Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MMWAVE SDK User Guide

Product Release 3.3
Release Date: Sept 17, 2019

Document Version: 1.0

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

DOCUMENT LICENSE

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License (CC BY-SA 3.0). To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

COPYRIGHT

Copyright (C) 2014 - 2019 Texas Instruments Incorporated - http://www.ti.com

DISCLAIMER

This mmWave SDK User guide is generic and contains details about all the mmWave devices that are supported by Tl in general. However, note that
not all mMmWave devices may be supported in a given mmWave SDK release. Please refer to the mmWave SDK Release notes to understand the list
of devices/platforms supported in a given mmWave SDK release.

w3 TexAs INSTRUMENTS


http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.ti.com/

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

CONTENTS

1 Out-of-box mmWave Experience
2 System Overview
2.1 mmWave Suite
2.2 mmWave Demos
2.3 External Dependencies
2.4 Terms used in this document
2.5 Related documentation/links
3 Getting started
3.1 Programming mmWave devices
3.2 Loading images onto mmWave EVM
3.2.1 Demonstration Mode
3.2.2 CCS development mode
3.3 Running the Demos
3.3.1 mmWave Demo
3.3.2 mmWave demo with LVDS-based instrumentation
3.4 Configuration (.cfg) File Format
3.5 Running the prebuilt unit test binaries (.xer4f and .xe674)
4 How-To Articles
4.1 How to identify the COM ports for mmWave EVM
4.2 How to flash an image onto mmWave EVM
4.3 How to erase flash on mmWave EVM
4.4 How to connect mmWave EVM to CCS using JTAG
4.4.1 Emulation Pack Update
4.4.2 Device support package Update
4.4.3 Target Configuration file for CCS (CCXML)
4.4.3.1 Creating a CCXML file
4.4.3.2 Connecting to mmWave EVM using CCXML in CCS
4.5 Developing using SDK
4.5.1 Build Instructions
4.5.2 Setting up build environment
4.5.2.1 Windows
4.5.2.2 Linux
4.5.3 Building demo
4.5.3.1 Building demo in Windows
4.5.3.2 Building demo in Linux
4.5.4 Advanced build
4.5.4.1 Building drivers/control/alg components
4.5.4.2 "Error on warning" compiler and linker setting
5 MMWAVE SDK deep dive
5.1 System Deployment
5.2 Typical mmWave Radar Processing Chain
5.3 Typical Programming Sequence
5.3.1 RF Control Path
5.3.1.1 Single RF Control (MSSRADARSS or DSSRADARSS)
5.3.1.2 Co-operative RF control (MSS+DSS)<->RADARSS)
5.3.2 Data Path
5.3.2.1 Data processing flow with local domain control
5.3.2.2 Data processing flow with remote domain control
5.3.2.3 Distributed Data processing flow and control
5.4 mmWave SDK - Tl components
5.4.1 Demos
5.4.1.1 mmWave Demo
5.4.2 Drivers
5.4.3 OSAL
5.4.4 mmWaveLink
5.4.5 mmWave API
5.4.5.1 Full configuration
5.4.5.2 Minimal configuration
5.4.6 Datapath Interface (DPIF)
5.4.7 Data Processing Units (DPUs)
5.4.8 Data Path Manager (DPM)
5.4.9 Data processing chain (DPC)
5.4.10 mmWavelLib
5.4.11 Group Tracker
5.4.12 RADARSS Firmware
5.4.13 CCS Debug Utility
5.4.14 HSI Header Utility

TeEXAS INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

5.4.15 Secondary Bootloader
5.4.16 mmWave SDK - System Initialization
5.4.16.1 ESM
5.4.16.2 SOC
5.4.16.3 Pinmux
5.4.17 Usecases
5.4.17.1 Data Path tests using Test vector method
5.4.17.2 CSI-2 based streaming of ADC data
5.4.17.3 Basic configuration of Front end and capturing ADC data in L3 memory
6 Appendix
6.1 Memory usage
6.2 Register layout
6.3 Enable DebugP logs
6.4 Shared memory usage by SDK demos
6.5 mmWave Device Image Creator
6.6 mmw Demo: cryptic message seen on DebugP_assert
6.7 How to execute Idle instruction in idle task when using SYSBIOS
6.8 Range Bias and Rx Channel Gain/Offset Measurement and Compensation
6.9 Guidelines on optimizing memory usage
6.10 How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled
6.11 Enabling L3 cache for DSP/C674x on mmWave devices
6.12 DSPIib integration in mmWave C674x based application (Using 2 libraries simultaneously)
6.12.1 Integrating individual functions from each library
6.12.2 Patching the installation
6.13 SDK Demos: miscellaneous information
6.14 Data size restriction for a given session when sending data over LVDS
6.15 CCS Debugging of real time application
6.15.1 Inter-chirp debugging
6.15.2 Inter-frame debugging
6.15.3 Using non-real time chain test code
6.15.4 Using printfs in real time
6.15.5 Viewing hardware registers
6.15.6 Viewing expressions/memory in real time

LIST OF FIGURES

Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

*» Figure 2: Chirp Diagram

* Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports
Figure 4: Creating a mmWave device CCXML in CCS
Figure 5: Connecting to mmWave Device in CCS

Figure 6: Autonomous mmWave sensor (Standalone mode)

Figure 7: SDK Layered block diagram

Figure 8: Typical mmWave radar processing chain

Figure 9: Typical mmWave radar processing chain using mmWave SDK components
Figure 10: Scalable data processing chain using mmWave SDK

Figure 11: Typical mmWave radar control flow

Figure 12: mmWave Isolation mode: Detailed Control Flow (Init sequence)

Figure 13: mmWave Isolation mode: Detailed Control Flow (Config sequence)

Figure 14: mmWave Isolation mode: Detailed Control Flow (start sequence)

Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)
Figure 16: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)
Figure 17: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)
Figure 18: Typical mmWave Detection Processing Layers

Figure 19: Data processing flow with local domain control (init/config)

Figure 20: Data processing flow with local domain control (start/chirp/frame/stop)
Figure 21: Data processing flow with remote domain control (init/config)

Figure 22: Data processing flow with remote domain control (start/chirp/frame/stop)
Figure 23: Distributed Data processing flow and control (init/config)

Figure 24: Distributed Data processing flow and control (start/chirp/frame/stop)
Figure 25: mmWave SDK Drivers - Internal software design

Figure 26: mmWaveLink - Internal software design

Figure 27: mmWave API - Internal software design

Figure 28: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with MSS and DSS cores and module in co-operative mode)
Figure 29: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with single core or when module is used in isolation mode)
Figure 30: DPU - Internal software design

Figure 31: DPU - typical call flow

Figure 32: Datapath manager (DPM) - internal software design

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

*» Figure 33: Sample ROV log with debug prints

LIST OF TABLES

Table 1: mmWave SDK Demos - CLI commands and parameters
Table 2: Supported drivers and their functionality

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

1. Out-of-box mmWave Experience
To experience the mmWave technology offered by TI, you will need to procure the following

® Hardware
1. mmWave Tl EVM
2. Power supply cable as recommended in TI EVM user guide
3. PC
® Software
1. Pre-flashed mmWave Demo running on TlI EVM (See instructions in this user guide on how to update the flashed demo)

2. Chrome browser running on PC
Next, to visualize the data flowing out of TI mmWave devices, follow these steps

1. Connect the EVM to a power outlet via the power cable and to the PC via the included USB cable. EVM should be powered up and

connected to PC now.
2. On your PC, browse to https://dev.ti.com/mmWaveDemoVisualizer in Chrome browser and follow the prompts to install one-time software.
[No other software installation is needed at this time]
3. The Visualizer app should detect and connect to your device via COM ports automatically (except for the very first time where users will need
to confirm the selection via OptionsSerial Port). Select the right Platform and SDK version and start your evaluation!
a. Hint : Use HelpAbout to know your Platform and SDK version

For details on how to evaluate, any troubleshooting needs and/or to understand the know-how behind these steps, continue reading this SDK User
Guide...

If the flashed demo on the EVM is an old version and you would like to upgrade to latest demo, continue reading this SDK User Guide...

w3 TexAs INSTRUMENTS


https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

2. System Overview

The mmWave SDK is split in two broad components: mmWave Suite and mmWave Demos.

2. 1. mmWave Suite
mmWave Suite is the foundational software part of the mmWave SDK and would encapsulate these smaller components:

Drivers

OSAL

mmWaveLink

mmWavelLib

mmWave API

Data processing layer (manager, processing units)
RADARSS Firmware

Board Setup and Flash Utilities

2. 2. mmWave Demos

SDK provides demos that depict the various control and data processing aspects of a mmWave application. Data visualization of the demo's output on
a PC is provided as part of these demos. These demos are example code that are provided to customers to understand the inner workings of the
mmWave devices and the SDK and to help them get started on developing their own application.

®* mmWave Processing Demo with Tl Gallery App - "mmWave Demo Visualizer"

2. 3. External Dependencies

All tools/components needed for building mmWave sdk are included in the mmwave sdk installer. But the following external components (for
debugging) are not included in the mmWave SDK.

® CCS (for debugging)
¢ DCA100EVM CLI in mmWave Studio

Please refer to the mmWave SDK Release Notes for detailed information on these external dependencies and the list of platforms that are supported.

2.4. Terms used in this document

Terms Comment
used
XWR This is used throughout the document where that section/component/module applies to both AWR and IWR variants
BSS This is used in the source code and sparingly in this document to signify the RADARSS. It is also interchangeably referred to as the
mmWave Front End.
MSS Master Sub-system. It is also interchangeably referred to as Cortex R4F.
DSS DSP Sub-system. It is also interchangeably referred to as DSS or C674x core.

2. 5. Related documentation/links
Other than the documents included in the mmwave_sdk package the following documents/links are important references.

® SoC links:
® Automotive mmWave Sensors
® |ndustrial mmWave Sensors
® Evaluation Modules (EVM) links:
® Automotive Evaluation modules (Booster Pack, DEVPACK)
® Industrial Evaluation modules (Booster Pack, ISK)

w3 TexAs INSTRUMENTS


https://dev.ti.com/mmWaveDemoVisualizer
http://www.ti.com/sensors/mmwave/awr/overview.html
http://www.ti.com/sensors/mmwave/iwr/overview.html
http://www.ti.com/sensors/mmwave/awr/tools-software.html
http://www.ti.com/sensors/mmwave/iwr/tools-software.html

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

3. Getting started

The best way to get started with the mmWave SDK is to start running one of the various demos that are provided as part of the package. TI mmWave
EVM comes pre-flashed with the mmWave demo. However, the version of the pre-flashed demo maybe older than the SDK version mentioned in this
document. Users can follow this section and upgrade/run the flashed demo version. The demos (source and pre-built binaries) are placed at mmwave_
sdk_<ver>/packages/tildemo/<platform> folder.

mmWave Demo

This demo is located at mmwave_sdk_<ver>/packages/ti/demo/<platform>/mmw folder. The millimeter wave demo shows some of the radar sensing
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html. This demo ships out detected objects and other real-
time information that can be visualized using the TI Gallery App - 'mmWave Demo Visualizer' hosted at https://dev.ti.com/mmWaveDemoVisualizer.
The version of the mmWave Demo running on TI mmWave EVM can be obtained from the Visualizer app using the HelpAbout menu.

Device Support XxWR1843 IWR6843 IWR6843 XxWR1642
Demo Directory ti\demo\xwr18xx ti\demo\xwr64xx ti\demo\xwr68xx ti\demo\xwr16xx
\mmw \mmw \mmw \mmw
Binary prefix xwrl8xx_mmw_demo = xwr64xx_mmw_demo = xwr68xx_mmw_demo = xwrl6xx_mmw_demo
EVM xwrl8xx BoosterPack = IWR68xx ISK IWR68xx ISK Xxwrl6xx BoosterPack
Platform selection in Visualizer = xwr18xx XWI64Xxx XWr68xx XWr16Xxx

Following sections describe the general procedure for booting up the device with the demos and then executing it.

3. 1. Programming mmWave devices

Here is a little insight into the mmWave devices and the programmable cores they offer. For more detailed information, please refer to the Technical
reference manual for the respective mmWave device. These details are needed when loading the binaries using CCS and/or to understand the
various terminologies that exist in the "Getting started" section.

XWR14xx

XWR14xx has one cortex R4F core available for user programming and is referred to in this section as MSS or R4F. The demos and the unit tests
executable are provided to be loaded on MSS/R4F.

XWR16xX/XWR18xXx/XWR68xx

These devices have one cortex R4F core and one DSP C674x core available for user programming and are referred to as MSS/R4F and DSS/C674X
respectively. The demos have 2 executables - one for MSS and one for DSS which should be loaded concurrently for the demos to work. See Running
the Demos section for more details. The unit tests may have executables for either MSS or DSS or both. These executables are meant to be run in
standalone operation. This means MSS unit test executable can be loaded and run on MSS R4F without downloading any code on DSS. Similarly,
DSS unit test execuable can be loaded and run on DSS C674x without downloading any code on DSS. The exceptions to this are the Mailbox unit test
named "test_mss_dss_msg_exchange", mmWave unit tests under full and minimal and datapath manager (DPM) unit tests.

3. 2. Loading images onto mmWave EVM

User can choose either one of these modes for loading images onto the EVM.

3. 2. 1. Demonstration Mode

This mode should be used when either upgrading the factory flashed binaries on the EVM to latest SDK version using the pre-built binaries provided in
the SDK release or for field deployment of mmWave sensors.

1. Follow the procedure mentioned in the section (How to flash an image onto mmWave EVM). Use the mmwave_sdk_<ver>/packages/ti/demo
/<platform>/<demo> /<platform>_<demo>.bin as the METAIMAGE1 file name.

2. Remove the "SOP2" jumper or toggle the SOP2 switch to OFF and reboot the device to run the demo image every time on power up. No
other image loading step is required on subsequent boot to run the demo.

3. 2. 2. CCS development mode

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .bin files keep changing
constantly and frequent flashing of image onto the board is not desirable. This mode allows you to flash once and then use CCS to download a
different image to the device's RAM on every boot.

This mode is the recommended way to run the unit tests for the drivers and components which can be found in the respective test directory for that
component. See section mmWave SDK - TI components for location of each component's test code

w3 TexAs INSTRUMENTS


https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

@ boot-up sequence

When the mmWave device boots up in functional mode, the device bootloader starts executing and checks if a serial flash is attached to
the device. If yes, then it expects valid MSS application (and a valid RADARSS firmware and/or DSS application) to be present on the flash.
During development phase of mmWave application, flashing the device with the application under development for every small change can
be cumbersome. To overcome this, user should perform a one-time flash as mentioned in the steps below. The actual user application
under development can then be loaded and reloaded to the MSS program memory (TCMA) and/or DSP L2/L3 memory (only for mmWave
devices with DSP) directly via CCS in the device's functional mode.

Refer to Help inside Code Composer Studio (CCS) to learn more about connecting, loading, running the cores, in general.

=

EVM and CCS setup
a. Follow the procedure mentioned in the section: How to flash an image onto mmWave EVM. Use mmwave_sdk_<ver>/packagestti
[utils/ccsdebug /<platform>_ccsdebug.bin as the METAIMAGEL1 filename for the one-time flash.
b. Follow the steps in How to connect mmWave EVM to CCS using JTAG to setup the environment for CCS connectivity.
2. With "SOP2" jumper removed or SOP2 switch toggled to off, after every power cycle/reboot of the EVM, follow these steps to load the
application:
a. Power up the EVM
b. Launch ccxml file created in step 1.b above.
c. If the test requires an application to run on MSS
i. Connect CCS to Cortex_R4_0
ii. Load the MSS program. (for example: xwr16xx_<module>_mss.xer4f prebuilt executables provided in the SDK release
package)
d. If the test requires an application to run on DSP
i. Connect CCS to C674X_0
ii. Load the DSS program. (for example: xwr16xx_<module>_dss.xe674 prebuilt executables provided in the SDK release
package)
e. Run the R4 and/or C674 cores
f. To reload, disconnect the connected cores, power cycle and connect again

3. 3. Running the Demos
Follow this subsection to experience the mmWave functionality using the out-of-box mmWave demo. Before you proceed further, make sure that you

have loaded the right demo binary using the section above, set the EVM to functional mode and powered up the device. Connect the EVM to the PC
using its XDS110 micro-USB port/cable.

3. 3. 1. mmWave Demo

LISB cable W Rx antennas
CFG port UART
mmWave Demo Ih] P t(J\I P> *WRLxxx Tl j Tx antennas
Visualizer < EVM
v DATA_port UART \1/
Optional
stream
DCAIOG{IJ -Capture < DCA1000 EVM ’
Utility Ethernet LVDs
PC

3. 3. 1. 0. 1Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

1. Power on the EVM in functional mode with right binary loaded (see section above) and connect it to the PC as shown above with the USB
cable.

2. Browse to the Tl gallery app "mmWave Demo Visualizer" at http://dev.ti.com/gallery or use the direct link https://dev.ti.com
/mmWaveDemoVisualizer. Use HelpREADME.md from inside this app for more information on how to run/configure this app.

w3 TexAs INSTRUMENTS


http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

First Time Setup

a. If this is the first time you are using this App, you may be requested to install a plug-in and the Tl Cloud Agent Application. This
step will also install the right XDS110 drivers needed for UART port detection.

b. Once the demo is running on the mmWave sensors and the USB is connected from the board to the PC, the app will try to
automatically detect the COM ports for your device.

i. If auto-detection doesn't work, then you will need to configure the serial ports in this App. Run the device manager on
the PC and locate the following COM ports as shown in the section "How to identify the COM ports for mmWave EVM"
below. In the Visualizer App, go to the Menu->Options->Serial Port and perform the settings as shown below.

® CFG_port: Use COM port number for "XDS110 Class Application/User UART": Baud: 115200. This is the
port where CLI (command line interface) runs for all the demos.

® Data_port: Use COM port "XDS110 Class Auxiliary Data port": Baud: 921600. This is the port on which
binary data generated by the processing chain in the mmWave demo will be received by the PC. This is the
detected object list and its properties (range, doppler, angle, etc).

1. COM Port

Please note that the COM port numbers on your setup maybe different from the one shown below. Please
use the correct COM port number from your setup for following steps.

Serial Port Configuration

CFG_port DATA_port
Ports: | COM25(Texas Instruments Incorporated) ¥ | | COM26(Texas Instruments Incorperated) ¥

Baud Rates: | 115200 (recommended) ¥ 921600 (recommended) ¥

oK CANCEL

a. At this point, this app will automatically try to connect to the target (mmWave Sensor). If it does not connect or if the connection fails,
you should try to connect to the target by clicking in the bottom left corner of this App. If that fails as well, redo the serial port
configuration as shown in "First time Setup" panel above.

CO Hardware not Connected.

b. After the App is connected to the target, you can select the configuration parameters (Frequency Band, Platform, etc) in the "Setup
details" and "Scene Selection" area of the CONFIGURE tab.

c. Besides selecting the configuration parameters, you should select which plots you want to see. This can be done using the "check
boxes" in the "Plot Selection" area. Adjust the frame rate depending on number of plots you want to see. For selecting heatmap
plots, set frame rate to less than or equal to 4 fps. When selecting frame rate to be 25-30fps, for better GUI performance, select only
the scatter plot and statistics plot.

d. Once the configuration is selected, you can send the configuration to the device (use "SEND CONFIG TO MMWAVE DEVICE"
button).

e. After the configuration is sent to the device, you can switch to the PLOTS view/tab and the plots that you selected will be shown.

f. You can switch back from "Plots" tab to "Configure" tab, reconfigure your "Scene Selection”, "Object Detection" and/or "Plot
Selection” values and re-send the configuration to the device to try a different profile. After a new configuration has been selected,
just press the "SEND CONFIG TO MMWAVE DEVICE" button again and the device will be reconfigured. This can be done without
rebooting the device. If you change the parameters in the "Setup Details", then you will need to take further action before trying the
new configurations

i. If Platform is changed: make sure the COM ports match the TI EVM/platform you are trying to configure and visualizer
ii. If SDK version is changed: make sure the mmW demo running on the connected TI EVM matches the selected SDK
version in the GUI
iii. If Antenna Config is changed: make sure the TI EVM is rebooted before sending the new configuration.
3. If board is rebooted, follow the steps starting from 1 above.

