calibration config message to datapath.

Antenna coupling signature dominates the range bins close to
the radar. These are the bins in the range FFT output located
around DC.

When this feature is enabled, the signature is estimated during
the first N chirps, and then it is subtracted during the
subsequent chirps.

During the estimation period the specified bins (defined as
[negativeBinIdx, positiveBinIdx]) around DC are accumulated
and averaged. It is assumed that no objects are present in the
vicinity of the radar at that time.

This procedure is initiated by the following CLI command, and it
can be initiated any time while radar is running. Note that the
maximum number of compensated bins is 32.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<enabled>
Enable DC removal using first few
chirps
0 - disabled
1 - enabled

supported

<negativeBinIdx>
negative Bin Index (to remove DC
from farthest range bins)

Maximum negative range FFT
index to be included for
compensation. Negative indices
are indices wrapped around from
far end of 1D FFT.

Ex: Value of -5 means last 5 bins
starting from the farthest bin

supported

<positiveBinIdx>
positive Bin Index (to remove DC
from closest range bins)
Maximum positive range FFT index
to be included for compensation

Value of 8 means first 9 bins
(including bin#0)

supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 29 of 83

<numAvg>
number of chirps to average to
collect DC signature (which will
then be applied to all chirps beyond
this).

Value of 256 means first 256 chirps
(after command is issued and
feature is enabled) will be used for
collecting (averaging) DC signature
in the bins specified above. From
257th chirp, the collected DC
signature will be removed from
every chirp.

The value must be
power of 2, and must be
greater than the number
of Doppler bins.

clutterRemoval Static clutter removal config message to datapath.

Static clutter removal algorithm implemented by subtracting
from the samples the mean value of the input samples to the
2D-FFT

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>

subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<enabled>
Enable static clutter removal
technique
0 - disabled
1 - enabled

supported

aoaFovCfg Command for datapath to filter out detected points outside the
specified range in azimuth or elevation plane

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>

subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<minAzimuthDeg> minimum azimuth angle
(in degrees) that
specifies the start of
field of view

<maxAzimuthDeg> maximum azimuth
angle (in degrees) that
specifies the end of field
of view

<minElevationDeg> minimum elevation
angle (in degrees) that
specifies the start of
field of view

<maxElevationDeg> maximum elevation
angle (in degrees) that
specifies the end of field
of view

cfarFovCfg Command for datapath to filter out detected points outside the
specified limits in the range direction or doppler direction

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>

subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<procDirection>
Processing direction:
0 – point filtering in range direction
1 – point filtering in Doppler
direction

both values supported
but this command
should be given twice -
one for range direction
and other for doppler
direction

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 30 of 83

<min (meters or m/s)>

the units depends on the value for
<procDirection> field above.

meters for Range direction and
meters/sec for Doppler direction

minimum limits for the
range or doppler below
which the detected
points are filtered out

<max (meters or m/s)>

the units depends on the value for
<procDirection> field above.

meters for Range direction and
meters/sec for Doppler direction

maximum limits for the
range or doppler above
which the detected
points are filtered out

compRangeBiasAndRxChanPhase Command for datapath to compensate for bias in the range
estimation and receive channel gain and phase imperfections.
Refer to the procedure mentioned here

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<rangeBias>
Compensation for range estimation
bias in meters

supported

<Re(0,0)> <Im(0,0)> <Re(0,1)> <Im
(0,1)> ... <Re(0,R-1)> <Im(0,R-1)>
<Re(1,0)> <Im(1,0)> ... <Re(T-1,R-
1)> <Im(T-1,R-1)>

Set of Complex value representing
compensation for virtual Rx
channel phase bias in Q15 format.
Pairs of I and Q should be provided
for all Tx and Rx antennas in the
device

For xwr1843, xwr6843
and xwr6443 demos: 12
pairs of values should
be provided here since
the device has 4 Rx and
3 Tx (total of 12 virtual
antennas). Note the
sign reversal required
for phase compensation
coefficients in xwr6443
demo running on
IWR6843AOP device.

For xwr1642 demo: 8
pairs of values should
be provided here since
the device has 4 Rx and
2 Tx (total of 8 virtual
antennas)

measureRangeBiasAndRxChanPhase Command for datapath to enable the measurement of the
range bias and receive channel gain and phase imperfections.
Refer to the procedure mentioned here

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<enabled>
1 - enable measurement. This
parameter should be enabled only
using the profile_calibration.cfg
profile in the mmW demo profiles
directory
0 - disable measurement. This
should be the value to use for all
other profiles.

supported

<targetDistance>
distance in meters where strong
reflector is located to be used as
test object for measurement. This
field is only used when
measurement mode is enabled.

supported

<searchWin>
distance in meters of the search
window around <targetDistance>
where the peak will be searched

supported

extendedMaxVelocity Velocity disambiguation config message to datapath.
A simple technique for velocity disambiguation is implemented.
It corrects target velocities up to (2*vmax). The output of this
feature may not be reliable when two or more objects are
present in the same range bin and are too close in azimuth
plane.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<enabled>
Enable velocity disambiguation
technique
0 - disabled
1 - enabled

supported.

Only disabled is
supported for xwr64xx
demo running on
IWR6843AOP device.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 31 of 83

CQRxSatMonitor Rx Saturation Monitoring config message for
Chirp quality to RadarSS and datapath. See
mmwavelink doxgen for details on
rlRxSatMonConf_t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command

<profile>
Valid profile Id for this monitoring
configuration. This profile ID should
have a matching profileCfg.

any value as per
mmwavelink doxygen
but corresponding

should be profileCfg
defined

<satMonSel>
RX Saturation monitoring mode

any value as per
mmwavelink doxygen

<priSliceDuration>
Duration of each slice, 1LSB=0.
16us, range: 4 -number of ADC
samples

any value as per
mmwavelink doxygen

<numSlices>
primary + secondary slices ,range
1-127. Maximum primary slice is 64.

any value as per
mmwavelink doxygen

<rxChanMask>
RX channel mask, 1 - Mask, 0 -
unmask

any value as per
mmwavelink doxygen

CQSigImgMonitor Signal and image band energy Monitoring config message for
Chirp quality to RadarSS and datapath. See mmwavelink
doxgen for details on rlSigImgMonConf_t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command

<profile>
Valid profile Id for this monitoring
configuraiton. This profile ID should
have a matching profileCfg

any value as per
mmwavelink doxygen
but corresponding
profileCfg should be
defined

<numSlices>
primary + secondary slices, range
1-127. Maximum
primary slice is 64.

any value as per
mmwavelink doxygen

<numSamplePerSlice>
Possible range is 4 to "number of
ADC samples" in
the corresponding profileCfg. It
must be an
even number.

any value as per
mmwavelink doxygen

analogMonitor Controls the enable/disable of the various monitoring features
supported in the demos.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

<rxSaturation>
CQRxSatMonitor enable/disable

1:enable
0: disable

supported

<sigImgBand>
CQSigImgMonitor enable/disable
1:enable
0: disable

supported

lvdsStreamCfg Enables the streaming of various data streams
over LVDS lanes. When this feature is enabled, make sure
chirpThreshold in adcbufCfg is set to 1.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<enableHeader>
0 - Disable HSI header for all active
streams
1 - Enable HSI header for all active
streams

supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 32 of 83

<dataFmt>
Controls HW streaming.
Specifies the HW streaming data
format.
0-HW STREAMING DISABLED
1-ADC
4-CP_ADC_CQ

supported

When choosing
CP_ADC_CQ, please
ensure that
CQRxSatMonitor and
CQSigImgMonitor
commands are provided
with appropriate values
and these monitors are
enabled using
analogMonitor
command.

<enableSW>
0 - Disable user data (SW session)
1 - Enable user data (SW session)

<enableHeader> should be set to 1
when this field is enabled.

supported

bpmCfg BPM MIMO configuration.
Every frame should consist of alternating chirps with
pattern TXA+TxB and TXA-TXB where TXA and TXB are two
azimuth TX antennas. This is alternate
configuration to TDM-MIMO scheme and
provides SNR improvement by running 2Tx
simultaneously. When using this scheme, user
should enable both the azimuth TX in the
chirpCfg. See profile_2d_bpm.cfg profile in the
xwr16xx mmW demo profiles directory for
example usage.

This config is supported and mandatory only for demos that use
Doppler DSP DPU (xwr16xx/xwr68xx). This config is not
supported and is not needed for demos that use Doppler HWA
DPU (xwr18xx/xwr64xx).

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<enabled>
0-Disabled
1-Enabled

supported

<chirp0Idx>

BPM enabled:
If BPM is enabled in previous
argument, this is the chirp index for
the first BPM chirp. It will have
phase 0 on both
TX antennas (TXA+ , TXB+). Note
that the chirpCfg command for this
chirp index must have both TX
antennas enabled.

BPM disabled:
If BPM is disabled, a BPM disable
command (set phase to zero on
both TX antennas) will be issued
for the chirps in the range
[chirp0Idx..chirp1Idx]

any value as per
mmwavelink doxygen
but corresponding
chirpCfg should be
defined

<chirp1Idx>

BPM enabled:
If BPM is enabled, this is the chirp
index for the second BPM chirp.It
will have phase 0 on TXA and
phase 180 on TXB (TXA+ , TXB-).
Note that the chirpCfg command
for this chirp index must have both
TX antennas enabled.

BPM disabled:
If BPM is disabled, a BPM disable
command (set phase to zero on
both TX antennas) will be issued
for the chirps in the range
[chirp0Idx..chirp1Idx].

any value as per
mmwavelink doxygen
but corresponding
chirpCfg should be
defined

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 33 of 83

calibdata Boot time RF calibration save/restore command.

Provides user to either save the boot time RF calibration
performed by the RadarSS onto the FLASH or to restore the
previously saved RF calibration data from the FLASH and
instruct RadarSS to not re-perform the boot-time calibration.
User can either save or restore or perform neither operations.
User is not allowed to simultaneous save and restore in a given
boot sequence.

xwr18xx/60 Ghz devices: Boot time phase shift calibration data
is also saved along with all other calibration data.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values in this
command

This is a mandatory command.

<save enable>

0 - Save enabled. Application will
boot-up normally and configure the
RadarSS to perform all applicable
boot calibrations during
mmWave_open. Once the
calibrations are performed,
application will retrieve the
calibration data from RadarSS and
save it to FLASH. User need to
specify valid <flash offset>
value. <restore enable> option
should be set to 0.

1 - Save disabled.

supported

<restore enable>

0 - Restore enabled. Application
will check the FLASH for a valid
calibration data section. If present,
it will restore the data from FLASH
and provide it to RadarSS while
configuring it to skip any real-time
boot calibrations and use provided
calibration data. User need to
specify valid <flash offset> value
which was used during saving of
calibration data. <save enable>
option should be set to 0.

1 - Restore disabled.

supported

<Flash offset>

Address offset in the flash to be
used while saving or restoring
calibration data.

Make sure the address doesn't
overlap the location in FLASH
where application images are
stored and has enough space for
saving rlCalibrationData_t
and rlPhShiftCalibrationData_t
(xwr18xx/60 Ghz devices only)

This field is don't care if both save
and restore are disabled

supported

compressCfg Compression configuration.

This command enables compression configuration (supported
only in the xwr64xx_compression beta demo) of radar data
cube along Rx channel and range bin dimensions (reduced L3
RAM consumption) in Range DPU, based on the configuration.
It is subsequently decompressed and processed in Doppler
DPU accordingly.

This config is supported and mandatory only for demos that
use Doppler HWA DPU (xwr18xx/xwr64xx). This config is not
supported and is not needed for demos that use Doppler DSP
DPU (xwr16xx/xwr68xx).

<subFrameIdx>
subframe Index

For legacy mode, that
field should be set to -1
whereas for advanced
frame mode, it should
be set to either the
intended subframe
number or -1 to apply
same config to all
subframes.

<ratio>

Compression ratio needed in radar
data cube size.

For eg., value of 0.25 will achieve
25% compression in actual radar
cube size.

Supported values: 0.25,
0.5 and 0.75.

(i.e., 25%, 50% and
75%)

<numRangeBins>

Number of range bins needed per
compressed block.

Supported values from
1 to 32 (maximum
possible).

sensorStart sensor Start command to RadarSS and datapath.
Starts the sensor. This function triggers the transmission of the

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 34 of 83

frames as per the frame and chirp configuration. By default, this
function also sends the configuration to the mmWave Front End
and the processing chain.

This is a mandatory command.

Optionally, user can provide an
argument 'doReconfig'
0 - Skip reconfiguration and just
start the sensor using already
provided configuration.

<any other value> - not supported

supported

sensorStop sensor Stop command to RadarSS and datapath.
Stops the sensor.
If the sensor is running, it will stop the mmWave Front End and
the processing chain.
After the command is acknowledged, a new config can be
provided and sensor can be restarted or sensor can be
restarted without a new config (i.e. using old config). See
'sensorStart' command.

This is mandatory before any reconfiguration is performed post
sensorStart.

supported

flushCfg This command should be issued after 'sensorStop' command to
flush the old configuration and provide a new one.

This is mandatory before any reconfiguration is performed post
sensorStart.

configDataPort This is an optional command to change the baud rate of the
DATA_port. By default, the baud rate is 921600.

This command will be accepted only when sensor is in init state
or stopped state i.e. between sensorStop and sensorStart. It is
recommended to use this command outside of the CFG file so
that PC tools can also be configured to accept data at the
desired baud rate.

<baudrate>

The new baud rate for the
DATA_port. Any valid baud rate
upto max of 3125000.

Recommended values: 921600,
1843200, 3125000.

supported

<ackPing>

0 - Do not send any bytes on data
port

1- Send 16 bytes of value '0xFF' to
ack/sync over the DATA_port
(binary) after change to baud rate
is applied.

supported

queryDemoStatus This is an optional command that can be issued anytime to get
the sensor state (0-init,1-opened,2-started,3-stopped) of the
device and the current baud rate of the DATA_port.

The response of this command is provided on the CLI port.

idlePowerDown This is an optional command and can be issued anytime to put
the system into power down mode. This command runs each of
the low power functions to power the device down into Idle
Mode and leaves it there indefinitely. A hard reset to the device
is required in order to provide power and resume functional
mode.

This command is useful when needing to confirm power figures.

This command is supported only for xWR6843 devices. This
command will be available only when the
macro SYS_COMMON_XWR68XX_LOW_POWER_MODE_EN
is defined and the libsleep utils library is used.

<subframeidx>

always set to -1

supported

<enDSPpowerdown>

1 enables DSP Power Domain Off,
0 disables

supported

<enDSSclkgate>

1 enables DSS Clock Gating, 0
disables

supported

<enMSSvclkgate>

1 enables MSS Clock Gating, 0
disables

supported

<enBSSclkgate>

1 enables BSS Clock Gating, 0
disables (Note: Performed last at
code level as discussed above)

supported

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 35 of 83

<enRFpowerdown>

1 enables RF Power Down, 0
disables

supported

<enAPLLpowerdown>

1 enables APLL Power Down, 0
disables

supported

<enAPLLGPADCpowerdown>

1 enables APLL/GPADC Power
Down, 0 disables

supported

<componentMicroDelay>

specifies a delay duration, in
microseconds, between each
successive power function

supported

<idleModeMicroDelay>

specifies a delay duration, in
microseconds, after Idle Mode has
been acheived but before device is
powered up (if
using idlePowerCycle)

not supported

idlePowerCycle This is an optional command and can be issued anytime to put
the system into idle mode. This command runs each of the low
power functions to power the device down into Idle Mode then,
after a user-specified delay, powers the device back up into
functional mode and ready to accept CLI Commands.

This command is useful when needing to confirm or determine
device functionality.

This command is supported only for xWR6843 devices. This
command will be available only when the
macro SYS_COMMON_XWR68XX_LOW_POWER_MODE_EN
is defined and the libsleep utils library is used.

<subframeidx>

always set to -1

supported

<enDSPpowerdown>

1 enables DSP Power Domain Off,
0 disables

supported

<enDSSclkgate>

1 enables DSS Clock Gating, 0
disables

supported

<enMSSvclkgate>

1 enables MSS Clock Gating, 0
disables

supported

<enBSSclkgate>

1 enables BSS Clock Gating, 0
disables (Note: Performed last at
code level as discussed above)

supported

<enRFpowerdown>

1 enables RF Power Down, 0
disables

supported

<enAPLLpowerdown>

1 enables APLL Power Down, 0
disables

supported

<enAPLLGPADCpowerdown>

1 enables APLL/GPADC Power
Down, 0 disables

supported

<componentMicroDelay>

specifies a delay duration, in
microseconds, between each
successive power function

supported

<idleModeMicroDelay>

specifies a delay duration, in
microseconds, after Idle Mode has
been acheived but before device is
powered up (if
using idlePowerCycle)

supported

% Any line starting with '%' character
is considered as comment line and
is skipped by the CLI parsing utility.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 36 of 83

Table 1: mmWave SDK Demos - CLI commands and parameters

Running the prebuilt unit test binaries (.xer4f and .xe674)

Unit tests for the drivers and components can be found in the respective test directory for that component. See section "mmWave SDK - TI
 for location of each component's test code. For example, UART test code that runs on TI RTOS is in components" mmwave_sdk_<ver>/packages/ti

. In this test directory, you will find .xer4f and .xe674 files (either prebuilt or build as a part of instructions mentioned in /drivers/uart/test/<platform>
). Follow the instructions in section " to download and execute these unit tests via CCS."Building drivers/control components" CCS development mode"

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 37 of 83

1.

How-To Articles

How to identify the COM ports for mmWave EVM

When the EVM is powered on and connected to Windows PC via the supplied USB cable, there should be two additional COM Ports in Device
Manager. See your mmWave devices' TI EVM User Guide for details on the COM port.

After following the above steps, disconnect and re-connect the EVM and you should see the COM ports now. See the highlighted COM ports in the
belowFigure

Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports

How to flash an image onto mmWave EVM

You will need the mmWave Device TI EVM, USB cable and a Windows/Linux PC to perform these steps.

Setup the Booster Pack EVM for Flashing

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumper/switch locations (See "Sense-on-Power
" section in mmWave device's EVM user guide). To put the EVM in flashing mode, power off the board and either place (SOP) Jumpers

jumpers on pins marked as SOP2 and SOP0 or toggle SOP0 and SOP2 switches to ON .

SOP2

jumper
/switch

SOP1

jumper
/switch

SOP0

jumper
/switch

Bootloader mode & operation

0 0 1 Functional Mode

Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches the
control to it

1.

2.

3.

4.

Troubleshooting Tip

If the COM ports don't show up in the Device Manager or are not working (i.e. no demo output seen on the data port), then one of these
steps would apply depending on your setup:

If you want to run the Out-of-box demo, simple browse to the Visualizer () and follow https://dev.ti.com/mmWaveDemoVisualizer
the one-time setup instructions.
If you are trying to flash the board, using Uniflash tool and following the cloud or desktop version installation instructions would
also install the right drivers for the COM ports.
If above methods didnt work and if TI code composer studio is not installed on that PC, then download and install the standalone

. XDS110 drivers
If TI code composer studio is installed, then version of CCS and emulation package need to be checked and updated as per the
mmWave SDK release notes. See section for more details.Emulation Pack Update

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown above. Please use the correct COM port
number from your setup for following steps.

https://confluence.itg.ti.com/download/attachments/558037288/Device_Manager.png?version=1&modificationDate=1652781376000&api=v2
https://dev.ti.com/mmWaveDemoVisualizer
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 38 of 83

1.

2.

a.
b.

3.

4.

1.
2.
3.

1.
2.
3.
4.

1 0 1 Flash Programming Mode

Device Bootloader spins in loop to allow flashing of user application to the serial flash.

Procure the Images
For flashing xWR1xxx devices, TI Uniflash tool should be used. Users can either use the cloud version available at https://dev.ti.com/uniflash/
or download the desktop version available at . Detailed instructions on how to use the GUI are described in http://www.ti.com/tool/UNIFLASH
the Uniflash document " " located at UniFlash User Guide for mmWave Devices http://processors.wiki.ti.com/index.php/Category:

. This document talks about the steps from the perspective of desktop GUI but the flashing steps (except for installation) CCS_UniFlash
should apply for cloud version as well. For the SDK packaged demos and ccsdebug utility, there is a bin file provided in their respective
folder: <platform>_<demo|ccsdebug>.bin which is the metaImage to be used for flashing. The metaImage already has the MSS, BSS
(RADARSS) and DSS (as applicable) application combined into one file. These bin files can be selected in Uniflash based on the working
mode. Users can use these instructions to flash the metaImage of their custom demo as well.

For demo mode, should be selected.mmwave_sdk_<ver>\ti\demo\<platform>\mmw\<platform>_mmw_demo.bin
For CCS development mode, should be selected. mmwave_sdk_<ver>\ti\ utils\ccsdebug\<platform>_ccsdebug.bin

Flashing procedure

Power up the EVM and check the Device Manager in your windows PC. Note the number for the serial port marked as "XDS110 Class
" for the EVM. Lets say for this example, it showed up as COM25. Use this COM port in the TI Uniflash tool. Follow Application/User UART

the remaining instructions in the " " to complete the flashing. UniFlash v4 User Guide for mmWave Devices
Switch back to Functional Mode

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumpers (See " " Sense-on-Power (SOP) Jumpers
section in mmWave device's EVM user guide). To put the EVM in functional mode, power off the board and remove jumpers from "SOP2" pin
and leave the jumper on "SOP0" pin or toggle SOP0 switch to ON and SOP2 switch to OFF.

How to erase flash on mmWave EVM

Setup the Booster Pack EVM for flashing as mentioned in step 1 of the section: How to flash an image onto mmWave EVM
Follow the instructions in " " section " ". UniFlash v4 User Guide for mmWave Devices Format SFLASH Button
Switch back to Functional Mode as mentioned in step 4 of the section: How to flash an image onto mmWave EVM

How to connect mmWave EVM to CCS using JTAG

Debug/JTAG capability is available via the same XDS110 micro-USB port/cable on the EVM. TI Code composer studio would be required for
accessing the debug capability of the device. Refer to the release notes for TI code composer studio and emulation pack version that would be
needed.

Emulation Pack Update

Refer to the mmWave SDK release notes for the emulation pack version that would be needed within CCS to connect to the EVM. Check if that
particular or its later version of "TI Emulators" is available within your CCS installation. If you have an older version on your system, refer to CCS help
on how to update software packages within CCS.

Device support package Update

To create the ccxml file for connecting to the EVM, you will need to first update the device support package within CCS. Refer to the mmWave SDK
release notes for the device support package version that would be needed within CCS to connect to the EVM. Check if that particular or its later
version of "mmWave Radar Device Support" is available within your CCS installation. If you have an older version on your system, refer to CCS help
on how to update software packages within CCS.

Target Configuration file for CCS (CCXML)

Creating a CCXML file

Assuming you have updated the device support package and Emulation pack as mentioned in the above, follow the steps mentioned below to section
create a target configuration file in CCS.

If your CCS does not already show "Target Configurations" window, do View->Target Configurations
This will show the "Target Configurations" window, right click in the window and select "New Target Configuration"
Give an appropriate name to the ccxml file you want to create for the EVM
Scroll the "Connection" list and select "Texas Instruments XDS110 USB Debug Probe", when this is done, the "Board or Device" list will be
filtered to show the possible candidates, find and choose the mmWave device (AWR or IWR) of interest and check the box. Click Save and
the file will be created.

https://dev.ti.com/uniflash/
http://www.ti.com/tool/UNIFLASH
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 39 of 83

Figure 4: Creating a mmWave device CCXML in CCS

Connecting to mmWave EVM using CCXML in CCS

Follow steps in above to create a ccxml file. Once created, the target configuration file will be seen in the " " list and you section Target Configurations
can launch the target by selecting it and with right-click select the "Launch Selected Configuration" option. This will launch the target and the Debug
window will show all the cores present on the device. You can connect to the target with right-click and doing "Connect Target".

Figure 5: Connecting to mmWave Device in CCS

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 40 of 83

1.

2.

Developing using SDK

Build Instructions

Follow the mmwave_sdk_release_notes instructions to install the mmwave_sdk in your development environment (windows or linux). All the tools
needed for mmwave sdk build are installed as part of mmwave sdk installer.

Setting up build environment

Windows

Create command prompt at < folder. Under this folder you should see a setenv.mmwave_sdk_<ver> install path>\packages\scripts\windows
bat file that has all the tools environment variables set automatically based on the installation folder. Review this file and change the few build
variables shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the
standard installation process was followed.

Build variables that can be modified (if needed) in setenv.bat

@REM ###
@REM # Build variables (to be modified based on build need)
@REM ###
@REM Select your device. Options (case sensitive) are: awr14xx, iwr14xx, awr16xx, iwr16xx, awr18xx,
iwr18xx, iwr68xx, awr68xx
set MMWAVE_SDK_DEVICE=iwr68xx

@REM If download via CCS is needed, set below define to yes else no
@REM yes: Out file created can be loaded using CCS.
@REM Binary file created can be used to flash
@REM no: Out file created cannot be loaded using CCS.
@REM Binary file created can be used to flash
@REM (additional features: write-protect of TCMA, etc)
set DOWNLOAD_FROM_CCS=yes

@REM If using a secure device this variable needs to be updated with the path to mmwave_secdev_<ver>
folder
set MMWAVE_SECDEV_INSTALL_PATH=

@REM If using a secure device, this variable needs to be updated with the path to hsimage.cfg file
that
@REM has customer specific certificate/key information. A sample hsimage.cfg file is in the secdev
package
set MMWAVE_SECDEV_HSIMAGE_CFG=%MMWAVE_SECDEV_INSTALL_PATH%/hs_image_creator/hsimage.cfg

Run as shown below.setenv.bat

Run setenv.bat

setenv.bat

Refer to the MMWAVE-SECDEV User Guide to setup environment needed for builds for high secure (HS) devices. For non secure
devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.bat file then most probably the wrong installer was used (Linux installation being
compiled under Windows)

set MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 41 of 83

2.

1.

2.

3.

4.

This should not give errors and should print the message . The build environment is now setup."mmWave Build Environment Configured"

 Linux

Open a terminal and cd to < . Under this folder you should see a setenv.sh file that mmwave_sdk_<ver> install path>/packages/scripts/unix
has all the tools environment variables set automatically based on the installation folder. Review this file and change the few build variables
shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the standard
installation process was followed.

Build variables that can be modified (if needed) in setenv.sh

###
Build variables (to be modified based on build need)
###
@REM Select your device. Options (case sensitive) are: awr14xx, iwr14xx, awr16xx, iwr16xx, awr18xx,
iwr18xx, iwr68xx, awr68xx
set MMWAVE_SDK_DEVICE=iwr68xx

If download via CCS is needed, set below define to yes else no
yes: Out file created can be loaded using CCS.
Binary file created can be used to flash
no: Out file created cannot be loaded using CCS.
Binary file created can be used to flash
(additional features: write-protect of TCMA, etc)
export DOWNLOAD_FROM_CCS=yes

If using a secure device, this variable needs to be updated with the path to mmwave_secdev_<ver>
folder
export MMWAVE_SECDEV_INSTALL_PATH=

If using a secure device, this variable needs to be updated with the path to hsimage.cfg file that
has customer specific certificate/key information. A sample hsimage.cfg file is in the secdev
package
export MMWAVE_SECDEV_HSIMAGE_CFG=${MMWAVE_SECDEV_INSTALL_PATH}/hs_image_creator/hsimage.cfg

Assuming build is on a Linux 64bit machine, install modules that allows Linux 32bit binaries to run. This is needed for Image Creator binaries

sudo dpkg --add-architecture i386

Install build-essential package for 'make'. Install mono-complete package as one of the Image Creator binaries (out2rprc.exe) is a windows
executable that needs mono to run in Linux environment

sudo apt-get install build-essential
sudo apt-get --assume-yes install mono-complete

Run as shown below. setenv.sh

Run setenv.sh

source ./setenv.sh

Refer to the MMWAVE-SECDEV User Guide to setup environment needed for builds for high secure (HS) devices. For non secure
devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.sh file then most probably the wrong installer was used (Windows installation being
compiled under Linux)

export MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 42 of 83

4.

This should not give errors and should print the message . The build environment is now setup."mmWave Build Environment Configured"

Building demo

To clean build a demo, first make sure that the environment is setup as detailed in earlier section. Then run the following commands. On successful
execution of the commands, the output is <demo>.xe* which can be used to load the image via CCS and <demo>.bin which can be used as the binary
in the steps mentioned in section "."How to flash an image onto mmWave EVM

Building demo in Windows

Building demo in windows

REM Fill <device type> with appropriate device that supports demo in a particular release
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/<device type>/mmw

REM Clean and build
gmake clean
gmake all

REM Incremental build
gmake all

REM For example to build the mmw demo for iwr68xx
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr68xx/mmw
gmake clean
gmake all
REM This will create xwr68xx_mmw_demo_mss.xer4f & xwr68xx_mmw_demo.bin binaries
REM under %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr68xx/mmw folder

Building demo in Linux

Building demo in linux

Fill <device type> with appropriate device that supports demo in a particular release
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/<device type>/mmw

Clean and build
gmake clean
gmake all

Incremental build
gmake all

For example to build the mmw demo for iwr68xx
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr68xx/mmw
gmake clean
gmake all
This will create xwr68xx_mmw_demo_mss.xer4f & xwr68xx_mmw_demo.bin binaries
under ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr68xx/mmw folder

Advanced build

The mmwave sdk package includes all the necessary libraries and hence there should be no need to rebuild the driver, algorithms or control
component libraries. In case a modification has been made to any of these modules then the following section details how to build these components.