10

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

1. COM port after reboot

Whenever Tl EVM is power-cycled (rebooted), you will need to use the bottom left serial port connection icon inside Tl gallery app
"mmWave Demo Visualizer" for disconnecting and reconnecting the COM ports. Note that if you used the CLI COM port directly to
send the commands (instead of Tl gallery app) you will have to close the CLI teraterm window and open a new one on every
reboot.

Inner workings of the GUI

In the background, GUI performs the following steps:

Creates or reads the configuration file and sends to the mmWave device using the COM port called CFG_port. It saves the information
locally to be able to make sense of the incoming data that it will display. Refer to the CFG Section for details on the configuration file
contents.
Receives the data generated by the demo on the visualization/Data COM port and processes it to create various displays based on the
GUI configuration in the cfg file.

® The format of the data streamed out of the demo is documented in mmw demo's doxygen mmwave_sdk_<ver>\packages\ti\demo\

<platform>\mmw\docs\doxygen\htmN\index.html under section: "Output information sent to host".

On every reconfiguration, it sends a 'sensorStop' command to the device first to stop the active run of the mmWave device. Next, it sends
the command 'flushCfg' to flush the old configuration before sending the new configuration. It is mandatory to flush the old configuration
before sending a new configuration. Additionally, it is mandatory to send all the commands for that demo/platform even if the user desires
the functionality to be disabled i.e. no commands are optional.

Advanced GUI options

User can configure the device from their own configuration file or the saved app-generated configuration file by using the "LOAD CONFIG
FROM PC AND SEND" button on the PLOTS tab. Make sure the first two commands in this config file are "sensorStop" followed by
"flushCfg".

User can temporarily pause the mmWave sensor by using the "STOP" button on the plots tab. The sensor can be restarted by using the
"START" button. In this case, sensor starts again with the already loaded configuration and no new configuration is sent from the App.
User can simultaneously plot and record the processed/detected objects data coming out of the DATA_port using the "RECORD

START" button in the plots tab. Set the max limits for file size or record time as per your requirements to prevent infinite capturing of data.
The saving of data can be manually stopped using the "Record Stop" button (if the max limits are not reached).

Once the demo has started and plots are active, user can tune the demo using the "Real Time tuning tab" or "Advanced commands" tab
and then save the tuned profile using "EXPORT TUNED PROFILE" button on the PLOTS tab.

Console Messages window in Visualizer

Console message window echoes the following debug information for the users

Every command that is sent to the TI mmWave EVM and the response back from the EVM

Any runtime assert conditions detected by the demo running on TI mmWave EVM after the sensor is started. This is helpful when mmw
demo is flashed onto the EVM and CCS connectivity is not available. It spits out file name and line number to allow users to browse to the
source code and understand the error.

Error: Incorrect config reported by target. Hint: Change configuration and try again Error -1

‘SEND CONFIG TO MMWAVE DEVICE SAVE CONFIG TO PC

Init time calibration status after the first sensorStart is issued post reboot for debugging boot time or start failures

mmwDemo: />HSS Exception: mss/mss_main.c, line 1296

mmwDemo: / >sensorStart
Debug: Init Calibration Status = @x7fe

Done

Here is an example of plots that mmWave Demo Visualizer produces based on the config that is passed to the demo application running on mmWave

sensor.

w3 TexAs INSTRUMENTS

11




Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

mmWave Demo

Range Depth 5 FleSizeMax (M8)  [1

X-Y Seatter Plot Range Profile for zero Doppler

Range Profile Y max [ 2 2 Log Scale Record tmemax(s) |10

=
T T

2

g

E 2 Wh ‘

g H |

5 H Vi Flatfom 26843
B VWA f

g 3 WMy ( DK Version 3200

£ g bl o

g eyl MNumber of Detected Objects )

H ® Frame stars

3

InterChirpProc

singMargin (use

¢ 3 ° 3 o = imerFremeProcessingMargin (usec) 92876
Distance along Iateral axis (meters) Range (meters) imerFrameFrocessingTime (usec) 5034
TransmitOutputTime (usec) 14682
Active/merframe CPULORA (%) 0/5
Doppler-Range Plot Active and Interframe CPU Load

Real-Time Tuning

= - Group Peaks from Same Obiect [ Range birection
B H
£ E ] Doppler irection
5 2
g ; ‘Additional Algorithm Processing O Remove Static Clutter
3
CFAR Range Thveshold (0-1008) re 1
0 100
Doppler Renge Thveshold (0-10008) re 1
0 100
o g Too Fegof vew Azimun Elevation
Min  Max  Min  Max
Range (meters) Frames Angle of sl 2 [0 |[s0 |[s0
(deg
Min  Max
Bange (m) -

12

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

3. 3. 2. mmWave demo with LVDS-based instrumentation

To enable mmW demo in the instrumentation usecase where high bandwidth data is shipped from the device to a PC over ethernet and saved onto
the filesystem, please follow the following steps

1. Power on the EVM in functional mode with right binary loaded (see section above) and connect it to the PC as shown above with the USB
cable. Connect mmWave EVM to DCA1000 EVM by following DCA1000EVM Data Capture Card User's Guide. Place SW2.5 in
CONFIG_VIA_SW mode to be able to use the remainder of the instructions specified here.

2. Browse to the Tl gallery app "mmWave Demo Visualizer" at http://dev.ti.com/gallery or use the direct link https://dev.ti.com
/mmWaveDemoVisualizer.

3. Default profile in Visualizer disables the LVDS streaming. To enable it, please export the chosen profile and set the appropriate enable bits in
IvdsStreamCfg command. See "Configuration (.cfg) File Format" section for details on the command format, usage and dependencies.

Example: Enable H/W and S/W stream with header

lvdsStreanCfg -1 1 1 1

4. Create a JSON file with any name but with extension .json with following parameters. See section "JSON Config File"
in TI_DCA1000EVM_CLI_Software_UserGuide.pdf. Sample JSON file is shown below.

13

w3 TexAs INSTRUMENTS


http://www.ti.com/lit/spruij4
http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

datacard_config.json

{
"DCA1000Config": {
"dat aLoggi nghbde": "nul ti",
"dat aTr ansfer Mbde": "LVDSCapture",
"dat aCapt ur eMbde": "et her net St reant,
"l vdshbde": 2,
"dat aFor mat Mbde": 3,
"packet Del ay_us": 10,
"et her net Config": {
"DCA1000! PAddress”: "192.168. 33. 180",
"DCA1000Confi gPort": 4096,
"DCA1000Dat aPort": 4098
e
"et her net Confi gUpdat e”: {
"systenm PAddress": "192.168. 33. 30",
"DCA1000! PAddress”: "192.168. 33. 180",
"DCA1000MACAddress": "12.34.56. 78. 90. 12",
"DCA1000Confi gPort": 4096,
"DCA1000Dat aPort": 4098
'
"captureConfig": {
"fil eBasePath": "C:||nySavedData",
"filePrefix": "datacard_record",
"maxRecFi | eSi ze_MB": 1024,
"sequenceNunber Enabl e": 1,
"capt ureSt ophbde”: "infinite",
"bytesToCapture": 1025,
"durationToCapture_ns": 1000,
"framesToCapture”: 5
}
"dat aFor mat Confi g": {
"MSBToggl e": 0,
“reorder Enabl e": 1,
"l aneFnt Map": O,
"dat aPort Config": [
{
"portldx": O,
"dat aType": "conpl ex"
}
{
"portldx": 1,
"dat aType": "conpl ex"
'
{
"portldx": 2,
"dat aType": "conplex"
H
{
"portldx": 3,
"dat aType": "conplex"
}
{
"portldx": 4,
"dat aType": "conpl ex"
}
1
}
}
}

This json file should match user's setup and the profile.cfg that is used to configure the mmW demo running on mmWave EVM.

a. User should customize "ethernetConfig" block to match their setup

b. "dataLoggingMode" in json file should be set to "raw" if header is disabled via <enableHeader> field in lvdsStreamCfg command in
profile.cfg. "dataLoggingMode" in json file should be set to "multi" if header is enabled via <enableHeader> field in lvdsStreamCfg co
mmand in profile.cfg.

c¢. "lvdsMode" in json file should be set to 2 since xwr16xx/xwrl18xx/xwr68xx device have 2 Ivds lanes.

d. "dataFormatMode" in json file should match the 12/14/16 bit selection in <numADCBits> field in "adcCfg" command in profile.cfg. As
one would realize, value of "dataFormatMode" is ("adcCfg"'numADCBIts" + 1) .

e. User should customize "captureConfig" as per their needs.

f. "MSBToggle" should be set to 0.

g. "reorderEnable" should be setto 1.

h. "dataPortConfig" should set all dataType to "complex" since mmW demo configures all CBUFF/LVDS session to be complex.

14

TeEXAS INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

5. Assuming the file created in previous step is called "datacard_config.json", invoke the following commands from a command prompt (DOS or
bash) on the PC to which the DCA1000 EVM is connected.
a. Windows:

Windows::DCA1000EVM CLI

@REM confi gure DCA1000EVM
DCAI1000EVM CLI _Control . exe fpga datacard_config.json

@REM configure CLI application with the record rel ated settings
DCAI1000EVM CLI _Control . exe record datacard_config.json

@REM start record and wait for the data over ethernet
DCA1000EVM CLI _Control . exe start_record datacard_config.json

b. Linux

Linux::DCA1000EVM CLI

# confi gure DCA1000EVM
./ DCA1000EVM CLI _Control fpga datacard_config.json

#configure CLI application with the record rel ated settings
./ DCA1000EVM _CLI _Control record datacard_config.json

#start record and wait for the data over ethernet
./ DCA1000EVM CLI _Control start_record datacard_config.json

6. See previous section for details on operating the Visualizer. Configure the mmW demo running on the mmWave EVM using the Visualizer
and profile.cfg that has Ivds streaming turned on. To avoid getting timeout error from DCA1000EVM_CLI_Control, execute this step from the
Visualizer within 30 secs of sending the "start_record" command using DCA1000EVM_CLI_Control.

7. With successful invocation of DCA1000EVM_CLI_Control and Visualizer, the mmWave EVM will send UART stream to get plotted on the
Visualizer and LVDS stream to PC to be saved in a file as configured in "captureConfig" JSON block.

8. Use the following command to stop the LVDS stream capture before issuing "sensorStop" to the mmW demo running on mmWave EVM. One
could send the sensorStop to mmWave EVM followed by stop_record to DCA1000EVM_CLI_Control.exe however this would generate an
errorcode related to record process not running and it can be safely ignored.

a. Windows:

Windows::Stop DCA1000EVM_CLI

DCA1000EVM CLI _Control . exe stop_record datacard_config.json

b. Linux

Linux::Stop DCA1000EVM_CLI

./ DCA1I000EVM _CLI _Control stop_record datacard_config.json

9. See section "Output Files" in TI_DCA1000EVM_CLI_Software_UserGuide.pdf to understand the files saved during this transfer. On little
endian PCs, <File_Prefix>_<Raw/Header Mode>_<iteration>.bin contains value in little endian format. A fread of 16 bit on little endian PCs
will read correct data with no more formatting required. For the high-level data format details corresponding to the H/W session data format
configurations, refer to the corresponding slides in mmwave_sdk_<ver>\docs\ti\drivers\cbuf\docs\CBUFF_Transfers.pptx. See section
"Streaming data over LVDS" in mmW demo doxygen (browse via mmwave_sdk_<ver>\docs\mmwave_sdk_module_documentation.html) for
details on data format of the streamed data.

a. For the "raw" mode, the data filename would be <File_Prefix>_Raw_<iteration>.bin. Raw mode is only supported for H/W session
and the saved data is directly payload with no header or extra bytes/padding.
b. For the "multi" mode (or the header enabled mode), see HSIHeader structure returned by HSIHeader_createHeader create API in
mmW demo for the header IDs used.
i. By default, for mmW demo, the first enabled stream (i.e. for H/W stream if H/W is enabled or for S/W stream if H/W is
enabled) will have the ID: HSI_HEADER_ID1 : 0XOCDAOADCOCDAOADCU and hence the filename would
be <File_Prefix>_hdr_0ADC_<iteration>.bin. See below for one such example file content and its interpretation.

TexAs INSTRUMENTS °



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

Sample datacard_record_hdr_OADC_0.bin for H/W session with CP_ADC_CQ format

BYTE offsets (hex)

00000000:
00000010:
00000020:
00000030:
00000040:
06000050:
06000060:
06000070:
066000080:

dcBa
83086
00800
0800
0000
4304
b3ff
3ufe
cab3

dadc dcBa daoc[Jpose
2000 0262 0062 0F04
7800 40080 0080 0000
0008 OFOF OFOF BFOF
9008 a006 4c04 bOOS
67fd a002 8a00 2b03
5000 7901 baff cfo0
a9fa 35Fc 3b00 ef00
1efd 3cFf 63fa F7fc

8100
8100
0000
of of
402
Bafd
083fd
dife
58fe

LLDL
e801
0000
ofof
cdo?
17fe
cdee
6dff
14FF

HS|Header->dataCardHeader

080080
082080
0000
of of
4201
cffd
7dfd
eeff
e960

Id=Hs|_HEADER _ID1

total length =0x0001060
[totalLengthisw=0xobo [

reserved

|00000000: dcoa [daoc Jdcoa Jdaoc [booo 0100
HSiHeader >sdkHeader
versi on=0x0683=0b011010000011=] ‘ c
0020008 0020 Vi P+ADC+CQ P
|00000010: (8306 [2000 [0202 [ooo2 Jofoa [o100
HsiHeader >sdkHeader
[ ‘ ‘ o |
l00000020: 0000 [7800 [a000 [oo00 [ooon Joooo
FSiHeader >sdkHeader Hsiread
appExtensionHeader paddingBuffer
loooo0o30: %000 [o000 jofor [oror Jofor
Adc DatalchipOJRx0]
o Fi : 1=0x024G, Q010620

looooooso: o000 [oooo 2006 [acos boos [fa02
deo

l00000050: 1300 [e7fd [a00z [Bac0 2003 [oafd
deo

lo0000060: baft [5000 [ooL it [cfo0 [osfd
dem

loooooo7: aufe ED E3 2000 ef00 dife
AdcDx

|00000080: 03 tefd [ocff [fa [i7e [sete

ii. By default, for mmW demo, the second enabled stream (i.e. for S/W stream if H/W is also enabled) will have the

structure name.
field name and value

hex value at given byte offet]
structure name.

field name and value

hexvalue atgiven byte offset|
Structure name

field name and value

hexvalue at given byte offset|
structure name.

field name and value

hexvalue atgiven byte offset|
Structure name

field name and value

hexvalue atgiven byte offset|
structure name

field name and value

hex value atgiven byte offset]
structure name.

field name and value

hexvalue atgiven byte offset|
Structure name

field name and value

hexvalue at given byte offset|
structure name.

field name and value

hexvalue atgiven byte offset|

ID: HSI_HEADER_ID2 : 0x09CC0CC909CCO0CC9U and hence the filename would be <File_Prefix>_hdr_0CC9_<iteration>.
bin. See below for one such example file content and its interpretation.

Sample datacard_record_hdr_0CC9_0.bin for S/W session

BYTE offsets (hex)

00000010:
06000020:
00000030:

060008050:
00000060:
00000070:
000000806:

8306
8000
8000
Bf Bf
Bf Bf
Bf 0f
8100
8000

3800
LI
00080
ofof
efof
of of
0000
0000

08202
0860
of of
Of 8f
Of of
of of
0800
0600

0002
0u00
of Bf
ofof
ofof
of 8f
3a00
0000

0005
dee1
of of
Of 8f
Bf 6f
Of of
4990
L4ako

0808
7488
8f Bf
of Bf
Bf BF
8f Bf
c9bd
cebd

HS| Header->dataCardHe ader

a6
aseo
of 6f
of f
of 8f
of 6f
682b
10d9

0000
0000
of of
of 6f
Bf 6f
of 6f
c93f
cd3f

structure name.

id=HSI_HEADER_ID2

total length = 0x000%0
[otalLengthLsw=0x4ta

ASW=0x000

reserved

field name and value

lea0e

Toos foowo

Tion

hex value at given byte offset

structure name.

[version=0x0683-0b011010000011<]

HSIHeader->s dkHeader
<l

(sw)

o005 0000

‘20¢Dat5i26=0x0000 cpDataSize=0x0000)|

field name and value

hex value at given byte offsat

HSIHeader->s dkHeader

structure name.