Building drivers/control/alg components

To clean build driver, control, datapath or alg component and its unit test, first make sure that the environment is setup as detailed in earlier section.
Then run the following commands

Each demo has dependency on various drivers and control components. The libraries for those components need to be available in their
respective lib folders for the demo to build successfully.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 43 of 83

Building component in windows

cd %MMWAVE_SDK_INSTALL_PATH%/ti/<component_path_under_ti>
gmake clean
gmake all

REM The command will create the following file
REM lib<component>_<device_type>.aer4f library under ti/<component_path_under_ti>/lib folder
REM If the module has unit test, it will also create
REM <device_type>_<component>_mss.xer4f unit test binary under ti/<component_path_under_ti>/test
/<device_type> folder
REM If the device has a DSP and the driver supports DSP then the command will also create
REM lib<component>_<device_type>.ae674 library for DSS under ti/<component_path_under_ti>/lib folder
REM If the module has unit test, it will also create
REM <device_type>_<component>_dss.xe674 unit test binary for DSS under ti/<component_path_under_ti>/test
/<device_type> folder
REM Above paths are relative to %MMWAVE_SDK_INSTALL_PATH%/

REM For example to build the adcbuf lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf
gmake clean
gmake all

REM For example to build the mmwavelink lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink
gmake clean
gmake all

REM For example to build the aoaproc dpu lib
cd %MMWAVE_SDK_INSTALL_PATH%/ti/datapath/dpc/dpu/aoaproc
gmake clean
gmake all

REM Additional build options for each component can be found by invoking make help
gmake help

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 44 of 83

Building component in linux

cd ${MMWAVE_SDK_INSTALL_PATH}/ti/<component_path_under_ti>
gmake clean
gmake all

The command will create the following file
lib<component>_<device_type>.aer4f library under ti/<component_path_under_ti>/lib folder
If the module has unit test, it will also create
<device_type>_<component>_mss.xer4f unit test binary under ti/<component_path_under_ti>/test
/<device_type> folder
If the device has a DSP and the driver supports DSP then the command will also create
lib<component>_<device_type>.ae674 library for DSS under ti/<component_path_under_ti>/lib folder
If the module has unit test, it will also create
<device_type>_<component>_dss.xe674 unit test binary for DSS under ti/<component_path_under_ti>/test
/<device_type> folder
Above paths are relative to ${MMWAVE_SDK_INSTALL_PATH}/

For example to build the adcbuf lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf
gmake clean
gmake all

For example to build the mmwavelink lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink
gmake clean
gmake all

For example to build the aoaproc dpu lib
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/datapath/dpc/dpu/aoaproc
gmake clean
gmake all
Additional build options for each component can be found by invoking make help
gmake help

example output of make help for drivers and mmwavelink

**
* Makefile Targets for the ADCBUF
clean -> Clean out all the objects
drv -> Build the Driver only
drvClean -> Clean the Driver Library only
test -> Builds all the unit tests for the SOC
testClean -> Cleans the unit tests for the SOC
**

example output of make help for mmwave control and alg component

**
* Makefile Targets for the mmWave Control
clean -> Clean out all the objects
lib -> Build the Core Library only
libClean -> Clean the Core Library only
test -> Builds all the Unit Test
testClean -> Cleans all the Unit Tests
**

"Error on warning" compiler and linker setting

Please note that not all components are supported for all devices and not all components have unit tests. List of supported components for
each device is listed in the Release Notes.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 45 of 83

By default, the SDK build uses "–emit_warnings_as_errors" option to help users identify certain common mistakes in code that are flagged as warning
but could lead to unexpected results. If user desires to disable this feature, then please set the flag MMWAVE_DISABLE_WARNINGS_AS_ERRORS
to 1 in the above mentioned setenv.bat or setenv.sh and invoke that file again to update the build environment.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 46 of 83

a.
b.
c.
d.

MMWAVE SDK deep dive

System Deployment

A typical mmWave application would perform these operations:

Control and monitoring of RF front-end through mmaveLink
Transport of external communications through standard peripherals
Some radar data processing using DSP

Typical customer deployment for mmWave sensor is shown in :Figure 6

Application code for MSS and DSP-SS is downloaded from the serial flash memory to the mmWave device (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data
Optional high speed data (debug) sent out of device over LVDS

Figure 6: Autonomous mmWave sensor (Standalone mode)

The above deployment can be realized using the mmWave SDK and it components in a layered structure as shown :below

Figure 7: SDK Layered block diagram

Typical mmWave Radar Processing Chain

https://confluence.itg.ti.com/download/attachments/558037288/SDK_architecture.png?version=1&modificationDate=1652781374000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 47 of 83

Following shows a typical mmWave Radar processing chain that accepts ADC data as input from mmWave Front End and then performs Range figure
and Doppler FFT followed by non-coherent detection using CFAR. Finally angle is estimated using 3D FFT and the detected points represent the point
cloud data. The point cloud data can then be post processed using higher layer algorithms such as Clustering, Tracking, Classification to represent
real world targets.

Figure 8: Typical mmWave radar processing chain

Using mmWave SDK the above chain could be realized as shown in the following for devices with HWA or DSP as processing nodes. In the figure
following figure, green arrow shows the control path and red arrow shows the data path. Blue blocks are mmWave SDK components and yellow
blocks are custom application code. The hierarchy of software flow/calls is shown with embedding boxes. Depending on the complexity of the higher
algorithms (such as clustering, tracking, etc) and their memory/mips consumption, they can either be partially realized inside the mmWave device or
would run entirely on the external processor.

Figure 9: Typical mmWave radar processing chain using mmWave SDK components

Each of the mmWave device offers different processing nodes to realize the mmwave processing. xWR14xx has HWA engine, xWR16xx has DSP
C674x core, xWR68xx and xWR18xx have HWA+DSP(C674x). For devices with multiple processing nodes, the mmWave detection processing chain
can exploit them as needed for performance and scalable reasons. Shown below is an example of detection processing chain that uses various data
processing units (DPUs) to perform the typical mmwave processing upto the point cloud. The mmwave data representation in mmWave device
memory forms an interface layer between the various DPUs. Each DPU can be realized independently using HWA or DSP processing node - the
choice is either driven by usecase or availability of that processing node on a given mmWave device. The various mmWave SDK components shown
below are described in the section " " below.mmWave SDK - TI components

https://confluence.itg.ti.com/download/attachments/558037288/typical_mmwave_processing_chain.png?version=1&modificationDate=1652781370000&api=v2
https://confluence.itg.ti.com/download/attachments/558037288/image2016-9-30%2010%3A27%3A32.png?version=1&modificationDate=1652781370000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 48 of 83

Figure 10: Scalable data processing chain using mmWave SDK

Please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder for more details and example
code on how this chain is realized using mmWave SDK components.

Typical Programming Sequence

The above processing chain can be split into two distinct blocks: RF control path and data path.

RF Control Path

The control path in the above processing chain is depicted by the following blocks.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 49 of 83

Figure 11: Typical mmWave radar control flow

Following set of figures shows how an application programming sequence would look like for setting up the typical control path - init, config, start. This
is a high level diagram simplified to highlight the main software APIs and may not show all the processing elements and call flow. For an example
implementation of this call flow, please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder.

Single RF Control (MSSRADARSS or DSSRADARSS)

In this scenario, the RF control path runs on either Master subsystem (Cortex-R4F) or DSP subsytem (C674x) and the application can simply call the
mmwave APIs in the SDK in isolation mode to realize most of the functionality.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 50 of 83

Figure 12: mmWave Isolation mode: Detailed Control Flow (Init sequence)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 51 of 83

Figure 13: mmWave Isolation mode: Detailed Control Flow (Config sequence)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 52 of 83

Figure 14: mmWave Isolation mode: Detailed Control Flow (start sequence)

Co-operative RF control ((MSS+DSS)<->RADARSS)

In this scenario the control path can runs in "co-operative" mode where RF control APIs can be interchangeably called by either domains (but the
sequence of API needs to be maintained). One such deployment could have the RF init and config initiated by the MSS and the start is initiated by the
DSS after the data path configuration is complete. In the figures below, control path runs on MSS entirely and MSS is responsible for properly
configuring the RADARSS (RF) and DSS (data processing). The mmWave unit tests provide a sample implementation of this co-operative mode.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 53 of 83

Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)

Figure 16: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 54 of 83

Figure 17: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)

Data Path

The mmwave detection processing can be split into following layers of application code, control/management layer to manipulate the data processing
elements, processing chain that ties up individual modules to create a data flow and the low level data processing modules and interfaces.

Figure 18: Typical mmWave Detection Processing Layers

mmWave devices present a few options on how the data processing layers can be realized using the various control/processing nodes within the
device. To allow ease of programming across these deployment types, data path manager (DPM) presents a simplified API structure to the application
while hiding the complexity of inter task and inter processor communications. As can be seen from the following figures, application would just need to
call the various DPM APIs to control the processing chain (seen as function calls in 'blue' in the ladder diagrams below) and re-act to the outcome of
these APIs in the report callback. Data processing chains (DPCs) also present a standardized API structure to the application via DPM and
encapsulate the realization of the data flow using data processing units (DPUs) within while presenting simple IOCTL based interface to configure and
trigger the data flow. Based on the usecase and the mmWave device hardware capabilities, application can choose from one of the following
deployments:

DPC runs on the same core as control core and the application can control the DPC via DPM in local mode. (See local domain and config
figures below)processing

DPC runs on another core which is different from the controlling core and the application can control the DPC via DPM in remote mode. (See
remote domain and figures below)config processing

https://confluence.itg.ti.com/download/attachments/558037288/datapath_local_config.png?version=1&modificationDate=1652781374000&api=v2
https://confluence.itg.ti.com/download/attachments/558037288/datapath_local_start_stop.png?version=1&modificationDate=1652781374000&api=v2
https://confluence.itg.ti.com/download/attachments/558037288/datapath_remote_config.png?version=1&modificationDate=1652781374000&api=v2
https://confluence.itg.ti.com/download/attachments/558037288/datapath_remote_start_stop.png?version=1&modificationDate=1652781374000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 55 of 83

DPC is split between two cores and the application can control the DPC via DPM in distributed mode. (See distributed domain and config
figures below)processing

The following ladder diagrams show the flow for init, two different forms of config (one initiated on local core and other on remote core), start trigger,
chirps/frame events and stop trigger. The choice of MSS and DSS responsibilities are shown as one of the possible examples - their roles can be
interchanged as per application needs. These ladder diagrams don't show the corresponding MMWAVE/RF control calls to show independence
between RF control and datapath control. Having said that, typical application would follow the following flow for these two form of controls:

mmWave init and DPM init (order doesn't matter)
mmWave config and DPM IOCTL for DPC config (order doesn't matter)
DPM start and then mmWave start (note this is recommended as DPC should be in started state before the real time frame/chirp H/W events
occur due to mmWave start)
mmWave stop and then DPM stop (note this is recommended as DPC should be stopped after the real time frame/chirp H/W events stop due
to mmWave stop)

Data processing flow with local domain control

In this deployment, the core (MSS or DSS) that runs the actual data processing chain (DPC) also controls it. Application calls DPM APIs for init, data
processing IOCTL for configuration, start and stop. DPM reports back status from DPC using the application registered report callback function.
Application provides an execution context (task) for the DPM/DPC to run. DPC provides back the processing results (point cloud, tracked objects, etc)
to the application in this execution context.

Figure 19: Data processing flow with local domain control (init/config)

https://confluence.itg.ti.com/download/attachments/558037288/datapath_distributed_config.png?version=1&modificationDate=1652781373000&api=v2
https://confluence.itg.ti.com/download/attachments/558037288/datapath_distributed_start_stop.png?version=1&modificationDate=1652781374000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 56 of 83

Figure 20: Data processing flow with local domain control (start/chirp/frame/stop)

Data processing flow with remote domain control

In this deployment, the data processing chain runs on a chosen data core while the control for it exists on the other core. Application code on control
core and data core calls DPM APIs for init and sync'ing with each other. The control core calls data processing IOCTL for configuration, start and stop
APIs. The H/W events are received on the data core. DPM reports back status from DPC using the application registered report callback function on
both control and data cores. DPC provides back the processing results (point cloud, tracked objects, etc) to the data core application code which can
send the result to the control core using DPM send result API.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 57 of 83

Figure 21: Data processing flow with remote domain control (init/config)

Figure 22: Data processing flow with remote domain control (start/chirp/frame/stop)

Distributed Data processing flow and control

In this deployment, the data processing chain is split across cores along with the control. Application code on both cores call DPM APIs for init and
sync'ing with each other. Either core can call data processing IOCTL for configuration, start and stop APIs. DPM reports back status from DPC using
the application registered report callback function on both cores. Partial results from the DPC running on one core can be passed onto the DPC
running on other core using the DPM relay result API. DPC can provide back the final processing results (point cloud, tracked objects, etc) to the same
core's application code which can then send the result to the application running on other core using DPM send result API. Following ladder diagrams
shows just one of the many ways of splitting the DPC across two cores.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 58 of 83

Figure 23: Distributed Data processing flow and control (init/config)

Figure 24: Distributed Data processing flow and control (start/chirp/frame/stop)

mmWave SDK - TI components

The mmWave SDK functionality broken down into components are explained in next few subsections. For detailed documentation on each of these
modules, refer to the top level documentation located at . mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html

Demos

mmWave Demo

This demo is located at folder. The millimeter wave demo shows some of the radar sensing mmwave_sdk_<ver>/packages/ti/demo/ /mmw<platform>
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via . This section captures the high level layout of the mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html
demo supported on various mmWave devices. For details on individual components (control layer, datapath layer, etc), refer to the remaining sub-
sections under " ".mmWave SDK - TI components

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 59 of 83

Device
Support

xWR1843 AWR1843AOP xWR6843AOP

(QM/SIL2/ASILB)

xWR6443

xWR6843 (QM
/SIL2/ASILB)

xWR6843 xWR1642

Demo Directory ti\demo\xwr18xx
\mmw

ti\demo\ \mmwxwr18xx ti\demo\ \mmwxwr64xx ti\demo\xwr64xx
\mmw

ti\demo\xwr68xx
\mmw

ti\demo\xwr16xx
\mmw

Binary prefix xwr18xx_mmw_demo xwr18xxAOP_mmw_demo xwr64xxAOP_mmw_demo xwr64xx_mmw_demo xwr68xx_mmw_demo xwr16xx_mmw_demo

EVM xwr18xx BoosterPack AWR1843AOP EVM IWR6843AOP EVM xWR68xx ISK IWR68xx ISK xwr16xx BoosterPack

Platform
selection in
Visualizer

xwr18xx xwr18xx_AOP xwr68xx_AOP xwr64xx xwr68xx xwr16xx

mmWave API
/RF control

R4F (MSS) R4F (MSS) R4F (MSS) R4F (MSS) R4F (MSS) R4F (MSS)

Instrumentation
via LVDS
based
streaming

Yes Yes Yes Yes Yes Yes

Range Proc
DPU

HWA based DPU
(driven by DSP)

HWA based DPU (driven
by DSP)

HWA based DPU (driven
by R4F)

HWA based DPU
(driven by R4F)

HWA based DPU
(driven by R4F)

DSP

Static Clutter
Removal

DSP DSP R4F (MSS) R4F (MSS) DSP DSP

Doppler Proc
DPU

HWA based DPU
(driven by DSP)

HWA based DPU (driven
by DSP)

HWA based DPU (driven
by R4F)

HWA based DPU
(driven by R4F)

DSP DSP

CFAR DPU CFAR-CA HWA
based DPU (driven
by DSP)

CFAR-CA HWA based
DPU (driven by DSP)

CFAR-CA HWA based
DPU (driven by R4F)

CFAR-CA HWA
based DPU (driven
by R4F)

CFAR-CA using
DSP

CFAR-CA using
DSP

AoA DPU HWA based DPU
(driven by DSP)

HWA based DPU (driven
by DSP)

HWA based DPU using
2D FFT method (driven
by R4F)

HWA based DPU
(driven by R4F)

DSP DSP

Drivers

Drivers encapsulate the functionality of the various hardware IPs in the system and provide a well defined API to the higher layers. The drivers are
designed to be OS-agnostic via the use of OSAL layer. Following figure shows typical internal software blocks present in the SDK drivers. The source
code for the SDK drivers are present in the folder. Documentation of the API is available via doxygen mmwave_sdk_<ver>\packages\ti\drivers\<ip>
and placed at and can be browsed easily via mmwave_sdk_<ver>\packages\ti\drivers\<ip>\docs\doxygen\html\index.html mmwave_sdk_<ver>/docs

.. The driver's unit test code, running on top of SYSBIOS is also provided as part of the package /mmwave_sdk_module_documentation.html
. The library for the drivers are placed in the mmwave_sdk_<ver>\packages\ti\drivers\<ip>\test\ mmwave_sdk_<ver>\packages\ti\drivers\<ip>\lib

directory and the file is named lib<ip>_<platform>.aer4f for MSS and lib<ip>_<platform>.ae674 for DSP.