\rnl\:ﬂ:ﬂ\ [1]=00000

‘ userBufSize[1]=0x01d0 ‘

field name and value

[oo000

hex value atgiven byte offset

HSIHeader->sdkHe ader

B [7400
HSIHead i

structure name.

field name and value

Toooo

T T

hex value atgiven byte offset

structure name.

field name and value

Jotot

hex value atgiven byte offset

structure name.

field name and value

Toior

hex value atgiven byte offset

structure name.

field name and value

hex value atgiven byte offset
structure name.

field name and value

hex value atgiven byte offset
structure name.

field name and value

hex value atgiven byte offset

w3 TexAs INSTRUMENTS

16



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

@ Sample Data parser implementation

Sample C code implementation of data parsing with header enabled is provided at mmwave_sdk_<ver>\packages\ti\utils\hsiheader\test\dat
a_card.cpp. Use the readme.txt in that location for build and run instructions. (Note that serialize.cpp is no longer required
if "reorderEnable" is set to 1).

data_card.out datacard_record_hdr_OADC_0.bin

Debug:

Fil e: datacard_record_hdr_OADC 0. bin

ok ok ok ok ko ok ok ko ok k ok ko ok ok ok kK ok ok k ko ok k k ok ok ok ok ok ok kK ok kb ko ok ok ko ok ok K ok kA ok kb kK ok ko

Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:

[Detected] Data IDI with nmfdve SDK Version: 3.2.0.3 Platform XWURI6xx
Header size: 32 Padding size: 6

Channel - 0123 Non-1Interl| eaved Mbde 16bit CP + ADC + CQ

Single Chirp Mde

ADC: 480 CP: 2

CQ: 0 CQi: 120 Ce: 64

Userl: 0 User2: 0 User3 : 0

Application Header: 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

CP [Channel 1] :: 0 0

ADC [Channel 1 First 8 bytes]:: 1696 1100 1456 756 1997 322 1091 - 665
ADC [ Channel 1 Last 8 bytes]:: -890 -43 332 1396 817 -594 -271 237

CP [Channel 2] :: 1 0

ADC [ Channel 2 First 8 bytes]:: -1772 -1399 -1794 -469 -956 -79 -899 -355
ADC [ Channel 2 Last 8 bytes]:: -884 324 94 938 799 -163 797 -809

CP [Channel 3] :: 2 0

ADC [ Channel 3 First 8 bytes]:: 1182 3225 2220 3055 2561 1824 2152 555
ADC [ Channel 3 Last 8 bytes]:: -692 827 -1 546 226 539 632 894

CP [Channel 4] :: 30

ADC [ Channel 4 First 8 bytes]:: -444 -419 451 -85 -29 -719 -345 -131
ADC [ Channel 4 Last 8 bytes]:: -730 383 244 -161 -435 550 765 -322

cat
-22678
- 18831
-18828
-17807
-20377
- 22940
-21916
-21913

119 24929 27239 28009 30827 -31378 -26511 -24469 -24982
-21390 -21904 -21392 -20370 -20369 -21393 -21903 -22166 -22168 -22165
-18573 -18572 -18835 -19091 -19858 -20886 -20629 -21401 -21399 -20629
-17550 -19094 -20631 -19856 -18323 -19091 -18075 -18587 -18322 -17557
-18838 -20377 -20118 -19097 -20633 -19868 -17054 -17817 -18073 -19609
-20124 -17052 -18328 -21917 -21915 -21914 -22169 -20888 -20891 -21660
-22428 -20631 -21919 -21918 -22940 -22683 -20114 -21913 -23194 -23706
-22169 -22169 -22170 -22169 -21911 -21392 -23194 -23452 -23450 -22425
-22933

119 00000000000000000O0O0O0OO0OOOOOOOOOOOOOOOOOOOOODO

oc@ :
0000000000000 O0O0 O 20784 -3576 32369 5283

ok ok ok ok ko ok ok ko ok k ok ko ko ok kK ok ok k ko ok ok ok ok ok ok ok ok kK ok kb ko ok ok ko ok ok K o kA kb kK ok

data_card.out datacard_record_hdr_0CC9_0.bin

Debug:

File: datacard_record_hdr_0CC9 0. bin

Hok ok ok kK ok ok ok R ok o ok Kk ok ok ok ok ok ok K ok ok K ok ok R ok ok ok ok ok ok ok K ok ok R ok ok R ok ok ok K o ok R ok ok R A

Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
User 0
User1
User2

[Detected] Data ID2 with nmMve SDK Version: 3.2.0.3 Platform XWRL6xx
Header size: 56 Padding size: 30
No Channel Enabl ed Non-1nterleaved Mde 16bit User
Cont i nuous Mde
ADC: 0 CP: 0
CQ: 0 CQi: 0 Ce: 0
User1: 4 User2: 464 User3 : 116
Appl i cation Header: 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0xO0
100 58
-28599 -16951 11112 16329
305 771 374 784

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ko

3. 4. Configuration (.cfg) File Format

Each line in the .cfg file describes a command with parameters. The various commands and their arguments are described in the table below
(arguments are in sequence). For mmW demo, users can create their own config files from the Visualizer GUI by using the "Save Config to PC"

-23957
-22679
-21144
- 18836
-20121
-21914
-22936
-20373

-23703
-22164
-20631
-18841
- 19094
-20627
-23451
-24222

-23443 -23448
-21655 -21400
-19609 -19860
-19097 -19083
-19859 -20123
-22426 -22683
-23967 -22429
-24477 -23194

button or starting from the few sample profiles provided in the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles directory.

w3 TexAs INSTRUMENTS

17



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

Converting configuration from older SDK release to current SDK release

As new versions of SDK releases are available, there are usually changes to the configuration commands that are supported in the new
release. Now, users may have some hand crafted config file which worked perfectly well on older SDK release version but will not work as
is with the new SDK release. If user desires to run the same configuration against the new SDK release, then there is a script
mmwDemo_<platform>_update_config.pl provided in the mmwave_sdk_<ver>\packages\tiidemo\<platform>\mmw\profiles directory that
they can use to convert the configuration file from older release to a compatible version for the new release. Refer to the perl file for details
on how to run the script. Note that users will need to install perl on their machine (there is no strict version requirement at this time). For any
new commands inserted by the script, there will be a comment preceeding that line which is similar to something like this: "Inserting new
mandatory command. Check users guide for details.”

Most of the parameters described below are the same as the mmwavelink API specifications (see doxygen mmwave_sdk_<ver>\packages\ti\control\m
mwavelink\docs\doxygen\html\index.html.) Additionally, users can refer to the chirp diagram below to understand the chirp and profile related
parameters or the appnote http://www.ti.com/litv/pdf/swra553

P Chirp Cycle Time

Turn Off TX Ramp Start Start ADC Sampling Ramp End
ADC Sampling Time

End ADC
Sampling

ADC Valid |

I
| Start Time | Frequency Slope
I

Idle Time BLUE = Information only.

BLACK = Front-end configuration.

Turn On TX I
| ) Ramp End Time R
Frequency | '
Start TXIStart Time

| Transmitter is ON

v

3.4.0. 0. 1Figure 2: Chirp Diagram

Configuration command Command details Command Usage in mmW demo
Parameters
XWIL1BXX/XWr18XX/XWr64xx
IXWr68xx
dfeDataOutputMode The values in this command should not change between
sensorStop and sensorStart.
<modeType> only option 1 and 3 are supported
Reboot the board to try config with different set of values 1 - frame based chirps
in this command 2 - continuous chirping
3 - advanced frame
This is a mandatory command. config
channelCfg Channel config message to RadarSS. See mmwavelink
doxgen for details.
<rxChannelEn> 4 antennas supported
The values in this command should not change between Receive antenna mask
sensorStop and sensorStart. e.g for 4 antennas, it is
0x1111b =15

Reboot the board to try config with different set of values
in this command

This is a mandatory command.

w3 TexAs INSTRUMENTS .


http://www.ti.com/litv/pdf/swra553

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide

http://www.ti.com

adcCfg ADC config message to RadarSS. See mmwavelink
doxgen for details.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values
in this command

This is a mandatory command.

adcbufCfg adcBuf hardware config. The values in this command can
be changed between sensorStop and sensorStart.

This is a mandatory command.

<txChannelEn>
Transmit antenna mask

<cascading>
SoC cascading, not
applicable, set to 0

<numADCBits>
Number of ADC bits (0
for 12-bits, 1 for 14-bits
and 2 for 16-bits)

<adcOutputFmt>
Output format :

0 -real

1 - complex 1x (image
band filtered output)

2 - complex 2x (image
band visible))

<subFrameldx>
subframe Index

<adcOutputFmt>
ADCBUF out format
0-Complex,

1-Real

<SampleSwap>
ADCBUF IQ swap
selection:

0-1in LSB, Q in MSB,
1-Qin LSB, I in MSB

<Chanlinterleave>
ADCBUF channel
interleave configuration:
0 - interleaved(only
supported for XWR14xx),
1 - non-interleaved

<ChirpThreshold>
Chirp Threshold
configuration used for
ADCBUF buffer to
trigger ping/pong buffer
switch.

Valid values:

0-8 for demos that use
DSP for 1D FFT and
LVDS streaming is
disabled

only 1 for demos that
use HWA for 1D FFT

Refer to the antenna layout on the
EVM/board to determine the right
Tx antenna mask needed to
enable the desired virtual antenna
configuration.

For example, in IWR6843 ISK, the
2 azimuth antennas can be
enabled using bitmask 0x5 (i.e. tx1
and tx3). The azimuth and
elevation antennas can both be
enabled using bitmask 0x7 (i.e.
tx1, tx2 and tx3).

For example, in X\WR1642BOOST,
the 2 azimuth antennas can be
enabled using bitmask 0x3 (i.e. tx1
and tx2).

only 16-bit is supported

only complex modes are supported

For legacy mode, that field should
be setto -1.

For advanced frame mode, it
should be set to either the intended
subframe number or -1 to apply
same config to all subframes.

only complex modes are supported

only option 1 is supported

only option 1 is supported

xwrl6xx demo: Values 0-8 are
supported since it uses DSP for 1D
FFT. However, only value of 1 is
supported when LVDS streaming
is enabled.

XWIBAXX/XWr68xx/Xwrl8xx: only
value of 1 is supported since these
demos use HWA for 1D FFT

I3 TEXAS INSTRUMENTS

19



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

profileCfg

Profile config message to RadarSS and datapath. See
mmwavelink doxgen for details.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

txCalibEnCfg Field

This CLI command doesn't expose the
txCalibEnCfqg field in the mmwavelink structure.
User should follow the mmwavelink documentation
and update the CLI profileCfg handler function
accordingly. The current handler sets the value to 0
for this field (backward compatible mode)

Combination of numAdcSamples in profileCfg
(and numRangeBins), numDopplerChirps =
total number of chirps/(num TX in MIMO
mode) in frameCfg or subFrameCfg, number
of TX and RX antennas in channelCfg and
chirpCfg determine the size of Radarcube
and other internal buffers/heap in the demo.
It is possible that some combinations of these
values result in out of memory conditions for
these heaps and demo will reject such
configuration. Refer to demo and DPC
doxygen to understand the data buffer layout
and use the system printfs on sensorStart in
CCS console window to understand the exact
heap usage for a given configuration.

<profileld>
profile Identifier

<startFregq>
"Frequency Start" in
GHz (float values
allowed)

Examples:

e

61.38

<idleTime>

"Idle Time" in u-sec
(float values allowed)
Examples:

7

7.15

<adcStartTime>

"ADC Valid Start Time"
in u-sec (float values
allowed)

Examples:

7

7.34

<rampEndTime>
"Ramp End Time" in u-
sec (float values
allowed)

Examples:

58
216.15

<txOutPower>
Tx output power back-
off code for tx antennas

<txPhaseShifter>

tx phase shifter for tx
antennas
<freqSlopeConst>
"Frequency slope" for
the chirp in MHz/usec
(float values allowed)
Examples:

68

16.83

Legacy frame (dfeOutputMode=1):
could be any allowed value but
only one valid profile per config is
supported

Advanced frame
(dfeOutputMode=3): could be any
allowed value but only one profile
per subframe is supported.
However, different subframes can
have different profiles

any value as per mmwavelink
doxgen/device datasheet but
represented in GHz.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet but
represented in usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet but
represented in usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

only value of '0" has been tested
within context of mmw demo

only value of '0" has been tested
within context of mmW demo

any value greater than 0 as per
mmwavelink doxgen/device
datasheet but represented in MHz
lusec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

w3 TexAs INSTRUMENTS

20



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

chirpCfg

Chirp config message to RadarSS and datapath. See
mmwavelink doxgen for details.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

<txStartTime>
"TX Start Time" in u-sec
(float values allowed)

Examples:

1
2.92

<numAdcSamples>
number of ADC
samples collected during
"ADC Sampling Time" as
shown in the chirp
diagram above

Examples:
256
224

<digOutSampleRate>
ADC sampling
frequency in ksps.

(<numAdcSamples> /
<digOutSampleRate> =
"ADC Sampling Time")

Examples:
5500

<hpfCornerFreql>
HPF1 (High Pass Filter
1) corner frequency

0: 175 KHz

1: 235 KHz

2: 350 KHz

3: 700 KHz

<hpfCornerFreq2>
HPF2 (High Pass Filter
2) corner frequency

0: 350 KHz

1: 700 KHz

2:1.4 MHz

3:2.8 MHz

<rxGain>

OR'ed value of RX gain
in dB and RF gain target
(See mmwavelink
doxgen for details)

chirp start index

chirp end index

profile identifier

start frequency variation
in Hz (float values
allowed)

frequency slope variation
in kHz/us (float values
allowed)

idle time variation in u-
sec (float values allowed)

ADC start time variation
in u-sec (float values
allowed)

any value as per mmwavelink
doxgen/device datasheet but
represented in usec.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet but only
values greater than 64 have been
validated.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet.

Refer to the chirp diagram shown
above to understand the relation
between various profile parameters
and inter-dependent constraints.

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen

should match the profileCfg-
>profileld

only value of '0" has been tested
within context of mmW demo

only value of '0' has been tested
within context of mmwW demo

only value of '0" has been tested
within context of mmW demo

only value of '0" has been tested
within context of mmw demo

w3 TexAs INSTRUMENTS

21



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

lowPower Low Power mode config message to RadarSS. See

mmwavelink doxgen for details.

The values in this command should not change between
sensorStop and sensorStart.

Reboot the board to try config with different set of values
in this command.

This is a mandatory command.

frameCfg frame config message to RadarSS and datapath. See

mmwavelink doxgen for details.
dfeOutputMode should be set to 1 to use this command

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is
setto 1.

advFrameCfg Advanced config message to RadarSS and datapath.
See mmwavelink doxgen for details. The dfeOutputMode
should be set to 3 to use this command. See
profile_advanced_subframe.cfg profile in the mmw demo

profiles directory for example usage.

The values in this command can be changed between
sensorStop and sensorStart.

tx antenna enable mask
(Tx2,Tx1) e.g (10)b =
Tx2 enabled, Tx1
disabled.

<don't_care>

ADC Mode

0x00 : Regular ADC
mode

0x01 : Low power ADC
mode

chirp start index (0-511)

chirp end index (chirp
start index-511)

number of loops (1 to
255)

number of frames (valid
range is 0 to 65535, 0
means infinite)

frame periodicity in ms
(float values allowed)

trigger select
1: Software trigger
2: Hardware trigger.

Frame trigger delay in
ms (float values allowed)

<numOfSubFrames>
Number of sub frames
enabled in this frame

<forceProfile>
Force profile

See note under "Channel Cfg"
command above.

Individual chirps should have either
only one distinct Tx antenna
enabled (MIMO) or same TX
antennas should be enabled for all
chirps

setto 0

use value of '0' or '1' (depending
on profileCfg->digOutSampleRate)

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

any value as per mmwavelink
doxgen/device datasheet but
greater than or equal to 4.

For xwrl6xx/xwr68xx demos
where DSP version of Doppler
DPU is used, the Doppler chirps (i.
e. number of loops) should be a
multiple of 4 due to windowing
requirement.

Note: If value of 2 is desired for
number of Doppler Chirps, one
must update the demo/object
detection DPC source code to use
rectangular window for Doppler
DPU instead of Hanning window.

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen and represented in msec.
However frame should not have
more than 50% duty cycle (i.e.
active chirp time should be <= 50%
of frame period). Also it should
allow enough time for selected
UART output to be shipped out
(selections based on guiMonitor
command) else demo will assert if
the next frame start trigger is
received from the front end and
current frame is still ongoing. User
can use the output of stats TLV to
tune this parameter.

only option for Software trigger is
supported

any value as per mmwavelink
doxgen and represented in msec.

any value as per mmwavelink
doxgen

only value of 0 is supported

w3 TexAs INSTRUMENTS

22



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

This is a mandatory command when dfeOutputMode is
setto 3.

subFrameCfg Subframe config message to RadarSS and datapath. See

mmwavelink doxgen for details.

The dfeOutputMode should be set to 3 to use this
command. See profile_advanced_subframe.cfg profile in
the mmW demo profiles directory for example usage

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command when dfeOutputMode is
setto 3.

<numFrames>
Number of frames to
transmit (1 frame = all
enabled sub frames)

<triggerSelect>
trigger select

1: Software trigger
2: Hardware trigger.

<frameTrigDelay>
Frame trigger delay in
ms (float values allowed)

<subFrameNum>
subframe Number for
which this command is
being given

<forceProfileldx>
Force profile index

<chirpStartldx>
Start Index of Chirp

<numOfChirps>

Num of unique Chirps
per burst including start
index

<numLoops>
No. of times to loop
through the unique chirps

<burstPeriodicity>

Burst periodicty in msec
(float values allowed)
and meets the criteria
burstPeriodicity >=
((numLoops)* (Sum total
of time duration of all
unique chirps in that
burst)) +
InterBurstBlankTime

<chirpStartldxOffset>
Chirp Start address
increament for next burst

<numOfBurst>
Num of bursts in the
subframe

<numOfBurstLoops>
Number of times to loop
over the set of above
defined bursts, in the
sub frame

any value as per mmwavelink
doxgen

only option for Software trigger is
supported

any value as per mmwavelink
doxgen and represented in msec.

value of 0 to
RL_MAX_SUBFRAMES-1

ignored as <forceProfile> in
advFrameCfg should be set to 0

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

any value as per mmwavelink
doxgen but corresponding number
of chirpCfg should be defined

any value as per mmwavelink
doxgen but greater than or equal to
4

For xwrl16xx/xwr68xx demos
where DSP version of Doppler
DPU is used, the Doppler chirps (i.
e. number of loops) should be a
multiple of 4 due to windowing
requirement.

Note: If value of 2 is desired for
number of Doppler Chirps, one
must update the demo/object
detection DPC source code to use
rectangular window for Doppler
DPU instead of Hanning window.

any value as per mmwavelink
doxgen and represented in msec
but subframe should not have
more than 50% duty cycle and
allow enough time for selected
UART output to be shipped out
(selections based on guiMonitor
command)

set it to O since demo supports
only one burst per subframe

set it to 1 since demo supports
only one burst per subframe

set it to 1 since demo supports
only one burst per subframe

w3 TexAs INSTRUMENTS

23



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

guiMonitor Plot config message to datapath.
The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

cfarCfg CFAR config message to datapath.

The values in this command can be changed between

sensorStop and sensorStart and even when the sensor is

running.

This is a mandatory command.

<subFramePeriodicity>

subFrame periodicty in
msec (float values
allowed) and meets the
criteria
subFramePeriodicity >=
Sum total time of all
bursts +
InterSubFrameBlankTime

All parameters below are
flags (1 to enable and 0
to disable)

<subFrameldx>
subframe Index

<detected objects>

1 - enable export of
point cloud (x,y,z,
doppler) and point cloud
sideinfo (SNR, noiseval)

2 - enable export of point
cloud (x,y,z,doppler)

0 - disable

<log magnitude range>
1 - enable export of log
magnitude range profile
at zero Doppler

0 - disable

<noise profile>

1 - enable export of log
magnitude noise profile
0 - disable

<rangeAzimuthHeatMap>
range-azimuth heat map
related information

1 - enable export of
zero Doppler radar cube
matrix, all range bins, all
antennas to calculate
and display azimuth heat
map.

0 - disable

(the GUI computes the
FFT of this to show heat
map)

<rangeDopplerHeatMap>
range-doppler heat map
1 - enable export of the
whole detection matrix.
Note that the frame
period should be
adjusted according to
UART transfer time.

0 - disable

<statsInfo>

statistics (CPU load,
margins, etc)

1 - enable export of
stats data.

0 - disable

set to same as <burstPeriodicity>

since demo supports only one

burst per subframe

For legacy mode, that field should
be set to -1 whereas for advanced

frame mode, it should be set to
either the intended subframe

number or -1 to apply same config

to all subframes.

all values supported

all values supported

all values supported

all values supported

all values supported

all values supported

TeEXAS INSTRUMENTS

24



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

<subFrameldx>
subframe Index

<procDirection>
Processing direction:
0 — CFAR detection in
range direction

1 — CFAR detection in
Doppler direction

<mode>

CFAR averaging mode:
0 - CFAR_CA (Cell
Averaging)

1 - CFAR_CAGO (Cell
Averaging Greatest Of)
2 - CFAR_CASO (Cell
Averaging Smallest Of)

<noiseWin>

noise averaging window
length:

Length of the one sided
noise averaged cells in
samples

<guardLen>
one sided guard length
in samples

<divShift>

Cumulative noise sum
divisor expressed as a
shift.

Sum of noise samples is
divided by 27<divShift>.
Based on <mode> and
<noiseWin> , this value
should be set as shown
in next columns.

The value to be used
here should match the
"CFAR averaging mode"
and the "noise averaging
window length" that is
selected above.

The actual value that is
used for division (27x) is
a power of 2, even
though the "noise
averaging window
length" samples may not
have that restriction.

cyclic mode or Wrapped
around mode.

0- Disabled

1- Enabled

Threshold scale in dB
using float
representation.