Figure 25: mmWave SDK Drivers - Internal software design

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 60 of 83

Drivers
/Hardware
IP

Platform
supported

for R4F
target

Platform
supported

for DSP
C674x
target

('all' here
excludes
xwr14xx)

Driver Functionality Implemented in mmWave SDK

ADCBUF all all All features of IP (ADCBUF, CQ) are implemented in the driver

CAN all except
xwr68xx

- Following features of IP are implemented in the driver:
Configure Rx and Tx I/O Control registers
Configure DCAN mode of operation
Configure DCAN controller, interrupts, ECC, parity
Set bit time parameters
Configure Rx and Tx message objects
Receive and Transmit a CAN message
Retrieve Tx message object transmission status and Rx message object reception status
Check the validity of the received message

CANFD awr16xx

awr18xx

xwr68xx

- Following features of IP are implemented in the driver:

Reset MCAN driver (not supported for 60Ghz devices)
Initialize MCAN clock stop controls, auto wakeup, MCAN mode - classic versus FD mode, transceiver delay
conpensation
Configure MCAN controller and global filters
Configure MCAN mode of operation
Set bit time parameters
Configure message filters, Rx/Tx FIFOs
Add and cancel Tx requests
Transmits a CAN message
Receive a CAN message
Check the validity of the received message
Configure interrupt multiplexer to service message objects
Retrieve interrupt line status, interrupt pending status, parity error status, bit error status, ECC diagnostics
status, ECC error status and MCAN error status
Clear interrupt pending status, ECC diagnostics error status, ECC error status and MCAN error status
Configure MCAN parity function, self test mode, ECC Diagnostic mode

CBUFF all all Following features of IP are implemented in the driver:
Supports Platform defined HSI: LVDS or CSI (IWR14xx only).
Initialize and setup the CBUFF Driver
Configure the Linked List and EDMA Channels to support the data transfer
Supports Interleaved and Non-Interleaved data mode
Supports the data formats: ADC, ADC_CP*, CP_ADC*, CP_ADC_CQ
Supports CRC

(*By default, prebuilt CBUFF driver library only supports ADC and CP_ADC_CQ formats but the driver library can
be rebuilt for additional formats ADC_CP and CP_ADC. See CBUFF driver doxygen documentation for more
details)

CBUFF
(LVDS)

all all Following features of IP are implemented in the driver:
LVDS driver supports the chirp and continuous mode of data transmission.
Supports only 2 and 4 lane configuration in Format0.
Supports transfer of S/W triggered user data over CBUFF/LVDS interface

CRC all all All features of IP are implemented in the driver including:
CRC-16
CRC-32
CRC-64

CRYPTO xwr16xx (HS)

awr18xx (HS)

- The driver supports following AES mode of encryption:

Electronic codebook mode (ECB)
Cipher-block chaining mode (CBC)
Cipher feedback mode (CFB)
Counter mode (CTR)
Integer counter mode (ICM)
Galios/counter mode (GCM)
Counter with CBC-MAC mode (CCM)

The driver supports following HMAC modes:

MD5
SHA-1
SHA-224
SHA-256

CSI-2 iwr14xx - Following features of IP are implemented in the driver:
Initialization and Setup of the Protocol Engine
Initialization and configuration of the DSI PHY
DSI Phy Parameters can be customized by the application

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 61 of 83

DMA all - Following features of IP are implemented in the driver:
software and hardware triggered transfer
frame based transfer
block based transfer
Addressing mode (Constant, Indexed, Post Increment)
FTC, BTC, LFS, HBC interrupts
channel chaining
auto-initiation mode
interrupt based and polling based channel completion APIs

EDMA all all All features of IP are implemented in the driver except "privilege" feature

ESM all all Default ESM FIQ Interrupt handler for R4F and hook function for DSP's NMI

Provide application to register callback functions on specific ESM errors.

GPIO all - All features of IP are implemented in the driver

HWA all except
xwr16xx

all except
xwr16xx

All features of IP are implemented in the driver

I2C all - All features of IP are implemented in the driver

MAILBOX all all All features of IP are implemented in the driver.

OSAL all all Provides an abstraction layer for some of the common OS services:
Semaphore
Mutex
Debug
Interrupts
Clock
Memory

PINMUX all - All Pinmux fields can be set and all device pad definitions are available

QSPI all - All features of IP are implemented in the driver.

QSPIFLASH all - All features of IP are implemented in the driver.

RTI all all Part of TI RTOS offering

SOC all all Provides abstracted APIs for system-level initialization. See section "mmWave SDK - System Initialization" for
more details.

SPI (MIBSPI) all - All features of IP are implemented in the driver including:
4-wire Slave and master mode
3-wire Slave and Master mode
both polling mode and DMA mode for read/write
char length 8-bit and 16-bit.

VIM all - Part of TI RTOS offering

UART all all All features of IP are implemented in the driver including:
Standard Baud Rates: 9600, 14400, 19200 till 921600
Data Bits: 7 and 8 Bits
Parity: None, Odd and Even
Stop Bits: 1 and 2 bits
Blocking and Polling API for reading and writing to the UART instance
DMA support for read/write APIs

WATCHDOG all all All features of IP are implemented in the driver.

Table 2: Supported drivers and their functionality

OSAL

An OSAL layer is present within the mmWave SDK to provide the OS-agnostic feature of the foundational components (drivers, mmWaveLink,
mmWaveAPI). This OSAL provides an abstraction layer for some of the common OS services: Semaphore, Mutex, Debug, Interrupts, Clock, Memory,
CycleProfiler. The source code for the OSAL layer is present in the folder. Documentation of the APIs mmwave_sdk_<ver>\packages\ti\drivers\osal
are available via doxygen and placed at . A sample porting of this OSAL mmwave_sdk_<ver>\packages\ti\drivers\osal\docs\doxygen\html\index.html
for TI RTOS is provided as part of the mmWave SDK. System integrators could port the OSAL for their custom OS or customize the same TI RTOS
port for their custom application, as per their requirements.

Examples of what integrators may want to customize:

MemoryP module - for example, choosing from among a variety of heaps available in TI RTOS (SYSBIOS), or use own allocator.
Hardware interrupt mappings. This case is more pronounced for the C674 DSP which has only 16 interrupts (of which 12 are available under
user control) whereas the events in the SOC are much more than 16. These events go to the C674 through an interrupt controller (INTC) and
Event Combiner (for more information see the C674x megamodule user guide at). The default http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf
OSAL implementation provided in the release routes all events used by the drivers through the event combiner. If a user chooses to route
differently (e.g for performance reasons), they may add conditional code in OSAL implementation to route specific events through the INTC
and event combiner blocks. User can conveniently use event defines in ti/common/sys_common_*.h to acheive this.

mmWaveLink

http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 62 of 83

mmWaveLink is a control layer and primarily implements the protocol that is used to communicate between the Radar Subsystem (RADARSS) and
the controlling entity which can be either Master subsystem (MSS R4F) and/or DSP subsystem (DSS C674x). It provides a suite of low level APIs that
the application (or the software layer on top of it) can call to enable/configure/control the RADARSS. It provides a well defined interface for the
application to plug in the correct communication driver APIs to communicate with the RADARSS. it acts as driver for Radar SS and exposes services
of Radar SS. It includes APIs to configure HW blocks of Radar SS and provides communication protocol for message transfer between MSS/DSS and
RADAR SS.

Link between application and Radar SS
Handles communication errors, Notifies exceptions
Platform and OS independent
Can work in single threaded (non OS) environment

Following figure shows the various interfaces/APIs of the mmWaveLink component. The source code for mmWaveLink is present in the
mmwave_sdk_<ver>\packages\ti\control\mmwavelink .folder Documentation of the API is available via doxygen placed at

 and can be easily browsed via mmwave_sdk_<ver>\packages\ti\control\mmwavelink\docs\doxygen\html\index.html mmwave_sdk_<ver>/docs
 The component's unit test code, running on top of SYSBIOS is also provided as part of the package: ./mmwave_sdk_module_documentation.html

 .mmwave_sdk_<ver>\packages\ti\control\mmwavelink\test\

Figure 26: mmWaveLink - Internal software design

mmWave API

mmWaveAPI is a higher layer control running on top of mmWaveLink and LLD API (drivers API). It is designed to provide a layer of abstraction in the
form of simpler and fewer set of APIs for application to perform the task of mmWave radar sensing. In mmwave devices with dual cores, it also
provides a layer of abstraction over IPC to synchronize and pass configuration between the MSS and DSS domains. The source code for mmWave
API layer is present in the folder. Documentation of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\control\mmwave

 mmwave_sdk_<ver>\packages\ti\control\mmwave\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<ver>/docs
. The component's unit test code, running on top of SYSBIOS is also provided as part of the /mmwave_sdk_module_documentation.html.

package: mmwave_sdk_<ver>\packages\ti\control\mmwave\test\.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 63 of 83

Figure 27: mmWave API - Internal software design

There are two modes of configurations which are provided by the mmWave module.

Full configuration

The "full" configuration mode implements the basic chirp/frame sequence of mmWave Front end and is the recommended mode for application to use
when using the basic chirp/frame configuration. In this mode the application will use the entire set of services provided by the mmWave control
module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS
Asynchronous Event Management
Start & Stop services
Configuration of the RADARSS for Frame, advanced frame & Continuous mode
Configuration synchronization between the MSS and DSS

In the full configuration mode; it is possible to create multiple profiles with multiple chirps. The following APIs have been added for this purpose:-

Chirp Management:

MMWave_addChirp
MMWave_delChirp

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 64 of 83

Profile Management:

MMWave_addProfile
MMWave_delProfile

Minimal configuration

For advanced users, that either need to use advanced frame config of mmWave Front End or need to perform extra sequence of commands in the
CONFIG routine, the minimal mode is recommended. In this mode the application has access to only a subset of services provided by the mmWave
control module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS on the dual core devices
Asynchronous Event Management
Start & Stop services

In this mode the application is responsible for directly invoking the mmWave Link API in the correct order as per their configuration requirements. The
configuration services are not available to the application; so in mmwave devices with multiple cores (ex: xwr16xx, xwr68xx, etc), the application is
responsible for passing the configuration between the MSS and DSS if required.

See sample call flow below:

Figure 28: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with MSS and DSS cores and module in co-operative mode)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 65 of 83

Figure 29: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with single core or when module is used in isolation mode)

Datapath Interface (DPIF)

DPIF defines the standard interface points in the detection processing chain that will correspond to the "blue" boxes in the scalable chain shown in the
above. Key interfaces defined in this layer are:figure

Input ADC data (contents of ADCbuf memory)
Radar Cube
Detection Matrix
Point cloud and its side info

The source code for DPIF is present in the folder.mmwave_sdk_<ver>\packages\ti\datapath\dpif

mmWave Front End Calibrations

mmWave API, by default, enables all init/boot time time calibrations for mmWave Front End. There is a provision for user to provide custom
calibration mask in MMWave_open API and/or to provide a buffer that has pre-stored calibration data.

When application requests the one-time and periodic calibrations in MMWave_start API call, mmWave API enables all the available one-
time and periodic calibrations for mmWave Front End.

mmWave API doesn't expose the mmwavelink's LDO bypass API (rlRfSetLdoBypassConfig/rlRfLdoBypassCfg_t) via any of its API. If this
functionality is needed by the application (either because of the voltage of RF supply used on the TI EVM/custom board or from monitoring
point of view), user should refer to mmwavelink doxygen (mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.control\mmwavelink

) on the usage of this API and call this API from their application before calling MMWave_open().html

mmWave_open

Although mmWave_close API is provided, it is recommended to perform mmWave_open only once per power-cycle of the sensor.

https://confluence.itg.ti.com/download/attachments/558037288/scalable_chain.png?version=1&modificationDate=1652781374000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 66 of 83

Data Processing Units (DPUs)

Data Translating function(s) from one interface point to the other are called “Data Processing Units”. Splitting the data processing chain into
processing units promote re-use of certain processing blocks across multiple chains. Detailed documentation on these modules can be easily browsed
via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.