This is used in
conjuntion with the noise
sum divisor (say X).

the CUT comparison for
log input is:

CUT > (Threshold scale

converted from dB to
Q8) + (noise sum / 2"x)

For example:
15

10.75

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

all values supported; 2 separate
commands need to be sent; one
for Range and other for doppler.

all values supported

supported

supported

CFAR_CA:

<divShift> = ceil(log,(2 x
<noiseWin>))
CFAR_CAGO/_CASO:

<divShift> = ceil(log,(<noiseWin>))

In profile_2d.cfg, value of 3 means
that the noise sum is divided by
2/3=8 to get the average of noise
samples with window length of 8
samples in CFAR -CASO mode.

supported

Detection threshold is specified in
dB scale. Maximum value allowed
is 100dB

w3 TexAs INSTRUMENTS

25



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

multiObjBeamForming

calibDcRangeSig

Multi Object Beamforming config message to datapath.

This feature allows radar to separate reflections from
multiple objects originating from the same range/Doppler
detection.

The procedure searches for the second peak after
locating the highest peak in Azimuth FFT. If the second
peak is greater than the specified threshold, the second
object with the same range/Doppler is appended to the
list of detected objects. The threshold is proportional to
the height of the highest peak.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

DC range calibration config message to datapath.

Antenna coupling signature dominates the range bins
close to the radar. These are the bins in the range FFT
output located around DC.

When this feature is enabled, the signature is estimated
during the first N chirps, and then it is subtracted during
the subsequent chirps.

During the estimation period the specified bins (defined
as [negativeBinldx, positiveBinldx]) around DC are
accumulated and averaged. It is assumed that no objects
are present in the vicinity of the radar at that time.

This procedure is initiated by the following CLI command,
and it can be initiated any time while radar is running.
Note that the maximum number of compensated bins is
32.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

peak grouping supported
0 - disabled
1 - enabled

<subFrameldx>
subframe Index

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<Feature Enabled> supported
0 - disabled
1 - enabled
<threshold> supported

0 to 1 — threshold scale
for the second peak
detection in azimuth FFT
output. Detection
threshold is equal to
<thresholdScale>
multiplied by the first
peak height. Note that
FFT output is magnitude
squared.

<subFrameldx>
subframe Index

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled> supported
Enable DC removal

using first few chirps

0 - disabled

1 - enabled

<negativeBinldx> supported
negative Bin Index (to

remove DC from farthest

range bins)

Maximum negative
range FFT index to be
included for
compensation. Negative
indices are indices
wrapped around from far
end of 1D FFT.

Ex: Value of -5 means
last 5 bins starting from
the farthest bin

<positiveBinldx> supported
positive Bin Index (to

remove DC from closest

range bins)

Maximum positive range

FFT index to be included

for compensation

Value of 8 means first 9
bins (including bin#0)

w3 TexAs INSTRUMENTS

26



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

clutterRemoval

aoaFovCfg

cfarFovCfg

Static clutter removal config message to datapath.

Static clutter removal algorithm implemented by
subtracting from the samples the mean value of the input
samples to the 2D-FFT

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

Command for datapath to filter out detected points
outside the specified range in azimuth or elevation plane

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

Command for datapath to filter out detected points
outside the specified limits in the range direction or
doppler direction

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<numAvg> The value must be power of 2, and
number of chirps to must be greater than the number
average to collect DC of Doppler bins.

signature (which will

then be applied to all

chirps beyond this).

Value of 256 means first
256 chirps (after
command is issued and
feature is enabled) will
be used for collecting
(averaging) DC
signature in the bins
specified above. From
257th chirp, the
collected DC signature
will be removed from
every chirp.

<subFrameldx> For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config

to all subframes.

subframe Index

<enabled> supported
Enable static clutter

removal technique

0 - disabled

1 - enabled

<subFrameldx> For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config

to all subframes.

subframe Index

<minAzimuthDeg> minimum azimuth angle (in
degrees) that specifies the start of
field of view

<maxAzimuthDeg> maximum azimuth angle (in
degrees) that specifies the end of
field of view

<minElevationDeg> minimum elevation angle (in
degrees) that specifies the start of
field of view

<maxElevationDeg> maximum elevation angle (in
degrees) that specifies the end of
field of view

<subFrameldx> For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config

to all subframes.

subframe Index

<procDirection> both values supported but this
Processing direction: command should be given twice -
0 — point filtering in one for range direction and other
range direction for doppler direction

1 — point filtering in

Doppler direction

w3 TexAs INSTRUMENTS

27



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

compRangeBiasAndRxChanPhase

measureRangeBiasAndRxChanPhase

Command for datapath to compensate for bias in the
range estimation and receive channel gain and phase
imperfections.

Refer to the procedure mentioned here

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

Command for datapath to enable the measurement of the
range bias and receive channel gain and phase
imperfections. Refer to the procedure mentioned here

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

<min (meters or m/s)>

the units depends on the
value for
<procDirection> field
above.

meters for Range
direction and meters/sec
for Doppler direction

<max (meters or m/s)>

the units depends on the
value for
<procDirection> field
above.

meters for Range
direction and meters/sec
for Doppler direction

<rangeBias>
Compensation for range
estimation bias in meters

<Re(0,0)> <Im(0,0)> <Re
(0,1)> <Im(0,1)> ... <Re
(0,R-1)> <Im(0,R-1)>
<Re(1,0)> <Im(1,0)> ...
<Re(T-1,R-1)> <Im(T-1,
R-1)>

Set of Complex value
representing
compensation for virtual
Rx channel phase bias
in Q15 format. Pairs of |
and Q should be
provided for all Tx and
Rx antennas in the
device

<enabled>

1 - enable
measurement. This
parameter should be
enabled only using the
profile_calibration.cfg
profile in the mmW demo
profiles directory

0 - disable
measurement. This
should be the value to
use for all other profiles.

<targetDistance>
distance in meters
where strong reflector is
located to be used as
test object for
measurement. This field
is only used when
measurement mode is
enabled.

<searchWin>

distance in meters of
the search window
around <targetDistance>
where the peak will be
searched

minimum limits for the range or
doppler below which the detected
points are filtered out

maximum limits for the range or
doppler above which the detected
points are filtered out

supported

For xwr1843, xwr6843 and
xwr6443 demos: 12 pairs of values
should be provided here since the
device has 4 Rx and 3 Tx (total of
12 virtual antennas)

For xwr1642 demo: 8 pairs of
values should be provided here
since the device has 4 Rx and 2 Tx
(total of 8 virtual antennas)

supported

supported

supported

w3 TexAs INSTRUMENTS

28



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

extendedMaxVelocity

CQRxSatMonitor

CQSigimgMonitor

analogMonitor

Velocity disambiguation config message to datapath.

A simple technique for velocity disambiguation is
implemented. It corrects target velocities up to (2*vmax).
The output of this feature may not be reliable when two or
more objects are present in the same range bin and are
too close in azimuth plane.

The values in this command can be changed between
sensorStop and sensorStart and even when the sensor is
running.

This is a mandatory command.

Rx Saturation Monitoring config message for
Chirp quality to RadarSS and datapath. See
mmwavelink doxgen for details on
rIRxSatMonConf _t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command

Signal and image band energy Monitoring config
message for Chirp quality to RadarSS and datapath. See
mmwavelink doxgen for details on rISigimgMonConf_t.

The enable/disable for this command is controlled via the
"analogMonitor" CLI command.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command

Controls the enable/disable of the various monitoring
features supported in the demos.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

<subFrameldx>
subframe Index

<enabled>

Enable velocity
disambiguation technique
0 - disabled

1 - enabled

<profile>

Valid profile Id for this
monitoring configuration.
This profile ID should
have a matching
profileCfg.

<satMonSel>
RX Saturation
monitoring mode

<priSliceDuration>
Duration of each slice,
1LSB=0.16us, range: 4 -
number of ADC samples

<numSlices>

primary + secondary
slices ,range 1-127.
Maximum primary slice
is 64.

<rxChanMask>
RX channel mask, 1 -
Mask, 0 - unmask

<profile>

Valid profile Id for this
monitoring configuraiton.
This profile ID should
have a matching
profileCfg

<numSlices>
primary + secondary
slices, range 1-127.
Maximum

primary slice is 64.

<numSamplePerSlice>
Possible range is 4 to
"number of ADC
samples” in

the corresponding
profileCfg. It must be an
even number.

<rxSaturation>
CQRxSatMonitor enable
/disable

1:enable
0: disable

<siglmgBand>
CQsSigimgMonitor enable
/disable

1:enable

0: disable

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

supported.

any value as per mmwavelink
doxygen but corresponding
profileCfg should be defined

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen but corresponding
profileCfg should be defined

any value as per mmwavelink
doxygen

any value as per mmwavelink
doxygen

"enable" supported only for
xwrl6xx and xwrl8xx demo
/device. This feature is not yet
supported on xwr68xx device
/RadarSS, however the command
must still be provided with value
set to disabled.

"enable" supported only for
xwrl6xx and xwrl8xx demo
/device. This feature is not yet
supported on xwr68xx device
/RadarSS, however the command
must still be provided with value
set to disabled.

w3 TexAs INSTRUMENTS

29



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

IvdsStreamCfg

bpmCfg

Enables the streaming of various data streams
over LVDS lanes. When this feature is enabled, make
sure chirpThreshold in adcbufCfg is set to 1.

The values in this command can be changed between
sensorStop and sensorStart.

This is a mandatory command.

BPM MIMO configuration.

Every frame should consist of alternating chirps with
pattern TXA+TxB and TXA-TXB where TXA and TXB are
two azimuth TX antennas. This is alternate
configuration to TDM-MIMO scheme and

provides SNR improvement by running 2Tx
simultaneously. When using this scheme, user
should enable both the azimuth TX in the

chirpCfg. See profile_2d_bpm.cfg profile in the
xwrl6xx mmwW demo profiles directory for

example usage.

This config is supported and mandatory only for demos
that use Doppler DSP DPU (xwr16xx/xwr68xx). This
config is not supported and is not needed for demos that
use Doppler HWA DPU (xwr18xx/Xwr64xx).

<subFrameldx>
subframe Index

<enableHeader>

0 - Disable HSI header
for all active streams

1 - Enable HSI header
for all active streams

<dataFmt>

Controls HW streaming.
Specifies the HW
streaming data format.
0-HW STREAMING
DISABLED

1-ADC
4-CP_ADC_CQ*

<enableSW>
0 - Disable user data
(SW session)
1 - Enable user data
(SW session)

<enableHeader> should
be set to 1 when this
field is enabled.

<subFrameldx>
subframe Index

<enabled>
0-Disabled
1-Enabled

<chirpOldx>

BPM enabled:

If BPM is enabled in
previous argument, this
is the chirp index for the
first BPM chirp. It will
have phase 0 on both
TX antennas (TXA+,
TXB+). Note that the
chirpCfg command for
this chirp index must
have both TX antennas
enabled.

BPM disabled:

If BPM is disabled, a
BPM disable command
(set phase to zero on
both TX antennas) will
be issued for the chirps
in the range [chirpOldx..
chirplldx]

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

supported

supported

CP_ADC_CQ is not yet supported
on xwr68xx device/RadarSS

When choosing CP_ADC_CQ,
please ensure that
CQRxSatMonitor and
CQsSigimgMonitor commands are
provided with appropriate values
and these monitors are enabled
using analogMonitor command.

supported

For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

supported

This feature cannot be set to
enabled xwr68xx demo as it is not
yet supported in xwr68xx RadarSS.

any value as per mmwavelink
doxygen but corresponding
chirpCfg should be defined

w3 TexAs INSTRUMENTS

30



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

<chirplldx> any value as per mmwavelink
doxygen but corresponding
BPM enabled: chirpCfg should be defined

If BPM is enabled, this is
the chirp index for the
second BPM chirp.It will
have phase 0 on TXA
and phase 180 on TXB
(TXA+ , TXB-). Note that
the chirpCfg command
for this chirp index must
have both TX antennas
enabled.

BPM disabled:

If BPM is disabled, a
BPM disable command
(set phase to zero on
both TX antennas) will
be issued for the chirps
in the range [chirpOldx..

chirp1ldx].
sensorStart sensor Start command to RadarSS and datapath.
Starts the sensor. This function triggers the transmission :
of the frames as per the frame and chirp configuration. By Opthnally, user can supported
default, this function also sends the configuration to the provide an argument
mmWave Front End and the processing chain. ‘doReconfig’
0 - Skip reconfiguration
This is a mandatory command. and just start the sensor
using already provided
configuration.
<any other value> - not
supported
sensorStop sensor Stop command to RadarSS and datapath. supported
Stops the sensor.
If the sensor is running, it will stop the mmWave Front
End and the processing chain.
After the command is acknowledged, a new config can
be provided and sensor can be restarted or sensor can
be restarted without a new config (i.e. using old config).
See 'sensorStart’ command.
This is mandatory before any reconfiguration is
performed post sensorStart.
flushCfg This command should be issued after 'sensorStop'
command to flush the old configuration and provide a
new one.
This is mandatory before any reconfiguration is
performed post sensorStart.
% Any line starting with '%'

character is considered
as comment line and is
skipped by the CLI
parsing utility.

3.4.0.0. 1Table 1: mmWave SDK Demos - CLI commands and parameters

3. 5. Running the prebuilt unit test binaries (.xer4f and .xe674)

Unit tests for the drivers and components can be found in the respective test directory for that component. See section "mmWave SDK - Tl
components" for location of each component's test code. For example, UART test code that runs on Tl RTOS is in mmwave_sdk_<ver>/packages/ti
[drivers/uart/test/<platform>. In this test directory, you will find .xer4f and .xe674 files (either prebuilt or build as a part of instructions mentioned in "Buil
ding drivers/control components"). Follow the instructions in section "CCS development mode" to download and execute these unit tests via CCS.

31

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

4. How-To Articles

4. 1. How to identify the COM ports for mmWave EVM

When the EVM is powered on and connected to Windows PC via the supplied USB cable, there should be two additional COM Ports in Device
Manager. See your mmWave devices' TI EVM User Guide for details on the COM port.

@ Troubleshooting Tip

If the COM ports don't show up in the Device Manager or are not working (i.e. no demo output seen on the data port), then one of these
steps would apply depending on your setup:

1. If you want to run the Out-of-box demo, simple browse to the Visualizer (https://dev.ti.com/mmWaveDemoVisualizer) and follow

the one-time setup instructions.

2. If you are trying to flash the board, using Uniflash tool and following the cloud or desktop version installation instructions would
also install the right drivers for the COM ports.

3. If above methods didnt work and if Tl code composer studio is not installed on that PC, then download and install the standalone
XDS110 drivers.

4. If TI code composer studio is installed, then version of CCS and emulation package need to be checked and updated as per the
mmWave SDK release notes. See section Emulation Pack Update for more details.

After following the above steps, disconnect and re-connect the EVM and you should see the COM ports now. See the highlighted COM ports in the Fig
ure below

4 ' Ports (COM & LPT)
%" Communications Port (COM1)
'Y ECP Printer Port (LPT1)
15¥ XDS110 Class Application/User UART (COM25)
T2¥ XDS110 Class Auxiliary Data Port (COM26)

4.1.0.0. 1Figure 3: mmWave EVM PC Connectivity - Device Manager - COM Ports

1. COM Port

Please note that the COM port numbers on your setup maybe different from the one shown above. Please use the correct COM port
number from your setup for following steps.

4. 2. How to flash an image onto mmWave EVM
You will need the mmWave Device TI EVM, USB cable and a Windows/Linux PC to perform these steps.
1. Setup the Booster Pack EVM for Flashing
Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumper/switch locations (See "Sense-on-Power

(SOP) Jumpers" section in mmWave device's EVM user guide). To put the EVM in flashing mode, power off the board and either place
jumpers on pins marked as SOP2 and SOPO or toggle SOP0O and SOP2 switches to ON .

SOP2 SOP1 SOPO Bootloader mode & operation
jumper jumper jumper
/switch /switch /switch

32

w3 TexAs INSTRUMENTS


https://confluence.itg.ti.com/download/attachments/244390028/Device_Manager.png?version=1&modificationDate=1563763133000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/Device_Manager.png?version=1&modificationDate=1563763133000&api=v2
https://dev.ti.com/mmWaveDemoVisualizer
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

0 0 1 Functional Mode

Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches
the control to it

1 0 1 Flash Programming Mode

Device Bootloader spins in loop to allow flashing of user application to the serial flash.

2. Procure the Images
For flashing XWR1xxx devices, Tl Uniflash tool should be used. Users can either use the cloud version available at https://dev.ti.com/uniflash/
or download the desktop version available at http://www.ti.com/tool/UNIFLASH. Detailed instructions on how to use the GUI are described in
the Uniflash document " UniFlash User Guide for mmWave Devices " located at http://processors.wiki.ti.com/index.php/Category:
CCS_UniFlash. This document talks about the steps from the perspective of desktop GUI but the flashing steps (except for installation)
should apply for cloud version as well. For the SDK packaged demos and ccsdebug utility, there is a bin file provided in their respective
folder: <platform>_<demo|ccsdebug>.bin which is the metalmage to be used for flashing. The metalmage already has the MSS, BSS
(RADARSS) and DSS (as applicable) application combined into one file. These bin files can be selected in Uniflash based on the working
mode. Users can use these instructions to flash the metalmage of their custom demo as well.
a. For demo mode, mmwave_sdk_<ver>\tidemo\<platform>\mmw\<platform>_mmw_demo.bin should be selected.
b. For CCS development mode, mmwave_sdk_<ver>\ti\ utils\ccsdebug\<platform>_ccsdebug.bin should be selected.
3. Flashing procedure

Power up the EVM and check the Device Manager in your windows PC. Note the number for the serial port marked as "XDS110 Class
Application/User UART" for the EVM. Lets say for this example, it showed up as COM25. Use this COM port in the Tl Uniflash tool. Follow
the remaining instructions in the " UniFlash v4 User Guide for mmWave Devices " to complete the flashing.

4. Switch back to Functional Mode

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumpers (See "Sense-on-Power (SOP) Jumpers"
section in mmWave device's EVM user guide). To put the EVM in functional mode, power off the board and remove jumpers from "SOP2" pin
and leave the jumper on "SOPQ" pin or toggle SOPO switch to ON and SOP2 switch to OFF.

4. 3. How to erase flash on mmWave EVM

1. Setup the Booster Pack EVM for flashing as mentioned in step 1 of the section: How to flash an image onto mmWave EVM
2. Follow the instructions in " UniFlash v4 User Guide for mmWave Devices " section "Format SFLASH Button".
3. Switch back to Functional Mode as mentioned in step 4 of the section: How to flash an image onto mmWave EVM

4. 4. How to connect mmWave EVM to CCS using JTAG

Debug/JTAG capability is available via the same XDS110 micro-USB port/cable on the EVM. Tl Code composer studio would be required for
accessing the debug capability of the device. Refer to the release notes for TI code composer studio and emulation pack version that would be
needed.

4. 4. 1. Emulation Pack Update

Refer to the mmWave SDK release notes for the emulation pack version that would be needed within CCS to connect to the EVM. Check if that
particular or its later version of "TI Emulators" is available within your CCS installation. If you have an older version on your system, refer to CCS help
on how to update software packages within CCS.

4. 4. 2. Device support package Update

To create the ccxml file for connecting to the EVM, you will need to first update the device support package within CCS. Refer to the mmWave SDK
release notes for the device support package version that would be needed within CCS to connect to the EVM. Check if that particular or its later
version of "mmWave Radar Device Support" is available within your CCS installation. If you have an older version on your system, refer to CCS help
on how to update software packages within CCS.

4. 4. 3. Target Configuration file for CCS (CCXML)

4.4, 3. 1. Creating a CCXML file

Assuming you have updated the device support package and Emulation pack as mentioned in the section above, follow the steps mentioned below to
create a target configuration file in CCS.