Range Processing (ADC data to Radar Cube): This processing unit performs (1D FFT+ optional DC Range Calib) processing on the chirp
(RF) data during the active frame time and produces the processed data in the radarCube. This processing unit is standardized in the
mmWave SDK. It provides implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or
C674x. The source code for Range DPU is present in the folder. Documentation of mmwave_sdk_<ver>\packages\ti\datapath\dpu\rangeproc
the API is available via doxygen and placed at . The mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.htmldatapath\dpu\rangeproc
component's unit test code, running on top of SYSBIOS is also provided as part of the package: mmwave_sdk_<ver>\packages\ti\

 .test\datapath\dpu\rangeproc\
Static Clutter Processing (Radar Cube to Radar Cube): When enabled, this processing unit reads Range FFT out data from the radar cube
and performs static clutter removal before writing the data back to the radar cube during the interframe time. This processing unit is offered
as reference implementation and users of SDK could either re-use these as is in their application/processing chain or create variations of
these units based on their specific needs. It provides S/W based implementation and can be instantiated either on R4F or C674x. The source
code for StaticClutter DPU is present in the folder. Documentation of the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\staticclutterproc
API is available via doxygen and placed at .mmwave_sdk_<ver>\packages\ti\ proc\docs\doxygen\html\index.htmldatapath\dpc\dpu\staticclutter
Doppler Processing (Radar Cube to Detection Matrix): This processing unit performs (2D FFT + Energy Sum) processing on the radar Cube
during the inter frame and produced detection matrix. This processing unit is offered as reference implementation and users of SDK could
either re-use these as is in their application/processing chain or create variations of these units based on their specific needs. It provides
implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or C674x. DSP based
implementation incorporates static clutter algorithm for optimal memory/mips usage and user can skip using the standalone static clutter
DPU. The source code for Doppler DPU is present in the folder. mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\dopplerproc
Documentation of the API is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\doppler

.proc\docs\doxygen\html\index.html
CFAR + AoA (Detection Matrix to Point Cloud): They are offered as two independent DPUs and collectively run CFAR-CA algorithm, peak
grouping, field-of-view filtering, doppler compensation, max velocity enhancement and angle (azimuth+elevation) estimation on the detection
matrix during inter frame to produce the point cloud. These processing units are offered as reference implementation and users of SDK could
either re-use these as is in their application/processing chain or create variations of these units based on their specific needs. They provide
implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or C674x. For HWA
implementation, two different algorithms are provided for AoA processing - one is the legacy method that performs independent 1D FFT on
different antenna symbol rows to determine azimuth and elevation; other algorithm uses 2D FFT on the 2D antenna symbol array to create a
two-dimensional (azimuth and elevation dimensions) output in which peaks are searched for determining azimuth and elevation for the
detected objects.

The source code for CFAR-CA DPU is present in the folder. mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\cfarcaproc
Documentation of the API is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\cfarca

. The component's unit test code, running on top of SYSBIOS is also provided as part of the proc\docs\doxygen\html\index.html
package: .mmwave_sdk_<ver>\packages\ti\ test\ datapath\dpc\dpu\cfarcaproc\
The source code for AoA DPU is present in the folder. Documentation mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoaproc
of the API is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoa

. The component's unit test code, running on top of SYSBIOS is also provided as part of the proc\docs\doxygen\html\index.html
package: .mmwave_sdk_<ver>\packages\ti\ test\ datapath\dpc\dpu\aoaproc\
The source code for AoA DPU using 2D FFT method is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoa2dproc
 folder. Documentation of the API is available via doxygen and placed at

. mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoa2dproc\docs\doxygen\html\index.html

Each DPU presents the following high level design:

Figure 30: DPU - Internal software design

All external DPU APIs start with the prefix DPU_. DPU unique name follows next.
Ex: DPU_RangeProcHWA_init

Standard external APIs: init, config, process, ioctl, deinit are provided by each DPU.
Init: one time initialization of DPU
Config: complete configuration of the DPU: hardware resources, static and dynamic (if supported by DPU)

static config: config that is static during ongoing frames

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 67 of 83

dynamic config: config that can be changed from frame to frame but only when process is not ongoing - ideally interframe
time after DPC has exported the results for the frame

Process: the actual processing function of the DPU
Ioctl: control interface that allows higher layer to switch dynamic configuration during interframe time
De-init: de-initialization of DPU

All memory allocations for I/O buffers and scratch buffers are outside the DPU since mmWave applications rely on memory overlay technique
for optimization and that is best handled at application level
All H/W resources must be allocated by application and passed to the DPU. This helps in keeping DPU platform agnostic as well as allows
application to share the resources across DPU when DPU processing doesn't overlap in time.
DPUs are OS agnostic and use OSAL APIs for needed OS services.

A typical call flow for DPUs could be represented as . The timing of config and process API calls with respect to chirp/frame would vary follows
depending on the DPU functionality, its usage in the chain, DPC implementation and overlap of hardware resources.

Figure 31: DPU - typical call flow

Data Path Manager (DPM)

DPM is the foundation layer that enables the "scalability" aspect of the architecture. This layer absorbs all the messaging complexities (cross core and
intra core) and provide standard APIs for integration at the application level and also for integrating any "data processing chain". Application layer will
be able to call the DPM APIs from any domain (MSS or DSS) and control the configuration and execution of the "data processing chain". The APIs
offered by DPM will be available on both MSS and DSS. The various deployments that it can cater to (but not limited to) are:

Datapath control on R4F and datapath execution is split between R4F/HWA and DSP (Distributed)
Datapath control on R4F and datapath execution is on R4F using HWA (Local)
Datapath control on R4F and datapath execution is on DSP (with and without HWA) (Remote)
Datapath control on DSP and datapath execution is on DSP+HWA (Local)
Datapath control on DSP and datapath execution is on DSP (Local)

https://confluence.itg.ti.com/download/attachments/558037288/dpu_call_flow.png?version=1&modificationDate=1652781373000&api=v2

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 68 of 83

Figure 32: Datapath manager (DPM) - internal software design

The source code for DPM is present in the folder. Documentation of the API is available via doxygen mmwave_sdk_<ver>\packages\ti\control\dpm
and placed at . The component's unit test code, running on top of mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.html control\dpm
SYSBIOS is also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\ test\ \control\dpm

Data processing chain (DPC)

DPC is a separate layer within the datapath that encapsulates all the data processing needs of a mmwave application and provides a well defined
interface for integration with the application. In the SDK, there is a reference implementation that corresponds to the generic "object detection" chain
which was already a part of the OOB demo in past releases. This chain will conform to the standard DPM dictated API definitions. Internally this layer
will use the functionality exposed by Data processing units (DPUs), datapath interface and datapath manager (DPM) to realize the data flow needed
for the "object detection" chain. The source code for objectdetection DPC is present in the

 folder. Documentation of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\objectedetection
mmwave_sdk_<ver>\packages\ti\ \<deployment_type>\docs\doxygen\html\index.html datapath\dpc\objectedetection and can be easily browsed via

. The component's unit test code, running on top of SYSBIOS is also provided mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.
as part of the package . See section on mmwave_sdk_<ver>\packages\ti\ \test\datapath\dpc\objectedetection\objdethwa Data Path tests using Test

 for more details on this test.vector method

mmWaveLib

mmWaveLib is a collection of algorithms that provide basic functionality needed for FMCW radar-cube processing. This component is available only
for those mmWave devices that have DSP/C674 cores, It contains optimized library routines for C674 DSP architecture only. This component is not
available for cortex R4F (MSS). These routines do not encapsulate any data movement/data placement functionality and it is the responsibility of the
application code to place the input and output buffers in the right memory (ex: L2) and use EDMA as needed for the data movement. The source code
for mmWaveLib is present in the . Documentation of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\alg\mmwavelib folder
mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.html alg\mmwavelib and can be easily browsed via mmwave_sdk_<ver>/docs

 The component's unit test code, running on top of SYSBIOS is also provided as part of the package: /mmwave_sdk_module_documentation.html.
 .mmwave_sdk_<ver>\packages\ti\ \test\alg\mmwavelib

Functionality supported by the library:

Collection of algorithms that provide basic functionality needed for FMCW radar-cube processing.
Windowing (16-bit complex input, 16 bit complex output, 16-bit windowing real array)
Windowing (16-bit complex input, 32 bit complex output, 32-bit windowing real array)
log2 of absolute value of 32-bit complex numbers
vector arithmetic (accumulation)
CFAR-CA, CFAR-CASO, CFAR-CAGO (logarithmic input samples)
16-point FFT of input vectors of length 8 (other FFT routines are provided as part of DSPLib)
single DFT value for the input sequences at one specific index
Twiddle table generation for 32x32 and 16x16 FFTs: optimized equivalent functions of dsplib for generating twiddle factor
FFT Window coefficients generation
DFT sine/cosine table generation for DFT single bin calculation
Single bin DFT with windowing.
Variation of the windowing functions with I/Q swap since most of the fixed point FFT functions in DSPLib only support one format of
complex types.

CFAR algorithms
Floating-point CFAR-CA:

mmwavelib_cfarfloat_caall supports CFAR cell average, cell accumulation, SO, GO algorithms, with input signals in floating
point formats;

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 69 of 83

mmwavelib_cfarfloat_caall_opt implements the same functionality as mmwavelib_cfarfloat_caall except with less cycles,
but the detected objects will not be in the ascending order.
mmwavelib_cfarfloat_wrap implements the same functionality as mmwavelib_cfarfloat_caall except the noise samples for
the samples at the edges are the circular rounds samples at the other edge.
mmwavelib_cfarfloat_wrap_opt implements the same functionality as mmwavelib_cfarfloat_wrap except with less cycles,
but the detected objects will not be in the ascending order.

CFAR-OS: Ordered-Statistic CFAR algorithm
mmwavelib_cfarOS accepts fixed-point input data (16-bit log-magnitude accumulated over antennae). Search window size
is defined at compile time.

Peak pruning for CFAR post-processing
mmwavelib_cfarPeakPruning: Accepts detection matrix and groups neighboring peaks into one.
mmwavelib_cfarPeakQualifiedInOrderPruning: Accepts the list of CFAR detected objects and groups neighboring peaks
into one.
mmwavelib_cfarPeakQualifiedPruning: Same as mmwavelib_cfarPeakQualifiedInOrderPruning, but with no assumption for
the order of cfar detected peaks

Floating-point AOA estimation:
mmwavelib_aoaEstBFSinglePeak implements Bartlett beamformer algorithm for AOA estimation with single object detected, it also
outputs the variance of the detected angle.
mmwavelib_aoaEstBFSinglePeakDet implements the save functionality as mmwavelib_aoaEstBFSinglePeak without the variance of
detected angle calculation.
mmwavelib_aoaEstBFMultiPeak also implements the Bartlett beamformer algorithm but with multiple detected angles, it also
outputs the variances for every detected angles.
mmwavelib_aoaEstBFMultiPeakDet implements the same functionality as mmwavelib_aoaEstBFMultiPeak but with no variances
output for every detected angles.

DBscan Clustering:
mmwavelib_dbscan implements density-based spatial clustering of applications with noise (DBSCAN) data clustering algorithm.
mmwavelib_dbscan_skipFoundNeiB also implements the DBSCAN clustering algorithm but when expanding the cluster, it skips the
already found neighbors.

Clutter Removal:
mmwavelib_vecsum: Sum the elements in 16-bit complex vector.
mmwavelib_vecsubc: Subtract const value from each element in 16-bit complex vector.

Windowing:
mmwavelib_windowing16xl6_evenlen: Supports multiple-of-2 length(number of input complex elements), and
mmwavelib_windowing16x16 supports multiple-of-8 length.
mmwavelib_windowing16x32: This is updated to support multiple-of-4 length(number of input complex elements). It was multiple-of-
8 previously.

Floating-point windowing:
mmwavelib_windowing1DFltp: support fixed-point signal in, and floating point signal out windowing, prepare the floating point data
for 1D FFT.
 mmwavelib_chirpProcWin2DFxdpinFltOut, mmwavelib_dopplerProcWin2DFxdpinFltOut: prepare the floating point data for 2D FFT,
with fixed point input. The difference is mmwavelib_chirpProcWin2DFxdpinFltOut is done per chip bin, while
mmwavelib_dopplerProcWin2DFxdpinFltOut is done per Doppler bin.
mmwavelib_windowing2DFltp: floating point signal in, floating point signal out windowing to prepare the floating point data for 2D
FFT.

Vector arithmetic
Floating-point and fixed point power accumulation: accumulates signal power. Alternate API to right shift the output vector along with
accumulation is also provided.
Histogram: mmwavelib_histogram right-shifts unsigned 16-bit vector and calculates histogram.
Right shift operation on signed 16-bit vector or signed 32-bit vector

mmwavelib_shiftright16 shifts each signed 16-bit element in the input vector right by k bits.
mmwavelib_shiftright32 shifts each signed 32-bit element in the input vector right by k bits.
mmwavelib_shiftright32to16 right shifts 32-bit vector to 16-bit vector

Complex vector element-wise multiplication.
mmwavelib_vecmul16x16: multiplies two 16-bit complex vectors element by element. 16-bit complex output written in place
to first input vector.
mmwavelib_vecmul16x32, mmwave_vecmul16x32_anylen : multiplies a 16-bit complex vector and a 32-bit complex vector
element by element, and outputs to the 32-bit complex output vector.
mmwave_vecmul32x16c: multiplies 32bit complex vector with 16bit complex constant.

Sum of absolute value of 16-bit vector elements
mmwavelib_vecsumabs returns the 32-bit sum.

Max power search on 32-bit complex data
mmwavelib_maxpow outputs the maximum power found and returns the corresponding index of the complex sample
mmwavelib_powerAndMax : Power computation combined with max power search

Peak search for Azimuth estimation on 32-bit float vector
mmwavelib_multiPeakSearch : Multiple peak search in the azimuth FFT output
mmwavelib_secondPeakSearch : Second peak search in the azimuth FFT output

DC (antenna coupling signature) Removal on 32-bit float complex vector
Vector subtraction for 16-bit vectors

Matrix utilities
Matrix transpose for 32-bit matrix: Similar to DSPLib function but optimized for matrix with rows larger than columns

Group Tracker

The algorithm is designed to track multiple targets, where each target is represented by a set of measurement points (point cloud output of CFAR
detection layer). Each measurement point carries detection information, for example, range, angle, and radial velocity. Instead of tracking individual
reflections, the algorithm predicts and updates the location and dispersion properties of the group. The group is defined as the set of measurements
(typically, few tens; sometimes few hundreds) associated with a real life target. This algorithm is provided for all mmWave devices except xwr14xx but
is supported for both R4F and C674x. The source code for gtrack is present in the folder. Documentation mmwave_sdk_<ver>\packages\ti\alg\gtrack
of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\alg\gtrack \docs\doxygen<2d|3D>\html\index.html and can be easily

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 70 of 83

. The component's unit test code, running on top of SYSBIOS is browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.
also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\alg\gtrack\test\

Board/EVM Configuration

Board/EVM specific information such as antenna pattern are provided via files under . User can use the SDK mmwave_sdk_<ver>\packages\ti\board
provided default values by compiling the code under this directory directly with their application or user can define their own values by using the
interface defined by this module.

RADARSS Firmware

This is a binary (under) that runs on Radar subsystem of the mmWave device and realizes the mmWave front mmwave_sdk_<ver>\firmware\radarss
end. It exposes configurability via a set of messages over mailbox which is understood by the mmWaveLink component running on the MSS.
RADARSS firmware is responsible for configuring RF/analog and digital front-end in real-time, as well as to periodically schedule calibration and
functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle temperature and ageing
effects, and to enable significant ease-of-use from an external host perspective. Features/enhancements information can be found in the platform
specific release notes under .mmwave_sdk_<ver>\firmware\radarss

CCS Debug Utility

This is a simple binary that can flashed onto the board to facilitate the development phase of mmWave application using TI Code Composer Studio
(CCS). See section for more details. For xWR14xx, this binary is for R4F (MSS) and for other mmWave devices, there is an CCS Development mode
executable for both R4F (MSS) and C674 (DSS) and is combined into one metaImage for flashing along with RADARSS firmware. Note that the CCS
debug application for C674 (DSS) has the L1 and L2 cache turned off so that new application that gets downloaded via CCS can enable it as needed,
without any need for cache flush operations, etc during switching of applications. CCS debug for MSS (R4F) has the while loop implemented using
ARM instruction set since its purpose is to allow users to load another application using CCS and the first instruction that the application would run will
be _c_int00 which is compiled only in ARM mode.

HSI Header Utility

An optional utility library is provided for user to create a header that it can attach to the data being shipped over LVDS. This library accepts the CBUFF
session configuration and creates a header with appropriate information filled in and passes it back to the calling application. The calling application
can then supply this created header to CBUFF APIs. This config inside the header is intended to help user parse the LVDS on the receiving end. The
source code for this utility is present in the folder. Documentation of the API is available via doxygen mmwave_sdk_<ver>\packages\ti\utils\hsiheader
placed at mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.html utils\hsiheader and can be easily browsed via mmwave_sdk_<ver>/docs

./mmwave_sdk_module_documentation.html.

Rtrim Utility

An optional Rtrim utility library is provided for user to provide customers the ability to retrieve and change the value of the RTRIM value within TI
. This library provides APIs millimeter wave devices rtrim_get() and rtrim_set() to check the RTRIM value and modify it. This provision allows us to

modify the RTRIM setting in Gen1 devices. This setting is demonstrated in the demos for all Gen1 devices using a
macro SYS_COMMON_RTRIM_MODIFY_EN in mmwave_sdk_<ver>\packages\ti\common\sys_common.h file. To disable the RTRIM setting in the
existing demos, the below macro should be removed or commented and rebuild the demo. In Gen1 devices except xWR68xx, these utility APIs are
used to modify the RTRIM setting, whereas in xWR68xx device, it is handled in mmWavelink using the same below macro for enabling it during
compile time. For more information on how to use Rtrim utility, refer https://dev.ti.com/tirex/explore/node?node=AFZxNJk2nL.

.qZJQXuh5j0g__VLyFKFf__LATEST

sys_common.h file

#define SYS_COMMON_RTRIM_MODIFY_EN

Lib Sleep Utility

An optional libsleep utility library along with the reference implementation is provided for all xWR68xx family devices. This library isn't supported for
other Gen1 devices. This library provides different APIs to demonstrate the low power capabilities of the device using software techniques. The APIs
have been enabled in the existing xWR68xx demo which takes input from user through CLI commands and executes the power optimization APIs.
The capabilities of each power domain have been demonstrated using two commands idlePowerCycle and idlePowerDown which are enabled based
on a macro SYS_COMMON_XWR68XX_LOW_POWER_MODE_EN in mmwave_sdk_<ver>\packages\ti\common\sys_common_xwr68xx_mss.h file.
These APIs and the CLI commands can be disabled by removing or commenting the macro. These software techniques can be extended to the
existing projects to acheive low power optimizations. For more information on each API usage and the demo example, refer https://dev.ti.com/tirex

./explore/node?node=ACsjIm2cPRuOGoBP.wKf4Q__VLyFKFf__LATEST

sys_common_xwr68xx_mss.h file

/* Enable Low Power Modes on XWR68XX Device */
#define SYS_COMMON_XWR68XX_LOW_POWER_MODE_EN

https://dev.ti.com/tirex/explore/node?node=AFZxNJk2nL.qZJQXuh5j0g__VLyFKFf__LATEST
https://dev.ti.com/tirex/explore/node?node=AFZxNJk2nL.qZJQXuh5j0g__VLyFKFf__LATEST
https://dev.ti.com/tirex/explore/node?node=ACsjIm2cPRuOGoBP.wKf4Q__VLyFKFf__LATEST
https://dev.ti.com/tirex/explore/node?node=ACsjIm2cPRuOGoBP.wKf4Q__VLyFKFf__LATEST

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 71 of 83

Secondary Bootloader

A reference implementation of secondary bootloader is provided in the SDK to show the usecase of updating the application metaimage in the
SFLASH (outside of ROM bootloader) by receiving the image over any serial interface. Subsequent to successful flashing, it shows how to read the
individual core images from the flash/metaImage, load them onto respective core memories and then execute the application. In addition to the flash
read/write and metaImage parser functionality, it provides reference implementation for image validity and failsafe mechanisms. The source code for
this utility is present in the folder. Documentation of the SBL is available at mmwave_sdk_<ver>\packages\ti\utils\sbl

.mmwave_sdk_<ver>\packages\ti\utils\sbl\docs

mmWave SDK - System Initialization

Application should call init APIs for the following system modules (ESM, SOC, Pinmux) to enable correct operation of the device

ESM

ESM_init should be the first function that is called by the application in its main(). Refer to the doxygen for this function at
 to understand the API specification. mmwave_sdk_<ver>\packages\ti\drivers\esm \docs\doxygen\html\index.html

SOC

SOC_init should be the next function that should be called after ESM_init. Refer to the doxygen for this function at
 to understand the API specification. It primarily takes care of following mmwave_sdk_<ver>\packages\ti\drivers\soc \docs\doxygen\html\index.html

things:

DSP un-halt

This applies for mmWave devices with DSP core. Bootloader loads the DSP application from the flash onto DSP's L2/L3 memory but doesnt un-halt
the C674x core. It is the responsibility of the MSS application to un-halt the DSP. SOC_init for MSS provides this optional functionality under its hood.
It is recommended to always unhalt the DSP when application needs to use the DSP for realizing its functionality. For applications that doesnt need
DSP completely can choose to leave the DSP in its original state i.e. either in halt state when this application is running from the flash and booted by
the bootloader OR in unhalted/while 1 loop state when this application is running from CCS in development mode.

RADARSS un-halt/System Clock

To enable selection of system frequency to use "closed loop APLL", the SOC_init function unhalts the RADARSS and then spins around waiting for
acknowledgement from the RADARSS that the APLL clock close loop calibration is completed successfully.

MPU (Cortex R4F)

MPU or Memory Protection Unit needs to be configured on the Cortex R4F of mmWave device for the following purposes:

Protection of memories and peripheral (I/O) space e.g not allowing execution in I/O space or writes to program (.text) space.
Controlling properties like cacheability, buferability and orderability for correctness and performance (execution time, memory bandwidth).
Note that since there is no cache on R4F, cacheability is not enabled for any region.

Default MPU settings has been implemented in the SOC module as a private function SOC_mpu_config() that is called by public API SOC_init() when
SOC_MPUCfg_CONFIG option is passed by the application. Doxygen of SOC (mmwave_sdk_<ver>\packages\ti\drivers\soc \docs\doxygen\html\index.

 has SOC_mpu_config() documented with details of choice of memory regions etc. When MPU violation happens, BIOS will automatically trap html)
and produce a dump of registers that indicate which address access caused violation (e.g DFAR which indicates what data address access caused
violation). Note: The SOC function uses as many MPU regions as possible to cover all the memory space available on the respective device. There
may be some free MPU regions available for certain devcies (ex: xWR14xx) for the application to use and program as per their requirement. See the
function implementation/doxygen for more details on the usage and availability of the MPU regions. If the application needs for the MPU are different
than the default settings, it can pass SOC_MPUCfg_BYPASS_CONFIG to SOC_init function and then it can either pre-configure or post configure the
MPU using exported SOC_MPUxxx() functions. Application is responsible for the correct MPU settings when SOC_MPUCfg_BYPASS_CONFIG mode
is chosen.

MARs (DSP/C674x)

The cacheability property of the various regions as seen by the DSP (C674x) is controlled by the MAR registers. These registers are programmed as
per driver needs in in the SOC module as a private function SOC_configMARs() that is called by public API SOC_init(). See the doxygen
documentation of this function to get more details. Note that the drivers do not operate on L3 RAM and HS-RAM, hence L3/HS-RAM cacheability is
left to the application/demo code writers to set and do appropriate cache (writeback/invalidate etc) operations from the application as necessary,
depending on the use cases. The L3 MAR is MAR32 -> 2000_0000h - 20FF_FFFFh and HS-RAM MAR is MAR33 -> 2100_0000h - 21FF_FFFFh.

Note that this function assumes that the crystal frequency is 40MHz.

A build time option called DOWNLOAD_FROM_CCS has been added which when set to yes prevents program space from being protected
in case of SOC owned default MPU settings. This option should be set to yes when debugging using CCS because CCS, by default,
attempts to put software break-point at main() on program load which requires it to change (temporarily) the instruction at beginning main to
software breakpoint and this will fail if program space is read-only. Hence the benefit of code space protection is not there when using CCS
for download. It is however recommended to set this option to no when building the application for production so that program space is
protected.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 72 of 83

Pinmux

Pinmux module is provided under with API documentation and available device pads located at mmwave_sdk_<ver>\packages\ti\drivers\pinmux
and can be easily browsed via mmwave_sdk_<ver>\packages\ti\drivers\pinmux\docs\doxygen\html\index.html mmwave_sdk_<ver>/docs

. Application should call these pinmux APIs in the main() to correctly configure the device pads as per /mmwave_sdk_module_documentation.html.
their hardware design.

Usecases

Data Path tests using Test vector method

The data path processing on mmWave device for 1D, 2D and 3D processing consists of a coordinated execution between the MSS, HWA/DSS and
EDMA. This is demonstrated as part of the object detection processing chain and millimeter wave demo. The demo runs in real-time and has all the
associated framework for RADARSS control etc with it.

The unit tests located at) are stand-alone tests that allow data path mmwave_sdk_<ver>\packages\ti\datapath\dpc \objectdetection\<chain_type>\test
processing chain to be executed in non real-time. This allows developer to use it as a debug/development aid towards eventually making the data
path processing real-time with real chirping. Developer can easily step into the code and test against knowns input signals. The core data path
processing source code in object detection chain and the processing modules (DPUs) is shared between this test and the mmw demo. Most of the
documentation is therefore shared as well and can be looked up in the object detection DPC and mmw demo documentation.

The tests also provide a test generator, which allows user to set objects artificially at desired range, doppler and azimuth bins, and noise level so that
output can be checked against these settings. It can generate one frame of data. The test generation and verification are integrated into the tests,
allowing developer to run a single executable that contains the input vector and also verifies the output (after the data path processing chain), thereby
declaring pass or fail at the end of the test. The details of test generator can be seen in the doxygen documentation of these tests located at

and can be easily browsed via mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.html datapath\dpc \objectdetection\<chain_type>\test
. mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.

CSI-2 based streaming of ADC data

IWR14xx device has a high speed CSI-2 transmit interface that can be used to ship ADC data or 1D/2D processed data out of the device. An example
usecase on how to program the front end to generate the ADC samples and tie it up to CBUFF/CSI-2 interface for data shipment is provided under

. Refer to the doxygen documentation located at mmwave_sdk_<ver>\packages\ti\drivers\test\csi_stream
 for more details.mmwave_sdk_<ver>\packages\ti\drivers\test\csi_stream\docs\doxygen\html\index.html

Basic configuration of Front end and capturing ADC data in L3 memory

To access ADC data from mmWave sensors, user need to program various basic components within the device in a given sequence. In order to help
user understand the programming model needed to configure the device and generate ADC data in device's L3 memory, an example usecase is
provided under . Refer to the doxygen documentation located at mmwave_sdk_<ver>\packages\ti\drivers\test\mem_capture

 for more details.mmwave_sdk_<ver>\packages\ti\drivers\test\mem_capture\docs\doxygen\html\index.html

TI Pinmux Utility

TI Pinmux Tool available at supports mmWave devices and can be used for designing the pinmux configuration https://dev.ti.com/pinmux
for custom board. It also generates code that can be included by the application and compiled on top of mmWave SDK and its Pinmux
driver.

https://dev.ti.com/pinmux

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 73 of 83

1.

2.

Appendix

Memory usage

The map files of demo and driver unit test application captures the memory usage of various components in the system. They are located in the same
folder as the corresponding .xer4f/.xe674 and .bin files. Additionally, the doxygen for mmW demo summarizes the usage of various memories
available on the device across the demo application and other SDK components. Refer to the section "Memory Usage" in the

 documentation.mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\docs\doxygen\html\index.html

Register layout

The register layout of the device is available inside each hardware IP's driver source code. See
. The system level registers (RCM, TOPRCM, etc) are available under the SOC module (mmwave_sdk_<ver>\packages\ti\drivers\<ip>\include\reg_*.h

).mmwave_sdk_<ver>\packages\ti\drivers\soc\include\reg_*.h

Enable DebugP logs

The DebugP_log OSAL APIs in ti/drivers/osal/DebugP.h are used in the drivers and test/app code for debug streaming. These are tied to BIOS's
Log_* APIs and are well documented in SYSBIOS documentation. The logs generated by these APIs can be directed to be stored in a circular buffer
and observed using ROV in CCS ().http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Following steps should be followed to enable these logs:

Enable the flag DebugP_LOG_ENABLED before the header inclusion as seen below.

#define DebugP_LOG_ENABLED 1
#include <ti/drivers/osal/DebugP.h>

Add the following lines in your SYSBIOS cfg file with appropriate setting of numEntries (number of messages) which will impact memory
space:

Application SYSBIOS cfg file

var Log = xdc.useModule('xdc.runtime.Log');
var Main = xdc.useModule('xdc.runtime.Main');
var Diags = xdc.useModule('xdc.runtime.Diags');
var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
LoggerBuf.TimestampProxy = xdc.useModule('xdc.runtime.Timestamp');

/* Trace Log */
var loggerBufParams = new LoggerBuf.Params();
loggerBufParams.bufType = LoggerBuf.BufType_CIRCULAR; //BufType_FIXED
loggerBufParams.exitFlush = false;
loggerBufParams.instance.name = "_logInfo";
loggerBufParams.numEntries = 100; <-- number of messages this will affect memory consumption
// loggerBufParams.bufSection = ;
_logInfo = LoggerBuf.create(loggerBufParams);
Main.common$.logger = _logInfo;

/* Turn on USER1 logs in Main module (all non-module functions) */
Main.common$.diags_USER1 = Diags.RUNTIME_ON;

/* Turn on USER1 logs in Task module */
Task.common$.diags_USER1 = Diags.RUNTIME_ON;

A sample ROV log looks like below after code is re-build and run with above changes :

Figure 33: Sample ROV log with debug prints

Shared memory usage by SDK demos

http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 74 of 83

Existing SDK demos (mmw) assigns all available banks of shared memory to L3 memory. No additional banks are added to MSS TCMA and TCMB;
they remain at the default memory size. See TRM for more details on the L3 memory layout and "xWR1xxx Image Creator User Guide" in SDK for
more details on shared memory allocation when creating flash images. Note that the image that is programmed into the flash of the mmWave device
determines the shared memory allocation. So in CCS development mode, it is the allocation defined in ccsdebug metaImage that applies and not the
application that you download via CCS.