. If your CCS does not already show "Target Configurations" window, do View->Target Configurations

. This will show the "Target Configurations" window, right click in the window and select "New Target Configuration"

. Give an appropriate name to the ccxml file you want to create for the EVM

. Scroll the "Connection" list and select "Texas Instruments XDS110 USB Debug Probe", when this is done, the "Board or Device" list will be
filtered to show the possible candidates, find and choose the mmWave device (AWR or IWR) of interest and check the box. Click Save and
the file will be created.

A WNPF

33

w3 TexAs INSTRUMENTS


https://dev.ti.com/uniflash/
http://www.ti.com/tool/UNIFLASH
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

Basic

Step 1. Select the right probe

General Setup

Advanced Setup
This section describes the general configuration about the target,
Connection Texas Instrurnents XD5110 USE Debug Prabe - Target Configuration: lists the configuration options for the target,
Board or Device e S - o
m SIEI] 2 T}'I]E IWH tn ﬁltﬂp Save Configuration
[T Awvp1443
ANiR1642
[T MR1443 i
B MRLse Step 3: Select the correct mmWave DEVICE  Test Connection
To test a connection, all changes must have been saved, the
configuration file contains no errors and the connection type supports this function,
Test Connection
Alternate Com munication
Uart Communication -
ANR1642 rrmWave Radar -

To enable host side {i.e, PC) configuration necessary to facilitate data
communication over UART, target application needs to include a monitar
implermentation. Please check example project in TI Resource Explorer. If your
target application leverages TI-RTOS, then please check documentation on how to
enable Uart Monitor module,

Mote: Support for mare devices may be available from the update manager,

To add a portin the target application for Uart Monitor, click the Add button.

To remowve a portin the target application for Uart bMaonitor, select the portto be
rernaved and click the Rernove button,

| Add

Basic | Advanced | Source

4.4.3. 1. 1Figure 4: Creating a mmWave device CCXML in CCS

4. 4. 3. 2. Connecting to mmWave EVM using CCXML in CCS

Follow steps in above section to create a ccxml file. Once created, the target configuration file will be seen in the "Target Configurations" list and you
can launch the target by selecting it and with right-click select the "Launch Selected Configuration" option. This will launch the target and the Debug
window will show all the cores present on the device. You can connect to the target with right-click and doing "Connect Target".

%5 Debug 2
a we awrlfxoccxml [Code Composer Studio - Device Debugging]
a4 32 Group 1
;ﬁ’ Texas Instrurments ¥XD5110 USE Debug Probe_0/CAT4 0 (Disconnected : Unknown)
X@ Texas Instrurments XD 5110 USB Debug Probe_0/Cortex_R4 0 (Disconnected : Unknown)

4. 4. 3. 2. 1Figure 5: Connecting to mmWave Device in CCS

w3 TexAs INSTRUMENTS :



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

4. 5. Developing using SDK

4.5. 1. Build Instructions

Follow the mmwave_sdk_release_notes instructions to install the mmwave_sdk in your development environment (windows or linux). All the tools
needed for mmwave sdk build are installed as part of mmwave sdk installer.

4.5. 2. Setting up build environment

4.5. 2. 1. Windows

1. Create command prompt at <mmwave_sdk_<ver> install path>\packages\scripts\windows folder. Under this folder you should see a setenv.
bat file that has all the tools environment variables set automatically based on the installation folder. Review this file and change the few build
variables shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the
standard installation process was followed.

Build variables that can be modified (if needed) in setenv.bat

@REM

@REM # Buil d variables (to be nodified based on build need)

@REM

@REM Sel ect your device. (ptions (case sensitive) are: aw 14xx, |w 14xx, aw 16xx, iw 16xx, aw 18xx, iw 18xx,
i wr 68xx

set MWAVE_SDK_DEVI CE=i wr 68xx

@REM | f downl oad via CCS is needed, set below define to yes el se no
@REM yes: Qut file created can be | oaded using CCS.

@REM Binary file created can be used to flash

@REM no: Qut file created cannot be |oaded using CCS.

@EM Binary file created can be used to flash

@REM (addi tional features: wite-protect of TCMA etc)

set DOWNLOAD_FROM CCS=yes

@REM | f using a secure device this variable needs to be updated with the path to nmave_secdev_<ver> fol der
set MMWAVE SECDEV | NSTALL_PATH=

@REM | f using a secure device, this variable needs to be updated with the path to hsinage.cfg file that
@REM has custoner specific certificate/key information. A sanple hsinmage.cfg file is in the secdev package
set MWAVE_SECDEV_HSI MAGE_CFG=9%WWAVE_SECDEV | NSTALL_PATHY hs_i mage_cr eat or/ hsi mage. cf g

Refer to the MMWAVE-SECDEYV User Guide to setup environment needed for builds for high secure (HS) devices. For non secure
devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.bat file then most probably the wrong installer was used (Linux installation being
compiled under Windows)

set MMWAVE_SDK_TOOLS_INSTALL_PATH= _MMWAVE SDK_TOOLS INSTALL PATH _

In a proper installation the __ MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

2. Run setenv.bat as shown below.

Run setenv.bat
set env. bat
This should not give errors and should print the message "mmWave Build Environment Configured". The build environment is now setup.

4.5.2.2. Linux

35

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

1. Open aterminal and cd to <mmwave_sdk_<ver> install path>/packages/scripts/unix. Under this folder you should see a setenv.sh file that
has all the tools environment variables set automatically based on the installation folder. Review this file and change the few build variables
shown below (if needed) and save the file. Please note that the rest of the environment variables should not be modified if the standard
installation process was followed.

Build variables that can be modified (if needed) in setenv.sh

# Build variables (to be nodified based on build need)

@REM Sel ect your device. (ptions (case sensitive) are: aw 14xx, |w 14xx, aw 16xx, iw 16xx, aw 18xx, iw 18xx,
iwr 68xx
set MMAVE_SDK_DEVI CE=i wr 68xx

# | f downl oad via CCS is needed, set bel ow define to yes el se no
# yes: Qut file created can be |oaded using CCS.

# Binary file created can be used to flash

# no: Qut file created cannot be |oaded using CCS.

# Binary file created can be used to flash

# (additional features: wite-protect of TCMA etc)

export DOMLOAD_FROV CCS=yes

# If using a secure device, this variable needs to be updated with the path to nmmave_secdev_<ver> fol der
export MMAAVE_SECDEV | NSTALL_PATH=

# |If using a secure device, this variable needs to be updated with the path to hsinage.cfg file that
# has custoner specific certificate/key information. A sanple hsinage.cfg file is in the secdev package
export MMMAVE_SECDEV_HSI MAGE_CFG=${ MMMAVE_SECDEV | NSTALL_PATH}/ hs_i mage_cr eat or/ hsi nage. cf g

Refer to the MMWAVE-SECDEYV User Guide to setup environment needed for builds for high secure (HS) devices. For non secure
devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.sh file then most probably the wrong installer was used (Windows installation being
compiled under Linux)

export MMWAVE_SDK_TOOLS_INSTALL_PATH= _MMWAVE_SDK_TOOLS INSTALL PATH__

In a proper installation the __ MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual installation
folder path

2. Assuming build is on a Linux 64bit machine, install modules that allows Linux 32bit binaries to run. This is needed for Image Creator binaries

sudo dpkg --add-architecture i 386

3. Install mono. One of the Image Creator binaries (out2rprc.exe) is a windows executable that needs mono to run in Linux environment

sudo apt-get --assune-yes install nono-conplete
4. Run setenv.sh as shown below.

Run setenv.sh

source ./setenv. sh

This should not give errors and should print the message "mmWave Build Environment Configured". The build environment is now setup.

4.5. 3. Building demo

To clean build a demo, first make sure that the environment is setup as detailed in earlier section. Then run the following commands. On successful
execution of the commands, the output is <demo>.xe* which can be used to load the image via CCS and <demo>.bin which can be used as the binary
in the steps mentioned in section "How to flash an image onto mmWave EVM".

4. 5. 3. 1. Building demo in Windows

36

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

Building demo in windows

REM Fi || <device type> with appropriate device that supports denp in a particul ar rel ease
cd WMAAVE_SDK | NSTALL_PATHY t i / denp/ <devi ce type>/ nmw

REM O ean and build
gmake cl ean
gmake all

REM I ncrenent al build
gmake al |

REM For exanple to build the nmw denp for iw 68xx

cd 9MIAVE_SDK | NSTALL_PATH% t i / denp/ xwr 68xx/ nw

gmake cl ean

gnmake al |

REM This will create xw 68xx_mmw denp_nss. xer4f & xwr 68xx_nmw _denp. bin bi nari es
REM under 9MAAVE_SDK | NSTALL_PATHY% t i / deno/ xwr 68xx/ nmw f ol der

4. 5. 3. 2. Building demo in Linux

Building demo in linux

# Fill <device type> with appropriate device that supports denp in a particul ar rel ease
cd ${ MMMAVE_SDK_| NSTALL_PATH}/ ti/ denp/ <devi ce type>/ nmw

# O ean and build
gmake cl ean
grmake al |

# Increnmental build
gmake all

# For exanple to build the nmw denp for iw 68xx

cd ${ MMMAVE_SDK | NSTALL_PATH}/ ti / deno/ xwr 68xx/ nmw

gnmake cl ean

gmake all

# This will create xw 68xx_nmw denp_nss. xer4f & xwr 68xx_nmw _deno. bi n bi nari es
# under ${ MMAVE_SDK_| NSTALL_PATH}/ t i/ denp/ xwr 68xx/ nmw f ol der

1 Each demo has dependency on various drivers and control components. The libraries for those components need to be available in their
respective lib folders for the demo to build successfully.

4.5, 4. Advanced build

The mmwave sdk package includes all the necessary libraries and hence there should be no need to rebuild the driver, algorithms or control
component libraries. In case a modification has been made to any of these modules then the following section details how to build these components.

4. 5. 4. 1. Building drivers/control/alg components

To clean build driver, control, datapath or alg component and its unit test, first make sure that the environment is setup as detailed in earlier section.
Then run the following commands

37

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

Building component in windows

cd WMNAVE_SDK | NSTALL_PATHY4 t i / <conponent _pat h_under_ti >
gmake cl ean
gmake al |l

REM The conmand will create the following file

REM I'i b<conponent >_<devi ce_t ype>. aer4f |ibrary under ti/<conponent_path_under_ti>/1ib fol der

REM | f the nodul e has unit test, it will also create

REM <devi ce_t ype>_<conponent >_nss. xer4f unit test binary under ti/<conponent_path_under_ti>/test/<device_type>
fol der

REM | f the device has a DSP and the driver supports DSP then the command will also create

REM |'i b<conponent >_<devi ce_t ype>. ae674 |ibrary for DSS under ti/<conponent_path_under_ti>/1ib fol der
REM | f the nodul e has unit test, it will also create

REM <devi ce_t ype>_<conponent >_dss. xe674 unit test binary for DSS under ti/<conponent_path_under_ti>/test
/ <devi ce_type> fol der

REM Above paths are rel ative to 9WWMAVE _SDK | NSTALL_PATHY%

REM For exanpl e to build the adcbuf |ib and unit test
cd WMAVE_SDK | NSTALL_PATH% t i/ dri ver s/ adcbuf

gmake cl ean

gmake all

REM For exanple to build the mmavelink |ib and unit test
cd 9WMAVE_SDK | NSTALL_PATH% t i / cont rol / mmavel i nk

gmake cl ean

gmake all

REM For exanple to build the aoaproc dpu Iib

cd 9WMIAVE_SDK | NSTALL_PATH% t i / dat apat h/ dpc/ dpu/ aoapr oc
gnmake cl ean

gmake all

REM Addi tional build options for each conponent can be found by invoking nmake hel p
gmake hel p

Building component in linux

cd ${ MMMAVE_SDK | NSTALL_PATH}/ t i/ <conponent _pat h_under_ti >
gmake cl ean
gmake al |l

# The conmand will create the following file

# I'i b<conponent >_<devi ce_t ype>. aer4f library under ti/<conponent_path_under_ti>/1ib folder

# If the nodule has unit test, it will also create

# <devi ce_t ype>_<conponent >_nss. xer4f unit test binary under ti/<conponent_path_under_ti>/test/<device_type> fol der
# |If the device has a DSP and the driver supports DSP then the conmand will also create

# i b<conponent >_<devi ce_t ype>. ae674 |ibrary for DSS under ti/<conponent_path_under_ti>/1ib fol der

# If the nodul e has unit test, it will also create

# <devi ce_t ype>_<conponent >_dss. xe674 unit test binary for DSS under ti/<conponent_path_under_ti>/test

/ <devi ce_type> fol der
# Above paths are relative to ${ MMMAVE _SDK | NSTALL_PATH}/

# For exanple to build the adcbuf Iib and unit test
cd ${ MMMAVE _SDK | NSTALL_PATH}/ ti/dri ver s/ adcbuf
gmake cl ean

gmake al |l

# For exanple to build the nmmavelink |ib and unit test
cd ${ MMMAVE_SDK | NSTALL_PATH}/ ti/control / nmwavel i nk
gmake cl ean

grmake al |

# For exanple to build the aoaproc dpu lib

cd ${ MMMAVE_SDK_| NSTALL_PATH}/ ti / dat apat h/ dpc/ dpu/ aoapr oc

gmake cl ean

gmake all

# Additional build options for each conponent can be found by invoking make hel p
grmake hel p

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

example output of make help for drivers and mmwavelink

KA A AR AR A A A A A A A A A A A AR A AR A A A A A AR AR A A A AR AR A A A KA A A A A A A

* Makefile Targets for the ADCBUF

cl ean -> dean out all the objects

drv -> Build the Driver only

drvd ean -> dean the Driver Library only

test -> Builds all the unit tests for the SOC
test d ean -> Oeans the unit tests for the SOC

KA A AR AR A A A A A A A A A A A AR A AR A AR A AR AR A A AR AR A A A AR A A A A A A A A

example output of make help for mmwave control and alg component

KA A A A AR A AR A AR A AR A A AR A AR A A AR A AR A AR A A A R A A AR A A AR A A A A A A A A A A

* Makefile Targets for the nmdve Control

cl ean -> dean out all the objects
lib -> Build the Core Library only
1'i bd ean -> dean the Core Library only
test -> Builds all the Unit Test
test d ean -> Oeans all the Unit Tests

R s T

1 Please note that not all components are supported for all devices and not all components have unit tests. List of supported components for
each device is listed in the Release Notes.

4.5. 4. 2. "Error on warning" compiler and linker setting

By default, the SDK build uses "—emit_warnings_as_errors" option to help users identify certain common mistakes in code that are flagged as warning
but could lead to unexpected results. If user desires to disable this feature, then please set the flag MMWAVE_DISABLE_WARNINGS_AS_ERRORS
to 1 in the above mentioned setenv.bat or setenv.sh and invoke that file again to update the build environment.

39

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

5. MMWAVE SDK deep dive

5. 1. System Deployment
A typical mmWave application would perform these operations:

® Control and monitoring of RF front-end through mmaveLink

® Transport of external communications through standard peripherals

® Some radar data processing using DSP

Typical customer deployment for mmWave sensor is shown in Figure 6:

. Optional high level control from remote entity

o 0oTo

. Application code for MSS and DSP-SS is downloaded from the serial flash memory attached to the mmWave device (via QSPI)

. Sends low speed data output (objects detected) to remote entity
. Optional high speed data (debug) sent out of device over LVDS

External Processor/Controlling entity

A 4

Cptional High Level Control

mmWave Sensor Data
(point cloud, tracked objects, etc)

|

mmWave Device

mmWaveLink
mmWave API

M Input/output over SPI/CAN/etc to external (optional)

Datapath Control

DPM

DPUs# DPU#2 DPU#3

Data Processing Chain #1

mmWave
Front End

RadarSS Firmware

App Post
processing

e Ly oy
processing 2

Data Processing Chain #2

mmWave application (MSS or DSS or MSS+DSS)

5. 1. 0. 0. 1Figure 6: Autonomous mmWave sensor (Standalone mode)

The above deployment can be realized using the mmWave SDK and it components in a layered structure as shown below:

mmWave Application

=% Point Cloud

é Configuration Profile

E)atapath I?’rooessing Chain (s)

mmWave
API

Datapath
ETETN

DataPath
EDMA

DataPath

Interface mmWave APls

RTOS Drivers +

OSAL
IPC

mmWave Link

08, Drivers, Algorithms

5.1.0. 0. 1Figure 7: SDK Layered block diagram

w3 TexAs INSTRUMENTS

40



https://confluence.itg.ti.com/download/attachments/244390028/SDK_architecture.png?version=1&modificationDate=1563763136000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

5. 2. Typical mmWave Radar Processing Chain

Following figure shows a typical mmWave Radar processing chain that accepts ADC data as input from mmWave Front End and then performs Range
and Doppler FFT followed by non-coherent detection using CFAR. Finally angle is estimated using 3D FFT and the detected points represent the point
cloud data. The point cloud data can then be post processed using higher layer algorithms such as Clustering, Tracking, Classification to represent
real world targets.

Detection
mmWave ' Radar data . Range L3 b Doppler . L3 > ' Angle
Front End capture FFT ' memory FFT memory E:r:)%r:e_re nt) estimation

A

ooy b Tting e ocsin Jrees

Further
Processing
+ Control

5. 2. 0. 0. 1Figure 8: Typical mmWave radar processing chain

Using mmWave SDK the above chain could be realized as shown in the following figure for devices with HWA or DSP as processing nodes. In the
following figure, green arrow shows the control path and red arrow shows the data path. Blue blocks are mmWave SDK components and yellow
blocks are custom application code. The hierarchy of software flow/calls is shown with embedding boxes. Depending on the complexity of the higher
algorithms (such as clustering, tracking, etc) and their memory/mips consumption, they can either be partially realized inside the mmWave device or
would run entirely on the external processor.

External Processor/Controlling entity

w
. . "] mm\Wave Sensor Data
Optional High Level Control | (paint cloud. tracked objects, etc)

mmWave Device R T T T L ET LR LT PR T EEP TR PR
Input/output over SPI/CAN/etc to external (optional) .

:---------------------------------------------------------------------------------------------i‘

mmWaveLink
mmWave API|

Datapath Control

DPM

LECETTTTT R TS

Clustenngi
App Post Classification F
processing :

Range Doppler

Detection Processing Chain

mmWave
FrontEnd

RadarSS Firmware Higher Processing Chain

mmWave application (MSS or DSS or MSS+DSS)

5. 2. 0. 0. 1Figure 9: Typical mmWave radar processing chain using mmWave SDK components

Each of the mmWave device offers different processing nodes to realize the mmwave processing. XWR14xx has HWA engine, XWR16xx has DSP
C674x core, X\WR68xx and XWR18xx have HWA+DSP(C674x). For devices with multiple processing nodes, the mmWave detection processing chain
can exploit them as needed for performance and scalable reasons. Shown below is an example of detection processing chain that uses various data
processing units (DPUs) to perform the typical mmwave processing upto the point cloud. The mmwave data representation in mmWave device
memory forms an interface layer between the various DPUs. Each DPU can be realized independently using HWA or DSP processing node - the
choice is either driven by usecase or availability of that processing node on a given mmWave device. The various mmWave SDK components shown
below are described in the section "mmWave SDK - Tl components" below.

41

w3 TexAs INSTRUMENTS


https://confluence.itg.ti.com/download/attachments/244390028/typical_mmwave_processing_chain.png?version=1&modificationDate=1563763141000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/image2016-9-30%2010%3A27%3A32.png?version=1&modificationDate=1563763141000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

CFAR_option

3D_option
HWA or DSP HWA or DSP

2D_option
HWA or DSP

Doppler Processing

using HWA

Range Processing
using HWA
ADC

ES:;:} T EDMA o Range Processing -
using DSP

CFAR Detection AoA processing
using HWA using HWA
CFAR " Point

RadarCube Formats

° n s I T - * —| detecti - -
° Doppler Processing Matrix CFAR Detecion on List AoA Processing
using DSP using DSP using DSP

Range DPU Doppler DPU CFAR DPU AoA DPU
Detection Processing Chain

High Speed
> Transfer Out of
the device

5. 2. 0. 0. 1Figure 10: Scalable data processing chain using mmWave SDK

Please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder for more details and example
code on how this chain is realized using mmWave SDK components.

5. 3. Typical Programming Sequence

The above processing chain can be split into two distinct blocks: RF control path and data path.

5. 3. 1. RF Control Path

The control path in the above processing chain is depicted by the following blocks.

42

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

mmWave
Front End

BSS Firmware

Radar
control

mmWavelLink +
Mailbox driver

mmWave API

mmWave Application

5. 3. 1. 0. 1Figure 11: Typical mmWave radar control flow

Following set of figures shows how an application programming sequence would look like for setting up the typical control path - init, config, start. This

is a high level diagram simplified to highlight the main software APIs and may not show all the processing elements and call flow. For an example

implementation of this call flow, please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder.

5. 3. 1. 1. Single RF Control (MSSRADARSS or DSSRADARSS)

In this scenario, the RF control path runs on either Master subsystem (Cortex-R4F) or DSP subsytem (C674x) and the application can simply call the

mmwave APIs in the SDK in isolation mode to realize most of the functionality.

w3 TexAs INSTRUMENTS

43



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

—

oy

Send Message
ACK

RL_RF_AE_INITCALIBSTATUS

MSS Application mmWave API Drivers mmWave FE
(]
- SOC_init =2 &~ Power Up RF/Bist S5 = =8
- MMWave_init —% : .
: : Drivers init }:
[] . ; ] []
. . rDevicePowerOn  —>¢ . RF Bootup
L} L} L}
L} L} L}
L} L} -
L} L} L}
L} L} -
L} L] L}
- E&———  PowerUp Complete = -
= - HYA, init = > .
= - - . u ~ 8 L]
E - EDMA |n.|.- " i: .
w - ADCBUF init . > :
© - SPI/CAN init - > .
L} L} L} L}
- MMWave_sync —g . . a
L] L} L} L}
. IvIvyave_open _:":— <init time Calib APIs —># . "
. . = SendMessage —>=—— Send Message —>:
L} L} B o mmme APl @ ceemmmmeed e AL e e ] L}
. s rSetChannelConfig ACK -_K‘ ACK -
" " — Send Message %:_ Send Message %i
L] L] L]
O ACK +====m== o< -mmm- ACK -====-- .
. — riSetAdcOutConfig —:::< . .
- - a#—— SendMessage —w——— Send Message —
: . R —— P — . ACK ------- .
. =— rISetLowPowerMode —» u .
. Config f—— SendMessage %‘r Send Message —&
] L] L) ]
. , nelm—m - ACK r=mmmmmm W m e ACK  ======- n
. riRfinit .
L}
L]
L}
L}
L]
L}
L]

5. 3. 1. 1. 1Figure 12: mmWave Isolation mode: Detailed Control Flow (Init sequence)

w3 TexAs INSTRUMENTS

44



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MSS Application mmWave API mmWWaveLink Drivers mmWWave FE
L
L} L] L
" L} -
L} L} L} L]
s—  MMWave_config 9,—' rISetProfileConfig  —>u .
. . i——— SendMessage —F—— Send Message %:
L] L] B e A o o ! B e AP @ ee———— -
. L — riSetChirpConfig —>¢ ACK f< ACK .
. . =—— Send Message 9:— Send Message %:
L} L}
. . MG ACK r=mm===-BgCmmenn- ACK ======= -
- L — rSetFrameConfig %E< E< .
. . — Send Message %:— Send Message —m
. = MG ACK m====--tl-mm-- ACK ====---
L] L]
L] L]
L] L]
— il :
O] |———————ADCBUF config >,
= -“ g
0 & .
w ) L]
2= .
2 SPI/CAN config >
S ——

5. 3. 1. 1. 2Figure 13: mmWave Isolation mode: Detailed Control Flow (Config sequence)

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MSS Application mm\Wave API mmWWaveLink mmWave FE
L
L] L}
— MMWave_start %: " " .
L} L} L} L} [ ]
L} L} L] L} [ ]
L] L}
. e—rRRunTimeCalib—a . .
. . Config i—— Send Message %:— Send Message %{
a a L — ACK ======= - ACK +=mmmm-= -
L} L} L} L} [ ]
L} L} L] L} [ ]
L] [ [] [ ™
L] [ [ ] [ ] ]
. =—  rSensorStart —> . .
" " w—— Send Message —e—— Send Message —n
L] [ [ ] [ ] ]
. . G- ACK ==----- ag------ ACK ===mmm- .
L] [ [] [ ™
L] [ [ ] [ ] ™
L} L} L} L} [ ]
L} L} L] L} [ ]
L] [ [] [ -
L] [ [ ] [ ] -
L} L} L} L} [ ]
L} L} L] L} [ ]
L] [ [] [ -
L] [ [ ] [ ] -
L} L} L} L} [ ]
L} L} L] L} [ ]
L} L} L] L} [ ]
L] [ [ ] [ ] ™
L] L} L] " [ ]
L} L} L} L} [ ]
L} L} L] L} [ ]
L] [ [ ] [ ] "
L] L} L] " [ ]
L} L} L} L} [ ]
L} L} L] L} [ ]
L] [ [ ] [ ] "
L] L} L] " [ ]
L} L} L} L} [ ]
L] L}
—  MMWave stop —:",: n u .
L] L} L] " -
L} L} L} L} [ ]
L] L}
. -— nSensorStop  —» " s
. . i—— SendMessage ——§—— SendMessage —>4
L} L} L] L} [ ]
. . € ACK < ACK -
= = . . I -

5. 3. 1. 1. 3Figure 14: mmWave Isolation mode: Detailed Control Flow (start sequence)

5. 3. 1. 2. Co-operative RF control (MSS+DSS)<->RADARSS)

In this scenario the control path can runs in "co-operative” mode where RF control APIs can be interchangeably called by either domains (but the
sequence of API needs to be maintained). One such deployment could have the RF init and config initiated by the MSS and the start is initiated by the
DSS after the data path configuration is complete. In the figures below, control path runs on MSS entirely and MSS is responsible for properly
configuring the RADARSS (RF) and DSS (data processing). The mmWave unit tests provide a sample implementation of this co-operative mode.

46

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MSS Application mmWave API mmWaveLink Drivers Drivers mmWave API D,SS,
Application
——— SOC_int —>= PowerUp RF/BistSS — = " . . H
. " .
— MMWave_int —>] H H E—MMWave_init—a
" | — Drivers init —_— . » - =
" P ]
: - riDevicePowerOn  —>% u #— Drivers init — H
. (] . . . .
" . - RF Bootup - - ]
. . - - - .
. . . . . .
. . . . . -
. . . . . -
. . " " " .
. . - - - H
. . - - - H
. . - H - - H
: - " H H H :eMMWave execute—=
. & Power Up Complete - - - =
. " - ] - . H
«© . MMWave_sync T . T T >1
. . - . . . .
. - . . . . .
: S : : : : : .
MMWave_open " =
. 'w—<init time calibration>— - . = = =
H . —— SendMessage —f—— Send Message 9: . EDMA init H E
. H B ACK h ACK H init——r
H 2— riSetChannelConfig —>% . . = DCBUFir . %
" . w——  SendMessage —>»——— Send Message — - - a
. . . - . - -
ACK ACK
. — SetAdcOutConfig :\ E\ H E E -
H . w—— SendMessage —>#—— Send Message =0 . - H
. . . - . - - H
H :—rIApananwerCnnﬁen ACK " ACK . H H a
H . g +—— Send —5§——  SendMessage —>2 . . .
. . . M . . . . .
ACK ACK "
H — Rt ——a . H H H H
' H +—— Send —5F——  SendMessage —>2 H H H
" = " Me u = " " .
" ACK ACK " " .
: (m] : : d : : :
" < RL_RF_AE_INITCALIBSTATUS = = =
. - | = - . . .
. - . " . . . .
- - . . - - . -

5. 3. 1. 2. 1Figure 15: mmWave Co-operative Mode: Detailed Control Flow (Init sequence)

MES Application mmiawe AR e A5 Ap;?lifaslion

. . . . . .

. . " " . "
" "

H H H H -eMMWaveiexecute_ H

" . . . .

" . . . .

" . . . .

" . . . .

=— MMWave_config 9.—' fSetProfileConfig —u H H

H ——— SendM —=>t Send M H

. . . .

E fSetChirpConfig —>y ~ ACK H ACK H

. —_— Send Message 9:— Send Message :

. B ACK = ACK -

1— rSetFrameConfig —>¢ H H

s=——— Send Message %:— Send Message .

.

ACK L ACK .

IPC send (CONFIG) .

—CONFIG mesaage%:

DCBUF config

5. 3. 1. 2. 2Figure 16: mmWave Co-operative Mode: Detailed Control Flow (Config sequence)

47

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MSS Application mmWave API mmWaveLink Drivers mmWave FE Drivers mmWave API Dt
Application
. .
—

—  MMWave_start .6M MWave_execute——
- -

=—START message—>
.

IPC send (START)

.
—rRfRunTimeCalib—§

" Config w—— Send Message 9— Send Message 9-
. - -
" ACK ACK
. -
"— rSensorStat —4 1
=—— SendM — Send M
ACK ACK

<—WMWave_execute—

---||||||||||-------=----
Process
START
Message

=

=
=
2
5
o
5

S

Wespsasausnnsnaannnannunnnnnnnnnnnnns

IPC send (STOP)

—

—  rlSensorStop

—_— Send Message ——p——— SendMessage —»

-
]
= ACK ACK .

------L
=4
©
3
@
o
@
]
\‘L

0CESS
STOP
Message
T

o

5. 3. 1. 2. 3Figure 17: mmWave Co-operative Mode: Detailed Control Flow (Start sequence)

5. 3. 2. Data Path

The mmwave detection processing can be split into following layers of application code, control/management layer to manipulate the data processing
elements, processing chain that ties up individual modules to create a data flow and the low level data processing modules and interfaces.

mmWave Application

DataPath Manager (DPM)

Datapath Processing Chain (DPC)

Range StaticClutter Doppler

DPU Removal DPU DPU CFAR DPU AoA DPU

DataPath EDMA (DPEDMA) DataPath Interface (DPIF)

5. 3. 2. 0. 4Figure 18: Typical mmWave Detection Processing Layers

mmWave devices present a few options on how the data processing layers can be realized using the various control/processing nodes within the
device. To allow ease of programming across these deployment types, data path manager (DPM) presents a simplified API structure to the application
while hiding the complexity of inter task and inter processor communications. As can be seen from the following figures, application would just need to
call the various DPM APIs to control the processing chain (seen as function calls in 'blue' in the ladder diagrams below) and re-act to the outcome of
these APIs in the report callback. Data processing chains (DPCs) also present a standardized API structure to the application via DPM and
encapsulate the realization of the data flow using data processing units (DPUs) within while presenting simple IOCTL based interface to configure and
trigger the data flow. Based on the usecase and the mmWave device hardware capabilities, application can choose from one of the following
deployments:

= DPC runs on the same core as control core and the application can control the DPC via DPM in local mode. (See local domain config and pro
cessing figures below)

48

w3 TexAs INSTRUMENTS


https://confluence.itg.ti.com/download/attachments/244390028/datapath_local_config.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_local_start_stop.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_local_start_stop.png?version=1&modificationDate=1563763135000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

= DPC runs on another core which is different from the controlling core and the application can control the DPC via DPM in remote mode. (See
remote domain config and processing figures below)

= DPC is split between two cores and the application can control the DPC via DPM in distributed mode. (See distributed domain config and proc
essing figures below)

The following ladder diagrams show the flow for init, two different forms of config (one initiated on local core and other on remote core), start trigger,
chirps/frame events and stop trigger. The choice of MSS and DSS responsibilities are shown as one of the possible examples - their roles can be
interchanged as per application needs. These ladder diagrams don't show the corresponding MMWAVE/RF control calls to show independence
between RF control and datapath control. Having said that, typical application would follow the following flow for these two form of controls:

" mmWave init and DPM init (order doesn't matter)

® mmWave config and DPM IOCTL for DPC config (order doesn't matter)

= DPM start and then mmWave start (note this is recommended as DPC should be in started state before the real time frame/chirp H/W events
occur due to mmWave start)

" mmWave stop and then DPM stop (note this is recommended as DPC should be stopped after the real time frame/chirp H/W events stop due
to mmWave stop)

5. 3. 2. 1. Data processing flow with local domain control

In this deployment, the core (MSS or DSS) that runs the actual data processing chain (DPC) also controls it. Application calls DPM APIs for init, data
processing IOCTL for configuration, start and stop. DPM reports back status from DPC using the application registered report callback function.
Application provides an execution context (task) for the DPM/DPC to run. DPC provides back the processing results (point cloud, tracked objects, etc)
to the application in this execution context.

MSS Application DPC DPUs

(]
. : HWA/EDMA Init . >t
- - - . n
" DPMInit ——>* . . a
L] - . L} [ ] n
. . DPC Init > DPU#T Init ——> .
L] L] L] [ ] L
H . . DPU#2 Init ——>>= .
. - . . .
. a i—— DPU#n it —>1 .
" - L} n L}
. DPM loctl . . a .
. (Configé1) - DPC loctl (Conf > . :
. _— 1) . .
. . =— DPU#1 Confg —> . .
. . i— DPU#2 Config —> 1§ .
- . " B EDMA/HWA Config  dp-n
L] L] L] [ ] n
" L L} n L}
%~ DPM Report Callback —g =— DPU#n Config — . .
= (NOTIFY_DPC_IOCTL) = : . :
. . . . :
" " L} n L}
L] L] L] [ ] L
" " L} n L}
L] L] L] [ ] n
. DPM loctl ;: . . .
" - n L} n L}
(Config#2) DPC loct! {Config? . .
. . octl Conigh?) >3 poiat config —> :
L] - L] | | L]
. : i— DPU#2 Confg —> o .
. . . == EDMAHWA Config s
L] - L] [ ] n
" - L] n L}
»<— DPM Report Callback —= . DPU#n Canfig . :
+  (NOTIFY_DPC_IOCTL) = . . .
" L ] L} n n
. - . . :
" L] L} n L}
L] L] L] [ ] L

5. 3. 2. 1. 1Figure 19: Data processing flow with local domain control (init/config)

49

w3 TexAs INSTRUMENTS


https://confluence.itg.ti.com/download/attachments/244390028/datapath_remote_config.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_remote_start_stop.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_distributed_config.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_distributed_start_stop.png?version=1&modificationDate=1563763135000&api=v2
https://confluence.itg.ti.com/download/attachments/244390028/datapath_distributed_start_stop.png?version=1&modificationDate=1563763135000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

MSS Application DPC
L]

n L]
L} "
. DPM Start ——> .
n "
. DPM Repart DPC Stat ———>*
— (NOTIFY_DPC .
_STARTED) .
HAW .
Frame M
Ewvent .
HAW .

Chirp =— DPU#1 Process -
"
Events M

"
— DPU#2 Process 7\'

L}
— DPU#n Process J_..'
point cloud results>=———g

?{lllllllllllllllllll

L} "
n L]
L} -
n "
n L]
n "
n L]
L} "
n L]
L} -
n "
n L]
n "
n L]
. DPM Stop ——>u a
L} -
. DPM Report DPC Stop  ——m
(NOTIFY_DPC ™ .
_STOPPED) .

.

:

5. 3. 2. 1. 2Figure 20: Data processing flow with local domain control (start/chirp/frame/stop)

5. 3. 2. 2. Data processing flow with remote domain control

In this deployment, the data processing chain runs on a chosen data core while the control for it exists on the other core. Application code on control
core and data core calls DPM APIs for init and sync'ing with each other. The control core calls data processing IOCTL for configuration, start and stop
APIs. The H/W events are received on the data core. DPM reports back status from DPC using the application registered report callback function on
both control and data cores. DPC provides back the processing results (point cloud, tracked objects, etc) to the data core application code which can
send the result to the control core using DPM send result API.

50

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide

MSS Application

http://www.ti.com
oss App‘ication m ore

L] L]
H ) H . = HWA/EDMA Init =
"—— DPMInit ——n =—— DPMInit —_—>! R . :
DPC It ——>
. . . H "—— DPUE! It —>* H
H a H H H DPUZ Init ——>u H
H H H H H H H
H H H H H H H
H H H H H H H
. . . : "—— DPU#n Init ——>* :
=—— DPMSynch —>= ~— DPMSynch —>>* . . .
L] H < inter core syncE L] L] L]
H H H
H I H H H H H H
H octl a H H H H H
: (Config#1) >: PC : .
H a H H
: : : &~ DPCloctl (Confight) >3 DPU#1 Config —> 8 :
H a H . . > H
DPU#2 Config
H . H . . "= EDMAMWA Config dpm
. - = ~_DPMReport Callback __ % . DPU#n Config —a .
H H .'e(NOT\FY_DF'C_IOCTL}_. H H H
: 'S PC — . . H .
¥ DPM Repert Callback — # . : : . .
»  (NOTIFY_DPC_IOCTL) = H . . H .
. - . DPM loctl . . . H
. . . (Config#2) * DPCloctl (Configs2) > 12 DPU# Config . :
H H H H h > H
H H H H — DPU#2 Confy —> & H
. : . . . == EDMAMHWA Config o
H H H H H H .
. H %~ DPM Repor Callback —* — DPU#n Config —> & .
H M v (NOTIFY_DPC_IOCTL) o H H H
. A IPC - — H H B
%< DPM Report callback —2 H H H H H
H a H H . : .

(NOTIFY_DPC_IOCTL)

5. 3. 2. 2. 1Figure 21: Data processing flow with remote domain control (init/config)

MSS Application

0S5 Applcation m

IPC

DPM Start ——>

DPMReponCallback —— DPC Stat ——>!
{MOTIFY_DPC_

STARTED)

I N 2

DPM Report Callback
<~ (NOTIFY DPC_ IPC
STARTED)

HW
Frame
Event

HW
Chirp
Events

=}
o
o
I
=
0
=]
a
®
I
®

DPU#2 Process —>

®—0 DPU#n Process 9
point cloud results——w

PM sendResulﬁ

?I‘IIIIIIIIIIIIIIIIIIIJ

lé DPM Report Callback -5 IPC

(NOTIFY_DPC_RESULT) «

DPM Report Callback
< (NOTIFY PG
STOPPED)

=]

bl

=

g

S

h-1
IIIII‘J/IIIIIIIII

DPM Report Callback E———1 rC

<~ (NOTFY DPC_
STOPPED)

o

o

3]

@

=

=
.----J’--uu-uu--"

IIIIL

5. 3. 2. 2. 2Figure 22: Data processing flow with remote domain control (start/chirp/frame/stop)

5. 3. 2. 3. Distributed Data processing flow and control

In this deployment, the data processing chain is split across cores along with the control. Application code on both cores call DPM APIs for init and
sync'ing with each other. Either core can call data processing IOCTL for configuration, start and stop APls. DPM reports back status from DPC using
the application registered report callback function on both cores. Partial results from the DPC running on one core can be passed onto the DPC
running on other core using the DPM relay result API. DPC can provide back the final processing results (point cloud, tracked objects, etc) to the same
core's application code which can then send the result to the application running on other core using DPM send result API. Following ladder diagrams
shows just one of the many ways of splitting the DPC across two cores.