In SDK code, one can change the environment variable MMWAVE_SDK_SHMEM_ALLOC to customize the shmem alloc settings. If this variable is
undefined, platform specific SDK common makefile () will define the default mmwave_sdk_<ver>\packages\ti\common\mmwave_sdk_<platform>.mak
values. When this variable is changed, user should do a clean build of the demo or ccsdebug depending on the working mode. This setting will
influence

the size of L3 memory section in linker command files ()mmwave_sdk_<ver>\packages\ti\platform\<platform>
the sys_common defines for the L3, TCMA and TCMB memory sizes for the application code to use and size the buffers, heaps, etc
accordingly. (ex: SOC_XWR16XX_MSS_TCMA_SIZE, SOC_XWR16XX_MSS_L3RAM_SIZE, etc)
the shmem_alloc input parameter to generateMetaImage script in ccsdebug and mmw demo makefiles.

Since there is a chance for sys_common defines for the memories and metaImage bank allocation to go out of sync (due to user error such as failure
to do clean build), SOC module init does a sanity check of the hardware programmed L3 bank allocations (that are fed via metaImage header) and the
sys_common defines. If the sys_common defined memory size is greater than hardware programmed bank allocations, the module throws an assert.

mmWave Device Image Creator

This section outlines the tools used for image creation needed for flashing the mmWave devices. The application executable generated after the
compile and link step needs to be converted into a bin form for the bootloader to understand and burn it onto the serial flash present on the device.
The demos inside the mmWave SDK already incorporate the step of bin file generation as part of their makefile and no further steps are required. This
section is helpful for application writers that do not have makefiles similar to the SDK demos. Once the compile and link step is done, application
image generation is described as follows.

The Application Image interpreted by the bootloader is a consolidated Multicore image file that includes the RPRC image file of individual subsystems
along with a Meta header. The Meta Header is a Table of Contents like information that contains the offsets to the individual subsystem RPRC images
along with an integrity check information using CRC. In addition, the allocation of the shared memory to the various memories of the subsystems also
has to be specified. The bootloader performs the allocation accordingly. It is recommended that the allocation of shared memory is predetermined and
not changed dynamically.

Use the generateMetaImage script present under or for mmwave_sdk_<ver>\packages\ scripts\windows mmwave_sdk_<ver>\packages\ scripts\linux
merging the MSS .xer4f, DSS .xe674 and RADARSS RPRC binaries into one metaImage and appending correct CRC. The RPRC image for MSS and
DSS are generated internally in this script from the input ELF formatted files for those subsystem (i.e. output of linker command - .xer4f, .xe674). Set

in your environment before calling this script. This script needs 5 parameters:MMWAVE_SDK_INSTALL_PATH= mmwave_sdk_<ver>\packages

FLASHIMAGE: [output] multicore file that will be generated by this script and should be used for flashing onto the board
SHMEM_ALLOC: [input] shared memory allocation in 32-bit hex format where each byte (left to right) is the number of banks
needed for RADARSS (BSS),TCMB,TCMA and DSS. Refer to the the TRM on details on L3 shared memory layout and "Image Creator User
Guide" in the SDK. It is advisable to pass MMWAVE_SDK_SHMEM_ALLOC environment variable here to keep the compiled code and
metaImage in sync. See section for more details.Shared memory usage by SDK demos
MSS_IMAGE_OUT: [input] MSS input image in ELF (.xer4f) format as generated by the linker. Use keyword NULL if not needed
BSS_IMAGE_BIN: [input] RADARSS (BSS) input image in RPRC (.bin) format, use keyword NULL if not needed. Use

 here. For xWR14xx, select xwr12xx_xwr14xx_radarss_rprc.bin.mmwave_sdk_<ver>\firmware\radarss\<platform>_radarss_rprc.bin
DSS_IMAGE_OUT: [input] DSP input image in ELF (,xe674) format as generated by the linker. Use keyword NULL if not needed

The FLASHIMAGE file generated by this script should be used for the METAIMAGE1 during flashing step (How to flash an image onto mmWave EVM
). Refer to "Image Creator User Guide" in the SDK docs directory for details on the internal layout and format of the files generated in these steps.

mmw Demo: cryptic message seen on DebugP_assert

In mmw demo, the BIOS cfg file dss_mmw.cfg has below code at the end to optimize BIOS size. Because of some of these changes, exceptions, such
as those generated through DebugP_assert() calls may give a cryptic message instead of file name and line number that helps identify easily where
the exception is located. To be able to restore this capability, the user can comment out the lines marked with the comment "" below. For more
information, refer to the BIOS user guide.

/* Some options to reduce BIOS code and data size, see BIOS User Guide section
 "Minimizing the Application Footprint" */
System.maxAtexitHandlers = 0; /* COMMENT THIS FOR FIXING DebugP_Assert PRINTS */
BIOS.swiEnabled = false; /* We don't use SWIs */
BIOS.libType = BIOS.LibType_Custom;
Task.defaultStackSize = 1500;
Task.idleTaskStackSize = 800;
Program.stack = 1048; /* for isr context */
var Text = xdc.useModule('xdc.runtime.Text');
Text.isLoaded = false;

How to execute Idle instruction in idle task when using SYSBIOS

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 75 of 83

1.

2.

3.

The idle function hook provided by SYSBIOS can be used to install application specific function which in turn could call the "idle" asm instruction. See
code snapshots below or refer to mmW demo for details.

BIOS CFG file

var Idle = xdc.useModule('ti.sysbios.knl.Idle');
Idle.addFunc('&MmwDemo_sleep');

WFI instruction for R4F

void MmwDemo_sleep(void)
{
 /* issue WFI (Wait For Interrupt) instruction */
 asm(" WFI ");
}

IDLE instruction for C674x

void MmwDemo_sleep(void)
{
 /* issue IDLE instruction */
 asm(" IDLE ");
}

Range Bias and Rx Channel Gain/Offset Measurement and Compensation

Refer to the section "Range Bias and Rx Channel Gain/Offset Measurement and Compensation" in the
 documentation for the procedure and mmwave_sdk_<ver>\packages\ti\datapath\dpc\objectdetection\<chain_type>\docs\doxygen\html\index.html

internal implementation details. To execute the procedure using Visualizer GUI, here are the steps:

Set the target as explained in the demo documentation and update the
 appropriately.mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles\profile_calibration.cfg

Set up Visualizer and mmW demo as mentioned in the section .Running the Demos
Use the "Load Config From PC and Send" button on plots tab to send the
mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles\profile_calibration.cfg.
The Console messages window on the Configure tab will dump the "compRangeBiasAndRxChanPhase" command to be used for
subsequent runs where compensation is desired.
Copy and save the string for that particular mmWave sensor to your PC. You can use it in the "Advanced config" tab in the Visualizer and
tune any running profile in real time. Alternatively, you can add this to your custom profile configs and use it via the "Load Config From PC
and Send" button.

Guidelines on optimizing memory usage

Depending on requirements of a given application, there may be a need to optimize memory usage, particularly given the fact that the mmWave
devices do not have external RAM interfaces to augment on-chip memories. Below is a list of some optimizations techniques, some of which are
illustrated in the mmWave SDK demos (mmW demo). It should be noted, however, that the demo application memory requirements are dictated by
requirements like ease/flexibility of evaluation of the silicon etc, rather than that of an actual embedded product deployed in the field to meet specific
customer user cases.

On R4F, compile your application with ARM thumb option (depending on the compiler use). If using the TI ARM compiler, the option to do
thumb is Another relevant compiler option (when using TI compiler) to play with to trade-off code size versus speed is code_state=16 . --

 opt_for_speed=0-5 . For more information, refer to and . The pre-ARM Compiler Optimizations ARM Optimizing Compiler User's Guide
built drivers in the SDK are already built with the thumb option. The demo code and BIOS libraries are also built with thumb option. Note the
code_state=16 flag and the ti.targets.arm.elf. target in the . R4Ft mmwave_sdk_<ver>\packages\ti\ common\mmwave_sdk.mak
On C674X, compile portions of code that are not in compute critical path with appropriate -mfX option. The -mf3 options is presently used in
the SDK drivers, demos and BIOS cfg file. This option does cause compiler to favor code size over performance and hence some cycles
impact are to be expected. However, on mmWave device, using mf3 option only caused about 1% change in the CPU load during active and
interframe time and around 3-5% increase in config cycles when benchmarked using driver unit tests. For more details on the "mf" options,
refer to The TI C6000 compiler user guide at . Another option to consider is -mo (this is used in C6000 Optimizing Compiler Users Guide
SDK) and for more information, see section "Generating Function Subsections (--gen_func_subsections Compiler Option)" in the compiler
user guide. A link of references for optimization (both compute and memory) is at .Optimization Techniques for the TI C6000 Compiler
Even with aggressive code size reduction options, the C674X tends to have a bigger footprint of control code than the same C code compiled
on R4F. So if feasible, partition the software to use C674X mainly for compute intensive signal-processing type code and keep more of the
control code on the R4F. An example of this is in the mmw demo, where we show the usage of mmwave API to do configuration (of
RADARSS) from R4F instead of the C674X (even though the API allows usage from either domain). In mmw demo, this prevents linking of

http://processors.wiki.ti.com/index.php/ARM_compiler_optimizations
http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/sprui04c/sprui04c.pdf
http://processors.wiki.ti.com/index.php/Optimization_Techniques_for_the_TI_C6000_Compiler

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 76 of 83

3.

4.

5.
a.

b.

6.

7.

a.
b.

c.

 (in) and mmwavelink (in mmwave_sdk_<ver>\packages\ti\control) code that is involved mmwave mmwave_sdk_<ver>\packages\ ti\control
in configuration (profile config, chirp config etc) on the C674X side as seen from the .map files of mss and dss located along with application
binary.
If using TI BIOS as the operating system, depending on the application needs for debug, safety etc, the BIOS footprint in the application may
be reduced by using some of the techniques listed in the BIOS User Guide in the section "Minimizing the Application Footprint". Some of
these are illustrated in the mmw demo on R4F and C674X. Some common ones are disabling system_printf (printf strings do contribute to
significant code size), choosing sysmin and using ROV for debugging, disabling assert (although this should be done only when variability in
driver configuration is not expected and existing configuration has been proven to function correctly). The savings from these features could
be anywhere from 2KB to 10KB but user would lose some perks of debuggability.
If there is no requirement to be able to restart an application without reloading, then following suggestions may be used:

one time/first time only program code can be overlaid with data memory buffers used after such code is executed. Note: Ability to
place code at function granularity requires to use the aforementioned -mo option.
the linker option may be used to eliminate the section overhead. For more details, see compiler user guide --ram_model .cinit
referenced previously. Presently, ram model cannot be used on R4F due to bootloader limitation but can be used on C674X. The
SDK uses ram model when building C674X executable images (unit tests and demos).

On C674X, smaller L1D/L1P cache sizes may be used to increase static RAM. The L1P and L1D can be used as part SRAM and part cache.
Smaller L1 caches can increase compute time due to more cache misses but if appropriate data/code is allocated in the SRAMs, then the
loss in compute can be compensated (or in some cases can also result in improvement in performance). In the demos, the caches are sized
to be 16 KB, allowing 16 KB of L1D and 16 KB of L1P to be used as SRAM. Typically, the L1D SRAM can be used to allocate some buffers
involved in data path processing whereas the L1P SRAM can be used for code that is frequently and more fully accessed during data path
processing. Thus we get overall 32 KB more memory. The caches can be reduced all the way down to 0 to give the full 32 KB as SRAM: how
much cache or RAM is a decision each application developer can make depending on the memory and compute (MIPS) needs.
When modeling the application code using mmW demo as reference code, it might be useful to trim the heaps in mmW demo to claim back
the unused portion of the heaps and use it for code/data memory. Ideally, a user can run their worst case profile that they would like to
support using mmW demo, record the heap usage/free metrics for (L1D, L2)/TCMB and L3 heaps on 'sensorStart'. These values can then be
used to resize or re-allocate heap globals (example: gDPC_ObjDetTCM, gMmwL3, etc) in

. The freed up space in DSS could be used as follows:mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw

Free heap space in L1D could be used to move some of the L2 buffers to L1D. The freed L2 space can be used for code/data.
Free heap space in L2 could be trimmed by changing the heap's global variable (ex: gMmwL2) definition and used for code/data
memory (note that code memory by default is L2 so no other change is required to get more code space).
Free heap space in L3 could be trimmed by changing the heap's global variable (ex: gMmwL3) definition and used for code/data
space.

When using TI compilers for both R4F and C674x, the map files contain a nice module summary of all the object files included in the application.
Users can use this as a guide towards identifying components/source code that could be optimized. See one sample snapshot below:

Module summary inside application's .map file

MODULE SUMMARY

 Module code ro data rw data
 ------ ---- ------- -------

 obj_xwr14xx/
 main.oer4f 5191 0 263980
 data_path.oer4f 8441 0 65536
 config_hwa_util.oer4f 4049 0 0
 post_processing.oer4f 2480 0 0
 mmw_cli.oer4f 2308 0 0
 config_edma_util.oer4f 1276 0 0
 sensor_mgmt.oer4f 1144 0 24
 +--+-------------------------------+--------+---------+---------+
 Total: 24889 0 329540

How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled

To achieve L3 heap overlaid with the code to be copied into L1P at init time, L3 heap is in PAGE 1 and code is in Page 0. PAGE 0 is the only loadable
page whereas PAGE 1 is just a dummy page to allocate uninitialized sections to implement overlay. As a result the ".const" section (which is loadable
section) cannot simply be allocated to PAGE 1 to go after the heap. If the .const is allocated in PAGE 0, then it will overlap the heap and will be
overwritten once heap is allocated. To resolve this, the HIGH feature of the linker could be used is used to push the const table to the highest address
ensuring no overlap with L3 heap. The suggested changes would be as follows:
1. Shrink the L3 heap by the size of the table (but L3 heap must still be bigger than the size of the L1P cache).
2. Place the table in a named section and allocate the named section in the HIGH space of PAGE 0 of L3RAM.

This ensures that the table will be allocated at the high address and will not be overlapping with L3 heap or the L1P intended code which are located
at the low address.

Sample code is shown below.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 77 of 83

In application C file:

#define TABLE_LENGTH 4
#define TABLE_ALIGNMENT 8 /* bytes */

/*! L3 RAM buffer, shrunk by table */
#pragma DATA_SECTION(gMmwL3, ".l3data");
#pragma DATA_ALIGN(gMmwL3, 8);
uint8_t gMmwL3[SOC_XWR16XX_DSS_L3RAM_SIZE - TABLE_LENGTH*sizeof(float) - TABLE_ALIGNMENT];

#pragma DATA_SECTION(gArray, ".l3data_garray");
#pragma DATA_ALIGN(gArray, TABLE_ALIGNMENT);
const float gArray[TABLE_LENGTH] = {1.5, 3.2, 0.8, -9.6};

In linker command file:
 .l3data_garray: load=L3SRAM PAGE 0 (HIGH)

Enabling L3 cache for DSP/C674x on mmWave devices

In a given usecase for mmWave devices, if L3 RAM is not fully utilized for Radar Cube storage, then the remaining free L3 memory could ideally be
used for code and other internal data storages for the application. However, access to L3 memory from DSP/C674x core in mmWave devices is
slower than accessing L1/L2. The cache-based memory system of C674x can be efficiently used in such cases. Refer to C674x DSP Cache User
Guide () for more details on the L1P/L1D/L2 two-level hierarchy that exists within the C674x memory http://www.ti.com/lit/ug/sprug82a/sprug82a.pdf
architecture. L1P, L1D and L2D can be partitioned into SRAM and cache. L1P, L1D and L2 cache size can be set through linker command file -please
refer to for more details. L2 SRAM addresses are always cached in L1P and mmwave_sdk_<ver>/packages/ti/platform/<platform>/c674x_linker.cmd
L1D. However, external memory addresses (ex: code/data in L3) by default are configured as non-cacheable in L1D and L2 caches. Cacheability for
external memory addressed (ex: L3) must first be explicitly enabled by the user using the MAR registers. Note that L1P cache is not affected by this
configuration and always caches external memory addresses.

Cache writeback: To maintain cache coherency between different masters (CPU, DMA, R4F, etc), content in cache needs to be written back
to memory after it is changed before triggering the other master to access that memory location.
Cache Invalidate: Before reading the content from the physical memory that was updated by another master, the content in cache needs to
be invalidated, so that updated data from memory can be loaded in cache.
APIs: User can use DSPICFGRegs directly from or the TI BIOS cache mmwave_sdk_<ver>/packages/ti/drivers/soc/include/reg_dspicfg.h
module APIs to perform these MAR settings, cache invalidates and cache writebacks.
Code in L3: mmWave code can be placed from L2 to L3 (via linker command file) with no explicit need for cache enablement and/or cache
operations during real time. The only setting that needs to be adjusted is the size of L1P cache and that should be balanced against the need
for L1P SRAM to place real time optimized functions (and avoid any cache misses, etc).
Data in L3: If data cache is enabled for L3 memory via the MAR registers, then at first, one needs to take care of cache invalidates and
writebacks for existing data structures in L3 memory. Radarcube and detection matrix are the primary data structures placed in L3 memory in
case of a typical mmwave application on our device. Typically Radarcube is accessed (read/write) only via EDMA during the Range and
Doppler FFT. Post that, it is more common for the DSP core to access the radarcube directly (i.e. no EDMA) and primarily it is a read access.
In such scenario, the Radarcube can be invalidated at the end of current frame but before the start of next frame (i.e. when EDMA master
begins to access radarcube). If the Radarcube was modified by the core directly (write operation) during the interframe time, then cache
writeback_invalidate is needed at the end of current frame but before the start of next frame. Same consideration would apply for detection
matrix. Next, mmWave internal data structures that are accessed purely by DSP can also be moved from L2 to L3 (via linker command file).
No explicit cache writeback/invalidations are required for such structures. If user chooses to place the frame results structures in L3 (point
cloud, etc) which are shared with MSS (R4F), then cache writeback+invalidate needs to be performed before signaling the MSS about
availability of frame results. : If the analysis of L3 data access pattern between the DSP, MSS and EDMA shows that cache writebackNote
/invalidate of all L3 data content can be done towards the end of the current frame, then performing writeback+invalidate on entire L1D cache
might be a better option than calling such API on individual structures.

DSPlib integration in mmWave C674x based application (Using 2 libraries simultaneously)

The TI C674X DSP is a merger of C64x+ (fixed point) and C67x+ (floating point) DSP architectures and DSPlib offers two different flavors of library for
each of these DSP architectures. An application on C674X may need functions from both architectures. Normally this would be a straight-forward
exercise like integrating other TI components/libraries. However there is a problem during integration of the two DSPLib libraries in the same
application since the top level library API header has the same name and same relative path from the packages/ directory as seen below dsplib.h
in the installation:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib.h
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib.h

Typically when integrating TI components, the build paths are specified up to directory and headers are referred as below:packages\

#include <ti/dsplib/dsplib.h>

However this will create an ambiguity when both libraries are to be integrated because the above path is same for both. There are a couple of ways to
resolve this:

http://www.ti.com/lit/ug/sprug82a/sprug82a.pdf

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 78 of 83

Integrating individual functions from each library

In this case, the headers individual functions are included in the application source file and the build infrastructure (makefiles for example) refers to the
paths to the individual functions. This style of integration is illustrated in the following code snippets:

Sample DSPLib integration using individual functions

In application's makefile:

dss_mmw.mak

dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 /* include path for DSP_fft16x16 */ \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft16x16/c64P \
 /* include path for DSP_fft32x32 */ \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft32x32/c64 \
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

In application C file:

dss_data_path.c

#include "DSP_fft32x32.h"
#include "DSP_fft16x16.h"

The C674P library can be integrated in the above code similar to the how the C64P has been done, this will not create any conflict.

A variant of the above could be as follows where the paths are now in the .c and .mak only refers to the installation:

dss_mmw.mak

dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages \
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

dss_data_path.c

#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft32x32.h>
#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft16x16.h>

Patching the installation

The previous method can get cumbersome if there are many functions to be integrated from both libraries. Patching the installation to rename
/duplicate the top level API header allows a straight-forward integration. This prevents the name conflict of the two headers. So the dsplib.h
installation after patching would look like below for example:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib_c64P.h [one can retain the older dsplib.h if one wants
to]
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib_c674x.h [one can retain the older dsplib.h if one wants
to]

And the .mak and code will look like below:

Sample DSPLib integration after renaming header files

In application makefile:

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 79 of 83

dss_mmw.mak

dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages \ <-- C64P dsplib
 -i$(C674x_DSPLIB_INSTALL_PATH)/packages \ <-- C674x dsplib
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

In application C file:

dss_data_path.c

#include <ti/dsplib/dsplib_c64P.h>
#include <ti/dsplib/dsplib_c674x.h>

The present dsplibs do not have name conflicts among their functions so they can both be integrated in the above manner.

SDK Demos: miscellaneous information

A detailed explanation of the mmW demo is available in the demo's docs folder:
Some miscellaneous details are captured here:mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\docs\doxygen\html\index.html.

In demos that use HWA as the only processing node and elevation is enabled during run-time via configuration file, the number of detected
objects are limited by the amount of HWA memory that is available for post processing.
Demo's rov.xs file is provided in the SDK package to facilitate the CCS debugging of pre-built binaries when demo is directly flashed onto the
device (instead of loading via CCS).
When using non-interleaved mode for ADCBuf, the ADCBuf offsets for every RX antenna/channel enabled need to be multiple of 16 bytes.
Output packet of mmW demo data over UART is in TLV format and its length is a multiple of 32 bytes. This enables post processing
elements on the remote side (PC, etc) to process TLV format with header efficiently.
In the demo of xwr68xx, the antenna design/board selection (ISK, ODS, AOP) can be done using BOARD_DEFINE
in mmwave_sdk_xwr68xx.mak file at . This defines the antenna spacing factor used in the mmwave_sdk_<ver>\packages\ti\common\
aoaproc and aoa2dproc DPUs. By default for all SOCs, BOARD_DEFINE = NO_ANTENNA_CORRECTION, where default xyz estimation
calculations are used without antenna spacing correction.

Data size restriction for a given session when sending data over LVDS

For the current implementation of the CBUFF/LVDS driver and its intended usage, the CBUFF data size for a given session needs to be multiple of 8.

User should take care of this restriction when writing their custom application using the SDK LVDS driver. This alignment is taken care by the HSI
header library if the application uses the headers for LVDS streaming. If no header are used while streaming data over LVDS lanes, user should
calculate the total data size in bytes for the hardware triggered session (i.e. per chirp) and make sure it follows the rules mentioned above. Similar
rules apply for the user data sent during the software triggered session.

CCS Debugging of real time application

It is relatively easier to debug code before real-time starts because single-stepping or adding break-points does not affect the debugging since there is
no real-time data and deadline to process the data. But once real-time starts, which is after sensor is started, such debugging can be intrusive and
problematic. Below are some tips that may be helpful in real-time debugging, some of them are relevant to the out of box demos but may be applied in
user applications if relevant.

Inter-chirp debugging

In out of box demos and many application specialized demos based on the SDK provided by TI (through the TI resource explorer), the inter-chirp
processing is based on either HWA or DSP but not a mix of the two. In the case of HWA, the CPU/CPUs are idling with respect to inter-chirp
processing so there is no need to halt. If one intends to stop and examine the state of HWA-EDMA during any of the intermediate processing steps,
the design would have to be changed to issue a HWA or EDMA interrupt to the CPU that configured these (typically MSS CPU) at this intermediate
state and the interrupt could read out some state and store in global variables that could be examined later. If code is halted using a break-point in the
interrupt, the EDMA will automatically halt but HWA will not unless HWA is waiting on EDMA, so HWA could continue to run even if the CPU is halted.
The current radar SoCs do not have the feature to halt the HWA when any of the CPUs are halted.

In case of DSP doing the inter-chirp processing, there can be a need to single-step/break the processing. However, (unlike the MSS CPU) when DSP
is halted, the RadarSS (front end) doesnt halt and the chirping activity does not stop. Because of this, the DSP will miss the chirp processing deadline
and the code is typically written to throw an exception. So basically halted debug is not useful unless a single chirp is configured and problem can be
recreated with a single chirp. There might be other limitations in the demo code that may prevent a single chirp configuration (e.g in the AWR1642
demo, minimum number of doppler bins is required to be 16 due to DSPLIB FFT function restrictions and there is an error check for this during config
validation - but this check may be disabled temporarily as it wouldn't affect the inter-chirp processing). Other techniques shown in below sections (real-
time logging, using non real-time unit test bench) may be more practical but have their own limitations. In most implementations however, 1D
processing uses a hardened component from the SDK - the range DPU - so the need for real-time debugging in the active chirping period is low.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 80 of 83

Inter-frame debugging

As there is no RadarSS chirping activity when MSS CPU is halted, it is possible to do halted debug in MSS during inter-frame debugging without
running out of real-time. But on DSP, the device behavior is the opposite i.e the chirping will continue even if DSP is in halted state, so stepping in the
DSP will cause an inter-frame deadline miss exception when running the out of box demo and other special demos that are implemented similarly.
One technique that may be helpful in this situation is if the problem can be observed in the first frame itself, configure the chirping profile to do only
one frame (frameCfg CLI command). This way after the active frame period, there is no chirp overrun (of the next frame) pressure when single-
stepping in the inter-frame processing.

Using non-real time chain test code

See section on details about the non-real time chain that is provided with the mmWave SDK. Users can "Data Path tests using Test vector method"
use these tests to step through the OOB processing chain in non-real time mode and debug or learn the components of the OOB processing chain.

Using printfs in real time

This applies to SYSBIOS and debugging using CCS. Once the application starts real-time processing (i.e. once sensor start is issued), there should
ideally be no prints on the console because CCS will halt the processor (unless CIO is disabled) on which such prints are issued for as long as it takes
it to transfer the print string data from target to PC over JTAG and print the string on the PC (which can be of the order of seconds). This is true for any
real-time application that uses SYSBIOS on any SoC (not just mmWave SDK/devices). For logging in real-time, SYSBIOS offers other options like
LOG module, etc - although these will incur some memory overheads. For example, see " " section. It is also possible in cfg file of Enable DebugP logs
SYSBIOS based application to direct System_printfs to an internal log buffer (circular or saturate) which will also prevent the hiccup by CCS (See 'xdc.

 ' in SYSBIOS/XDC).runtime. SysMin

The out of box demos based on the DPC/DPU/DPM architecture have by default the DebugP type real-time logging enabled. In order to visualize the
logs, the CCS feature of Run Time Object Viewer (ROV) can be used. Instructions of how to use this feature can be seen at http://processors.wiki.ti.

. Below is a sample log for the xwr68xx out of box demo.com/index.php/Runtime_Object_View_(ROV)

Viewing hardware registers

During debug, there may be a need to examine registers of HWA, EDMA, external I/O peripherals etc. These can be done using View->Registers
menu and when a core is selected, the register view will display all registers that the core can see organized into various categories. An example is
shown below:

http://processors.wiki.ti.com/index.php/Runtime_Object_View_(ROV)
http://processors.wiki.ti.com/index.php/Runtime_Object_View_(ROV)

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 81 of 83

Individual hardware entities can be expanded further in the view to see registers specific to the hardware entity. The following picture illustrates
viewing a certain PARAM set in instance #0 of the EDMA (TPCC0), note how the bit fields are automatically parsed and displayed in a user friendly
manner which saves the burden of manually parsing or developing special parsing tools and facilitates quick debugging. Default number formats of bit
fields are binary which is not always convenient, this can be changed by selecting the field/fields and right-clicking to see the number format menu as
shown in the example below where the A and B counts of EDMA are about to be chosen for Decimal format. Once chosen, the GUI will remember the
user choice for that specific field so user does not have to repeat this action in future debug sessions.

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 82 of 83

In the above picture, one can also see the "Watch" menu item. If this is selected, then the two fields of interest will appear in the Expressions view, this
is a convenient way to see some fields of interest during debug without having to navigate the register structure again (although when a particular
structure such as PARAM set #16 above is expanded, if the top level TPCC0 is shrunk and expanded again, thePARAM #16 is shown expanded as
before because GUI remembers sub-structure expansion/non-expansion state).

Viewing expressions/memory in real time

When debugging real time application (for example: mmw demo) in CCS, if the continuous refresh of variables in the Expression or Memory browser
window is enabled without enabling the silicon real-time mode as shown in the picture, the code may crash at a random time showing the message in
the console window. To avoid this crash, please put CCS in to “Silicone Real-time” mode after selecting the target core.

Continuous refresh:

Crash in Console window:

Copyright (C) 2021, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Page 83 of 83

Enable “Silicone Real-time” mode:

Size of Enum

If a variable of enum type is used to exchange information between ARM and DSP core, then it is necessary to make sure the enum size matches for
the same variable compiled on the two cores. TI ARM compiler's default type for enum is packed, which causes the underlying enumeration type to be
the smallest integer type that accommodates the enumeration constants. By default, the TI C6000 (DSP) compiler uses a 32-bit integer to store enum

 This could cause an enum define that takes values 1 to 4 (for example) to be of size 1 byte on objects with enumeration values smaller than 32 bits.
R4F and of size 4 bytes on C66x. For devices where DSP and ARM coexist such as xwr16xx, they must be set to ensure that enum types are
consistent between ARM and DSP. For devices where DSP is not present (xwr14xx), it is not necessary to force enum types to be 32bit integers and if

Iforced, it may increase program memory usage. n mmWave SDK command makefile, flags R4F_XSFLAGS_ENUM_TYPE and
R4F_CFLAGS_ENUM_TYPE are used in conjunction to enforce that enum types are compiled as 32bit integers. It is necessary that all libraries and
the application code for a given core are compiled with the same compiler option for enum type else there will be a linker warning and one will
encounter errors that cannot be detected until run time.

Linker warning for incompatible enumeration type

warning #16027-D: object files have incompatible enumeration types ("xxxx" = packed, "yyyy" = 32-bit)

(xxxx and yyyy will be the names of actual object files that do not have matching enum type)

Please note that the R4F custom application using mmwave SDK pre-built libraries should be compiled with "--enum_type=int" option
specified to the compiler.

	MMWAVE SDK User Guide (3.6.0_LTS)