51

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

Core#1
Application
.

=]
T
=
ES

y

DRC

o
]
=
w

<
H
8
=

.

DPM loctl
(Config#1)

>t

e

DPC loctl

m DPC _ Part 1

HWA/EDMA Init

Drivers
H
el

Init %_

DPU#1 Init —>

=
.
-
.
.
.
.
.
.
<inter core sync>
.
.

Core#2
Application
.

m DPC _ Paﬂ 2

Drivers
H
el

=]
T
=
w

3
El
=)
=

A

EDMA Init

=]
el
=
E

v

DPC Init —>4.

DPU#2 Init —>

—— DPU#n Init —>

H
H

(Config#1) — DPU#1 Config —> 5
H

EDMAHWA
Canfig

IPC

DPU#2 Config —>

>

EDMA
H Config
= DPU#n Config —>

sssssssssssnn1 0 mmmm

o

L

DPM Report
Callback
(NOTIFY_DPC_
10CTL)

DPM Report
Callback
(NOTIFY_DPC_
10cT)

DPM loctl

(Config#?)

L LIT IV EI TP I ET R PR TR PR

H
—>% DPC lactl (Configé2
H (Configt2) > & 1o ja Config —>

a— DPU#n Config —>

m
=)
=
b3
o
&
El
)
&

IPC
DPU#1 Config —> &

DPC loctl (Config#2) >
—

DPM Report

EDMAHWA
Config

tEEssEEAEEEgEEEEEEEEEEEEnEn

Callback
(NOTIFY_DPC_
loctl)

P
"
"
"
"
"
"

DPM Report
Callback

=
a
=
il
=<
=]
0
(e}

sashasadunnnnhunns

o

10CTL)

5.3.2.

3. 1Figure 23: Distributed Data processing flow and control (init/config)

Core#1
Application

m DPC _ Parl 1

.
" DPMStat —>#
H DPC Start ——>|

Drivers

Core#2
Application

m DPC?PaﬂE

55
|ng m

— DPC Stat —>

DPMReport  #&
Callback
(NOTFY_DPG_

STARTED)

HW
Frame
Event

HW
Chirp
Events

DPU#1 Process —>

< DPMRelay
Result

DPM Report
Callback
(NOTIFY_DPC_
STARTED)

o
=]

DPM Report

]
2]

'~ DPC Inject Data >E_Dpu#2 Process >

point cloud results>—4 DPU#n F‘rucess%

=—DPM sendResult—>"

Callback
(NOTIFY_DPC_
RESULT)

DPM Stop 9

[=]
]
o
@
=

©

el
o

DPM Report

o
bl
o
@
=4
°

T
o

Callback
(NOTIFY_DPC_
STOPPED)

DPM Report
Callback
(NOTIFY_DPC_
STOPPED)

5.3.2.

5. 4. mmWave SDK - Tl components

3. 2Figure 24: Distributed Data processing flow and control (start/chirp/frame/stop)

The mmWave SDK functionality broken down into components are explained in next few subsections. For detailed documentation on each of these
modules, refer to the top level documentation located at mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.

5.4. 1. Demos

5.4.1. 1. mmWave Demo

This demo is located at mmwave_sdk_<ver>/packages/ti/demo/<platform>/mmw folder. The millimeter wave demo shows some of the radar sensing
and object detection capabilities of the SoC using the drivers in the mmWave SDK (Software Development Kit). It allows user to specify the chirping
profile and displays the detected objects and other information in real-time. A detailed explanation of this demo is available in the demo's docs folder
and can be browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html. This section captures the high level layout of the
demo supported on various mmWave devices. For details on individual components (control layer, datapath layer, etc), refer to the remaining sub-

sections under "mmWave SDK - TI components".

Device Support XxWR1843

Demo Directory ti\demo\xwr18xx\mmw

IWR6843

ti\demo\xwr64xx\mmw

IWR6843 XWR1642

ti\demo\xwr68xx\mmw ti\demo\xwr16xx

w3 TexAs INSTRUMENTS

52




Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

Binary prefix

EVM

Platform selection in Visualizer
mmWave API/RF control

Instrumentation via LVDS based
streaming

Range Proc DPU

Static Clutter Removal

Doppler Proc DPU

Xwrl8xx_mmw_demo
xwrl8xx BoosterPack
XWr18xx

R4F (MSS)

Yes

HWA based DPU (driven by
DSP)

DSP

HWA based DPU (driven by

XWré4xx_mmw_demo
IWR68xx ISK

XWI64XX

R4F (MSS)

Yes

HWA based DPU (driven by
R4F)

R4F (MSS)

HWA based DPU (driven by

XWré8xx_mmw_demo
IWR68xx ISK

XWr68xx

RA4F (MSS)

Yes

HWA based DPU (driven by
RA4F)

DSP

DSP

\mmw
XWrl6xx_mmw_demo
xwrl6xx BoosterPack
XWr16XX

R4F (MSS)

Yes

DSP

DSP

DSP

DSP) R4F)
CFAR DPU CFAR-CA HWA based DPU CFAR-CA HWA based DPU CFAR-CA using DSP CFAR-CA using
(driven by DSP) (driven by R4F) DSP
AoA DPU HWA based DPU (driven by HWA based DPU (driven by DSP DSP
DSP) RA4F)
5.4. 2. Drivers

Drivers encapsulate the functionality of the various hardware IPs in the system and provide a well defined API to the higher layers. The drivers are
designed to be OS-agnostic via the use of OSAL layer. Following figure shows typical internal software blocks present in the SDK drivers. The source
code for the SDK drivers are present in the mmwave_sdk_<ver>\packages\ti\drivers\<ip> folder. Documentation of the API is available via doxygen

and placed at mmwave_sdk_<ver>\packages\ti\drivers\<ip>\docs\doxygen\html\index.html and can be browsed easily via mmwave_sdk_<ver>/docs
/mmwave_sdk_module_documentation.html.. The driver's unit test code, running on top of SYSBIOS is also provided as part of the package mmwave_
sdk_<ver>\packages\ti\drivers\<ip>\test\. The library for the drivers are placed in the mmwave_sdk_<ver>\packages\ti\drivers\<ip>\lib directory and

the file is named lib<ip>_<platform>.aer4f for MSS and lib<ip>_<platform>.ae674 for DSP.

ample A
void ADCBuf_init(void):

void ADCBuf_Params_init(ADCBuf Params *params);

<HMWW_IP>_HWAttrs
structure

ADCBuf_Handle ADCBuf openfuint8_t index, ADCBuf_Params
*params); D

Device/CPU
configuration

intl6_t ADCBuf_control(ADCBuf Handle handle, uint® tcmd,

B SemaphoreP, MemoryP,
wvoid * arg);

ClockP, HwiP

v

void ADCBuf_close(ADCBuf _Handle handle); l

Hardware
P

TI RTOS

5. 4. 2. 0. 1Figure 25: mmWave SDK Drivers - Internal software design

Drivers Platform Platform Driver Functionality Implemented in mmWave SDK
/Hardware supported supported
P
for R4F for DSP
target C674x
target
(‘all' here
excludes
XWr14xx)
ADCBUF all all All features of IP (ADCBUF, CQ) are implemented in the driver
CAN all except - Following features of IP are implemented in the driver:
iwré8xx Configure Rx and Tx I/O Control registers
Configure DCAN mode of operation
Configure DCAN controller, interrupts, ECC, parity
Set bit time parameters
Configure Rx and Tx message objects
Receive and Transmit a CAN message
Retrieve Tx message object transmission status and Rx message object reception status
Check the validity of the received message
CANFD awrléxx - Following features of IP are implemented in the driver:

53

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide

http://www.ti.com

CBUFF

CBUFF
(LVDS)

CRC

CRYPTO

Csl-2

DMA

EDMA
ESM

GPIO

HWA

12C
MAILBOX

awrl8xx
iwré8xx
all all
all all
all all

Xwrléxx (HS) -

awrl8xx (HS)

iwrl4xx -

all -

all all

all all

all -

all except all except
XWr16xx XWr16xx
all -

all all

® Reset MCAN driver

conpensation

Configure MCAN controller and global filters

Configure MCAN mode of operation

Set bit time parameters

Configure message filters, Rx/Tx FIFOs

Add and cancel Tx requests

Transmits a CAN message

Receive a CAN message

Check the validity of the received message

Configure interrupt multiplexer to service message objects

Retrieve interrupt line status, interrupt pending status, parity error status, bit error status, ECC diagnostics
status, ECC error status and MCAN error status

Clear interrupt pending status, ECC diagnostics error status, ECC error status and MCAN error status
Configure MCAN parity function, self test mode, ECC Diagnostic mode

Following features of IP are implemented in the driver:

Supports Platform defined HSI: LVDS or CSI (IWR14xx only).

Initialize and setup the CBUFF Driver

Configure the Linked List and EDMA Channels to support the data transfer
Supports Interleaved and Non-Interleaved data mode

Supports the data formats: ADC, ADC_CP*, CP_ADC*, CP_ADC_CQ
Supports CRC

Initialize MCAN clock stop controls, auto wakeup, MCAN mode - classic versus FD mode, transceiver delay

(*By default, prebuilt CBUFF driver library only supports ADC and CP_ADC_CQ formats but the driver library can

be rebuilt for additional formats ADC_CP and CP_ADC. See CBUFF driver doxygen documentation for more
details)

Following features of IP are implemented in the driver:

LVDS driver supports the chirp and continuous mode of data transmission.
Supports only 2 and 4 lane configuration in FormatO.

Supports transfer of S/W triggered user data over CBUFF/LVDS interface

All features of IP are implemented in the driver including:
CRC-16
CRC-32
CRC-64

The driver supports following AES mode of encryption:

= Electronic codebook mode (ECB)

= Cipher-block chaining mode (CBC)

= Cipher feedback mode (CFB)

= Counter mode (CTR)

" |nteger counter mode (ICM)

" Galios/counter mode (GCM)

= Counter with CBC-MAC mode (CCM)

The driver supports following HMAC modes:

= MD5

= SHA-1

" SHA-224

" SHA-256

Following features of IP are implemented in the driver:
Initialization and Setup of the Protocol Engine

Initialization and configuration of the DSI PHY

DSI Phy Parameters can be customized by the application

Following features of IP are implemented in the driver:
software and hardware triggered transfer

frame based transfer

block based transfer

Addressing mode (Constant, Indexed, Post Increment)
FTC, BTC, LFS, HBC interrupts

channel chaining

auto-initiation mode

interrupt based and polling based channel completion APIs

All features of IP are implemented in the driver except "privilege" feature
Default ESM FIQ Interrupt handler for R4F and hook function for DSP's NMI
Provide application to register callback functions on specific ESM errors.

All features of IP are implemented in the driver

All features of IP are implemented in the driver

All features of IP are implemented in the driver

All features of IP are implemented in the driver.

w3 TexAs INSTRUMENTS

54



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

OSAL all all Provides an abstraction layer for some of the common OS services:
Semaphore
Mutex
Debug
Interrupts
Clock
Memory
PINMUX all - All Pinmux fields can be set and all device pad definitions are available
QSPI all - All features of IP are implemented in the driver.
QSPIFLASH all - All features of IP are implemented in the driver.
RTI all all Part of TI RTOS offering
SOoC all all Provides abstracted APIs for system-level initialization. See section "mmWave SDK - System Initialization" for
more details.
SPI (MIBSPI)  all - All features of IP are implemented in the driver including:

4-wire Slave and master mode

3-wire Slave and Master mode

both polling mode and DMA mode for read/write
char length 8-bit and 16-bit.

VIM all - Part of TI RTOS offering

UART all all All features of IP are implemented in the driver including:
Standard Baud Rates: 9600, 14400, 19200 till 921600
Data Bits: 7 and 8 Bits
Parity: None, Odd and Even
Stop Bits: 1 and 2 bits
Blocking and Polling API for reading and writing to the UART instance
DMA support for read/write APIs

WATCHDOG  all all All features of IP are implemented in the driver.

5. 4.2.0. 2Table 2: Supported drivers and their functionality

5.4.3. OSAL

An OSAL layer is present within the mmWave SDK to provide the OS-agnostic feature of the foundational components (drivers, mmWaveLink,
mmWaveAPI). This OSAL provides an abstraction layer for some of the common OS services: Semaphore, Mutex, Debug, Interrupts, Clock, Memory,
CycleProfiler. The source code for the OSAL layer is present in the mmwave_sdk_<ver>\packages\ti\drivers\osal folder. Documentation of the APIs
are available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\drivers\osal\docs\doxygen\htmi\index.html. A sample porting of this OSAL
for TI RTOS is provided as part of the mmWave SDK. System integrators could port the OSAL for their custom OS or customize the same TI RTOS
port for their custom application, as per their requirements.

Examples of what integrators may want to customize:

® MemoryP module - for example, choosing from among a variety of heaps available in TI RTOS (SYSBIOS), or use own allocator.

® Hardware interrupt mappings. This case is more pronounced for the C674 DSP which has only 16 interrupts (of which 12 are available under
user control) whereas the events in the SOC are much more than 16. These events go to the C674 through an interrupt controller (INTC) and
Event Combiner (for more information see the C674x megamodule user guide at http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf). The default
OSAL implementation provided in the release routes all events used by the drivers through the event combiner. If a user chooses to route
differently (e.g for performance reasons), they may add conditional code in OSAL implementation to route specific events through the INTC
and event combiner blocks. User can conveniently use event defines in tiicommon/sys_common_*.h to acheive this.

5.4. 4. mmWaveLink

mmWavelLink is a control layer and primarily implements the protocol that is used to communicate between the Radar Subsystem (RADARSS) and
the controlling entity which can be either Master subsystem (MSS R4F) and/or DSP subsystem (DSS C674x). It provides a suite of low level APIs that
the application (or the software layer on top of it) can call to enable/configure/control the RADARSS. It provides a well defined interface for the
application to plug in the correct communication driver APIs to communicate with the RADARSS. it acts as driver for Radar SS and exposes services
of Radar SS. It includes APIs to configure HW blocks of Radar SS and provides communication protocol for message transfer between MSS/DSS and
RADAR SS.

® Link between application and Radar SS

® Handles communication errors, Notifies exceptions
® Platform and OS independent

® Can work in single threaded (non OS) environment

Following figure shows the various interfaces/APIs of the mmWaveLink component. The source code for mmWaveLink is present in the mmwave_sdk_
<ver>\packages\tiicontrolmmwavelink folder. Documentation of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\control\m
mwavelink\docs\doxygen\htmhindex.html and can be easily browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html. The
component's unit test code, running on top of SYSBIOS is also provided as part of the package: mmwave_sdk_<ver>\packages\ti\contro\mmwavelink\t
est\.

55

w3 TexAs INSTRUMENTS


http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

EventChs_t

OsiChs_t
iCFCChS_t TimerChs_t

AP

lCumIbes_t
AP

Mailbox
Driver

CRC Driver

BSS
I

5. 4. 4. 0. 3Figure 26: mmWaveLink - Internal software design

5.4.5. mmWave API

mmWaveAPI is a higher layer control running on top of mmWaveLink and LLD API (drivers API). It is designed to provide a layer of abstraction in the
form of simpler and fewer set of APIs for application to perform the task of mmWave radar sensing. In mmwave devices with dual cores, it also
provides a layer of abstraction over IPC to synchronize and pass configuration between the MSS and DSS domains. The source code for mmWave
API layer is present in the mmwave_sdk_<ver>\packages\ti\contro\mmwave folder. Documentation of the API is available via doxygen placed at mmw
ave_sdk_<ver>\packages\ti\contro\mmwave\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<ver>/docs
/mmwave_sdk_module_documentation.html.. The component's unit test code, running on top of SYSBIOS is also provided as part of the

package: mmwave_sdk_<ver>\packages\ti\contro\mmwave\test\.

56

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide

http://www.ti.com

MMWave_init()
MMWave_open()

MMWave_execute()
MMWave_config()
MMWave_start()

MMWave_stopl)

MSS/DSS Application

API

MMWave_sync() mmWave API

RADARSS
Firmware

EEEEEEEEEEEEEEEEEEEEE R R R E RN R EEEEEEEEEEE R T

xWR16xx

5. 4. 5. 0. 4Figure 27: mmWave API - Internal software design

There are two modes of configurations which are provided by the mmWave module.

5. 4.5. 1. Full configuration

The "full" configuration mode implements the basic chirp/frame sequence of mmWave Front end and is the recommended mode for application to use
when using the basic chirp/frame configuration. In this mode the application will use the entire set of services provided by the mmWave control
module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS

Start & Stop services
Configuration of the RADARSS for Frame, advanced frame & Continuous mode

L]
L]
® Asynchronous Event Management
L]
L]
L]

Configuration synchronization between the MSS and DSS

In the full configuration mode; it is possible to create multiple profiles with multiple chirps. The following APIs have been added for this purpose:-

Chirp Management:

* MMWave_addChirp
* MMWave_delChirp

w3 TexAs INSTRUMENTS

57



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

Profile Management:

* MMWave_addProfile
* MMWave_delProfile

5. 4.5. 2. Minimal configuration

For advanced users, that either need to use advanced frame config of mmWave Front End or need to perform extra sequence of commands in the
CONFIG routine, the minimal mode is recommended. In this mode the application has access to only a subset of services provided by the mmWave

control module. These features includes:-
Initialization of the mmWave Link

Asynchronous Event Management
Start & Stop services

Synchronization services between the MSS and DSS on the dual core devices

In this mode the application is responsible for directly invoking the mmWave Link API in the correct order as per their configuration requirements. The
configuration services are not available to the application; so in mmwave devices with multiple cores (ex: xwrl16xx, iwr68xx, etc), the application is

responsible for passing the configuration between the MSS and DSS if required.

See sample call flow below:

r\SEIF‘rnﬁ\eCunﬁg

Send Message

—%— Send Message

r\SetCh\rpConﬁg _—

H

ACK

#—— SendMessage

—f—— SendMessage

ACK

[R—

ACK

Send Message %!— Send Message

ACK

....[
i
&
&
g
ERT
3
(%]
g
g
3
&
J/..

ACK

ACK

WSS Applcation e A e A

DSS
App\lcatlon

qu IMVWave_execut e =

IPC send (CONFIG): A
needs to provide the framework

——CONFIG message—>"

EDMA config

DCBUF config

5.4.5. 2. 1Figure 28: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with MSS and DSS cores and module in co-operative mode)

w3 TexAs INSTRUMENTS

58




Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

mmWavelink

MSS Application mmWave API

mmWave FE

riSetProfileConfig  —>a | -
: Send Message ~—xy——— Send Message —F

[ ] L) L]
SetChirpConfig —>w ~ ACK rmmmmmms :<- ------ ACK mommm .

E—— SendMessage —R—— SendMessage —2*

L}
L) ( L
———————— ACK - = ACK -
rlSetFrameConfig —9:‘< g =

B—— SendMessage —>F—— SendMessage
-------- ACK --=---—g€----== ACK --------

%

EDMA confia
ADCBUF config

rocess
CONFIG

HWA confia
SPICAN config

Message

5. 4.5. 2. 2Figure 29: mmWave API - 'Minimal' Config - Sample flow (mmWave devices with single core or when module is used in isolation mode)

{D mmWave Front End Calibrations

mmWave API, by default, enables all init/boot time time calibrations for mmWave Front End. There is a provision for user to provide custom
calibration mask in MMWave_open API and/or to provide a buffer that has pre-stored calibration data.

When application requests the one-time and periodic calibrations in MMWave_start AP call, mmWave API enables all the available one-
time and periodic calibrations for mmWave Front End.

@ mmWave API doesn't expose the mmwavelink's LDO bypass API (rIRfSetLdoBypassConfig/rIRfLdoBypassCfg_t) via any of its API. If this
functionality is needed by the application (either because of the voltage of RF supply used on the TI EVM/custom board or from monitoring
point of view), user should refer to mmwavelink doxygen (mmwave_sdk_<ver>\packages\ti\contro\mmwavelink\docs\doxygen\htmhindex.
html) on the usage of this APl and call this API from their application before calling MMWave_open().

mmWave_open

Although mmWave_close APl is provided, it is recommended to perform mmWave_open only once per power-cycle of the sensor.

5. 4. 6. Datapath Interface (DPIF)

DPIF defines the standard interface points in the detection processing chain that will correspond to the "blue" boxes in the scalable chain shown in the
figure above. Key interfaces defined in this layer are:

Input ADC data (contents of ADCbuf memory)
Radar Cube

Detection Matrix

Point cloud and its side info

The source code for DPIF is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpif folder.

59

w3 TexAs INSTRUMENTS



https://confluence.itg.ti.com/download/attachments/244390028/scalable_chain.png?version=1&modificationDate=1563763135000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

5. 4. 7. Data Processing Units (DPUs)

Data Translating function(s) from one interface point to the other are called “Data Processing Units”. Splitting the data processing chain into
processing units promote re-use of certain processing blocks across multiple chains. Detailed documentation on these modules can be easily browsed
via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.

® Range Processing (ADC data to Radar Cube): This processing unit performs (1D FFT+ optional DC Range Calib) processing on the chirp
(RF) data during the active frame time and produces the processed data in the radarCube. This processing unit is standardized in the
mmWave SDK. It provides implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or
C674x. The source code for Range DPU is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpu\rangeproc folder. Documentation of
the APl is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpu\rangeproc\docs\doxygen\htmhindex.html. The
component's unit test code, running on top of SYSBIOS is also provided as part of the package: mmwave_sdk_<ver>\packages\ti\ datapath\d
pulrangeproc\test\ .
® Static Clutter Processing (Radar Cube to Radar Cube): When enabled, this processing unit reads Range FFT out data from the radar cube
and performs static clutter removal before writing the data back to the radar cube during the interframe time. This processing unit is offered
as reference implementation and users of SDK could either re-use these as is in their application/processing chain or create variations of
these units based on their specific needs. It provides S/W based implementation and can be instantiated either on R4F or C674x. The source
code for StaticClutter DPU is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\staticclutterproc folder. Documentation of the
APl is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\staticclutterproc\docs\doxygen\html\index.html.
® Doppler Processing (Radar Cube to Detection Matrix): This processing unit performs (2D FFT + Energy Sum) processing on the radar Cube
during the inter frame and produced detection matrix. This processing unit is offered as reference implementation and users of SDK could
either re-use these as is in their application/processing chain or create variations of these units based on their specific needs. It provides
implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or C674x. DSP based
implementation incorporates static clutter algorithm for optimal memory/mips usage and user can skip using the standalone static clutter
DPU. The source code for Doppler DPU is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\dopplerproc folder.
Documentation of the API is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\dopplerproc\docs\doxyg
en\htmiindex.html.
® CFAR + AoA (Detection Matrix to Point Cloud): They are offered as two independent DPUs and collectively run CFAR-CA algorithm, peak
grouping, field-of-view filtering, doppler compensation, max velocity enhancement and angle (azimuth+elevation) estimation on the detection
matrix during inter frame to produce the point cloud. These processing units are offered as reference implementation and users of SDK could
either re-use these as is in their application/processing chain or create variations of these units based on their specific needs. They provide
implementation based on both HWA and DSP. HWA based implementation can be instantiated either on R4F or C674x..
® The source code for CFAR-CA DPU is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\cfarcaproc folder.
Documentation of the API is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\cfarcaproc\docs
\doxygen\html\index.html. The component's unit test code, running on top of SYSBIOS is also provided as part of the package: mmw
ave_sdk_<ver>\packages\ti\ datapath\dpc\dpu\cfarcaproc\test\.
® The source code for AoA DPU is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoaproc folder. Documentation
of the APl is available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\dpu\aoaproc\docs\doxygen\htmiind
ex.html. The component's unit test code, running on top of SYSBIOS is also provided as part of the package: mmwave_sdk_<ver>\p
ackages\ti\ datapath\dpc\dpu\aoaprocitest\ .

Each DPU presents the following high level design:

DPU_XXX_Handle DPU_XXX_init(DPU_XXX_InitParams
initParams, int32_t* errCode);

int32_t DPU_XXX_config(DPU_XXX_Handle s horeP. M P
handle, DPU_XXX_Config* rangeHwaCfg); emap oﬁwi,P emony’,

int32_t DPU_XXX_process(DPU_XXX_Handle handle,
DPU_XXX_OutParams?* outParams);

int32_t DPU_XXX_control(DPU_XXX_Handle handle, { {
DPU_XXX_Cmd cmd, void* arg, uint32_t argSize); D AP AP
int32_t DPU_XXX_deinit(DPU_XXX_Handle handle);
avelib Drivers DPEDMA TI RTOS

5.4.7.0. 3Figure 30: DPU - Internal software design

® All external DPU APIs start with the prefix DPU_. DPU unique name follows next.
® Ex: DPU_RangeProcHWA init
® Standard external APIs: init, config, process, ioctl, deinit are provided by each DPU.
® [nit: one time initialization of DPU
® Config: complete configuration of the DPU: hardware resources, static and dynamic (if supported by DPU)
® static config: config that is static during ongoing frames
® dynamic config: config that can be changed from frame to frame but only when process is not ongoing - ideally interframe
time after DPC has exported the results for the frame
® Process: the actual processing function of the DPU
® |octl: control interface that allows higher layer to switch dynamic configuration during interframe time
® De-init: de-initialization of DPU

60

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

* All memory allocations for I/O buffers and scratch buffers are outside the DPU since mmWave applications rely on memory overlay technique
for optimization and that is best handled at application level

® All H/W resources must be allocated by application and passed to the DPU. This helps in keeping DPU platform agnostic as well as allows
application to share the resources across DPU when DPU processing doesn't overlap in time.

® DPUs are OS agnostic and use OSAL APIs for needed OS services.

A typical call flow for DPUs could be represented as follows. The timing of config and process API calls with respect to chirp/frame would vary
depending on the DPU functionality, its usage in the chain, DPC implementation and overlap of hardware resources.

DPU_XXX_config

DPU_XXX_process

OPTIONAL: DPU_XXX_control

Reconfig Needed for next
?
YES frame”

5.4.7.0. 4Figure 31: DPU - typical call flow

5. 4. 8. Data Path Manager (DPM)

DPM is the foundation layer that enables the "scalability" aspect of the architecture. This layer absorbs all the messaging complexities (cross core and
intra core) and provide standard APlIs for integration at the application level and also for integrating any "data processing chain”. Application layer will
be able to call the DPM APIs from any domain (MSS or DSS) and control the configuration and execution of the "data processing chain". The APIs
offered by DPM will be available on both MSS and DSS. The various deployments that it can cater to (but not limited to) are:

Datapath control on R4F and datapath execution is split between R4F/HWA and DSP (Distributed)
Datapath control on R4F and datapath execution is on R4F using HWA (Local)

Datapath control on R4F and datapath execution is on DSP (with and without HWA) (Remote)
Datapath control on DSP and datapath execution is on DSP+HWA (Local)

Datapath control on DSP and datapath execution is on DSP (Local)

61

w3 TexAs INSTRUMENTS


https://confluence.itg.ti.com/download/attachments/244390028/dpu_call_flow.png?version=1&modificationDate=1563763135000&api=v2

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

Application Developers

/ Datapath Manager \

\

Data Processing Chain
Developers

5. 4. 8. 0. 5Figure 32: Datapath manager (DPM) - internal software design

The source code for DPM is present in the mmwave_sdk_<ver>\packages\ti\control\dpm folder. Documentation of the API is available via doxygen
and placed at mmwave_sdk_<ver>\packages\ti\ control\dpm\docs\doxygen\htmiindex.html. The component's unit test code, running on top of
SYSBIOS is also provided as part of the package: mmwave_sdk_<ver>\packages\ti\ controNdpm\test\ .

5. 4. 9. Data processing chain (DPC)

DPC is a separate layer within the datapath that encapsulates all the data processing needs of a mmwave application and provides a well defined
interface for integration with the application. In the SDK, there is a reference implementation that corresponds to the generic "object detection" chain
which was already a part of the OOB demo in past releases. This chain will conform to the standard DPM dictated API definitions. Internally this layer
will use the functionality exposed by Data processing units (DPUs), datapath interface and datapath manager (DPM) to realize the data flow needed
for the "object detection" chain. The source code for objectdetection DPC is present in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\objectedetec
tion folder. Documentation of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\datapath\dpc\objectedetection\<deployment_
type>\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.. The
component's unit test code, running on top of SYSBIOS is also provided as part of the package mmwave_sdk_<ver>\packages\ti\datapath\dpc\objecte
detection\objdethwaltest\. See section on Data Path tests using Test vector method for more details on this test.

5. 4.10. mmWavelLib

mmWavelLib is a collection of algorithms that provide basic functionality needed for FMCW radar-cube processing. This component is available only
for those mmWave devices that have DSP/C674 cores, It contains optimized library routines for C674 DSP architecture only. This component is not
available for cortex R4F (MSS). These routines do not encapsulate any data movement/data placement functionality and it is the responsibility of the
application code to place the input and output buffers in the right memory (ex: L2) and use EDMA as needed for the data movement. The source code
for mmWavelLib is present in the mmwave_sdk_<ver>\packages\ti\alg\mmwavelib folder. Documentation of the APl is available via doxygen placed at
mmwave_sdk_<ver>\packages\ti\alg\mmwavelib\docs\doxygen\htmh\index.html and can be easily browsed via mmwave_sdk_<ver>/docs
/mmwave_sdk_module_documentation.html. The component's unit test code, running on top of SYSBIOS is also provided as part of the package: mm
wave_sdk_<ver>\packages\ti\alg\mmwavelib\test\ .

Functionality supported by the library:

® Collection of algorithms that provide basic functionality needed for FMCW radar-cube processing.
® Windowing (16-bit complex input, 16 bit complex output, 16-bit windowing real array)
Windowing (16-bit complex input, 32 bit complex output, 32-bit windowing real array)
log2 of absolute value of 32-bit complex numbers
vector arithmetic (accumulation)
CFAR-CA, CFAR-CASO, CFAR-CAGO (logarithmic input samples)
16-point FFT of input vectors of length 8 (other FFT routines are provided as part of DSPLib)
single DFT value for the input sequences at one specific index
Twiddle table generation for 32x32 and 16x16 FFTs: optimized equivalent functions of dsplib for generating twiddle factor
FFT Window coefficients generation
DFT sine/cosine table generation for DFT single bin calculation
Single bin DFT with windowing.
Variation of the windowing functions with 1/Q swap since most of the fixed point FFT functions in DSPLib only support one format of
complex types.
® CFAR algorithms
® Floating-point CFAR-CA:
* mmwavelib_cfarfloat_caall supports CFAR cell average, cell accumulation, SO, GO algorithms, with input signals in floating
point formats;
* mmwavelib_cfarfloat_caall_opt implements the same functionality as mmwavelib_cfarfloat_caall except with less cycles,
but the detected objects will not be in the ascending order.

62

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

* mmwavelib_cfarfloat_wrap implements the same functionality as mmwavelib_cfarfloat_caall except the noise samples for
the samples at the edges are the circular rounds samples at the other edge.

* mmwavelib_cfarfloat_wrap_opt implements the same functionality as mmwavelib_cfarfloat_wrap except with less cycles,
but the detected objects will not be in the ascending order.

® CFAR-OS: Ordered-Statistic CFAR algorithm

* mmwavelib_cfarOS accepts fixed-point input data (16-bit log-magnitude accumulated over antennae). Search window size
is defined at compile time.

® Peak pruning for CFAR post-processing

* mmwavelib_cfarPeakPruning: Accepts detection matrix and groups neighboring peaks into one.
* mmwavelib_cfarPeakQualifiedinOrderPruning: Accepts the list of CFAR detected objects and groups neighboring peaks
into one.
* mmwavelib_cfarPeakQualifiedPruning: Same as mmwavelib_cfarPeakQualifiedInOrderPruning, but with no assumption for
the order of cfar detected peaks
® Floating-point AOA estimation:

* mmwavelib_aoaEstBFSinglePeak implements Bartlett beamformer algorithm for AOA estimation with single object detected, it also
outputs the variance of the detected angle.

* mmwavelib_aoaEstBFSinglePeakDet implements the save functionality as mmwavelib_aoaEstBFSinglePeak without the variance of
detected angle calculation.

* mmwavelib_aoaEstBFMultiPeak also implements the Bartlett beamformer algorithm but with multiple detected angles, it also outputs
the variances for every detected angles.

* mmwavelib_aoaEstBFMultiPeakDet implements the same functionality as mmwavelib_aoaEstBFMultiPeak but with no variances
output for every detected angles.

® DBscan Clustering:

* mmwavelib_dbscan implements density-based spatial clustering of applications with noise (DBSCAN) data clustering algorithm.

* mmwavelib_dbscan_skipFoundNeiB also implements the DBSCAN clustering algorithm but when expanding the cluster, it skips the
already found neighbors.

® Clutter Removal:

* mmwavelib_vecsum: Sum the elements in 16-bit complex vector.

* mmwavelib_vecsubc: Subtract const value from each element in 16-bit complex vector.

® Windowing:

* mmwavelib_windowing16xI6_evenlen: Supports multiple-of-2 length(number of input complex elements), and
mmwavelib_windowing16x16 supports multiple-of-8 length.

* mmwavelib_windowing16x32: This is updated to support multiple-of-4 length(number of input complex elements). It was multiple-of-
8 previously.

® Floating-point windowing:

* mmwavelib_windowing1DFItp: support fixed-point signal in, and floating point signal out windowing, prepare the floating point data
for 1D FFT.

*  mmwavelib_chirpProcWin2DFxdpinFltOut, mmwavelib_dopplerProcWin2DFxdpinFItOut: prepare the floating point data for 2D FFT,
with fixed point input. The difference is mmwavelib_chirpProcWin2DFxdpinFItOut is done per chip bin, while
mmwavelib_dopplerProcWin2DFxdpinFItOut is done per Doppler bin.

* mmwavelib_windowing2DFltp: floating point signal in, floating point signal out windowing to prepare the floating point data for 2D
FFT.

® Vector arithmetic

® Floating-point and fixed point power accumulation: accumulates signal power. Alternate API to right shift the output vector along with
accumulation is also provided.

® Histogram: mmwavelib_histogram right-shifts unsigned 16-bit vector and calculates histogram.

® Right shift operation on signed 16-bit vector or signed 32-bit vector

* mmwavelib_shiftright16 shifts each signed 16-bit element in the input vector right by k bits.
* mmwavelib_shiftright32 shifts each signed 32-bit element in the input vector right by k bits.
* mmwavelib_shiftright32to16 right shifts 32-bit vector to 16-bit vector
® Complex vector element-wise multiplication.
* mmwavelib_vecmul16x16: multiplies two 16-bit complex vectors element by element. 16-bit complex output written in place
to first input vector.
* mmwavelib_vecmul16x32, mmwave_vecmul16x32_anylen : multiplies a 16-bit complex vector and a 32-bit complex vector
element by element, and outputs to the 32-bit complex output vector.
®* mmwave_vecmul32x16c: multiplies 32bit complex vector with 16bit complex constant.
® Sum of absolute value of 16-bit vector elements
* mmwavelib_vecsumabs returns the 32-bit sum.
® Max power search on 32-bit complex data
* mmwavelib_maxpow outputs the maximum power found and returns the corresponding index of the complex sample
* mmwavelib_powerAndMax : Power computation combined with max power search
® Peak search for Azimuth estimation on 32-bit float vector
* mmwavelib_multiPeakSearch : Multiple peak search in the azimuth FFT output
* mmwavelib_secondPeakSearch : Second peak search in the azimuth FFT output
® DC (antenna coupling signature) Removal on 32-bit float complex vector
® Vector subtraction for 16-bit vectors
® Matrix utilities
® Matrix transpose for 32-bit matrix: Similar to DSPLib function but optimized for matrix with rows larger than columns

5. 4.11. Group Tracker

The algorithm is designed to track multiple targets, where each target is represented by a set of measurement points (point cloud output of CFAR
detection layer). Each measurement point carries detection information, for example, range, angle, and radial velocity. Instead of tracking individual
reflections, the algorithm predicts and updates the location and dispersion properties of the group. The group is defined as the set of measurements
(typically, few tens; sometimes few hundreds) associated with a real life target. This algorithm is provided for all mmWave devices except xwrl4xx but
is supported for both R4F and C674x. The source code for gtrack is present in the mmwave_sdk_<ver>\packages\ti\alg\gtrack folder. Documentation

63

TeEXAS INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

of the API is available via doxygen placed at mmwave_sdk_<ver>\packages\ti\alg\gtrack \docs\doxygen<2d|3D>\html\index.html| and can be easily
browsed via mmwave_sdk_<ver>/docs/mmwave_sdk_module_documentation.html.. The component's unit test code, running on top of SYSBIOS is
also provided as part of the package: mmwave_sdk_<ver>\packages\ti\alg\gtrack\test\ .

5. 4. 12. RADARSS Firmware

This is a binary (under mmwave_sdk_<ver>\firmware\radarss) that runs on Radar subsystem of the mmWave device and realizes the mmWave front
end. It exposes configurability via a set of messages over mailbox which is understood by the mmWaveLink component running on the MSS.
RADARSS firmware is responsible for configuring RF/analog and digital front-end in real-time, as well as to periodically schedule calibration and
functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle temperature and ageing
effects, and to enable significant ease-of-use from an external host perspective. Features/enhancements information can be found in the platform
specific release notes under mmwave_sdk_<ver>\firmware\radarss.

5. 4. 13. CCS Debug Utility

This is a simple binary that can flashed onto the board to facilitate the development phase of mmWave application using TI Code Composer Studio
(CCS). See section CCS Development mode for more details. For XWR14xx, this binary is for R4F (MSS) and for other mmWave devices, there is an
executable for both R4F (MSS) and C674 (DSS) and is combined into one metalmage for flashing along with RADARSS firmware. Note that the CCS
debug application for C674 (DSS) has the L1 and L2 cache turned off so that new application that gets downloaded via CCS can enable it as needed,
without any need for cache flush operations, etc during switching of applications. CCS debug for MSS (R4F) has the while loop implemented using
ARM instruction set since its purpose is to allow users to load another application using CCS and the first instruction that the application would run will
be _c_int00 which is compiled only in ARM mode.

5. 4. 14. HSI Header Utility

An optional utility library is provided for user to create a header that it can attach to the data being shipped over LVDS. This library accepts the CBUFF
session configuration and creates a header with appropriate information filled in and passes it back to the calling application. The calling application
can then supply this created header to CBUFF APIs. This config inside the header is intended to help user parse the LVDS on the receiving end. The
source code for this utility is present in the mmwave_sdk_<ver>\packages\ti\utils\hsiheader folder. Documentation of the API is available via doxygen
placed at mmwave_sdk_<ver>\packages\ti\utils\hsiheader\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<ver>/docs
/mmwave_sdk_module_documentation.html..

5. 4. 15. Secondary Bootloader

A reference implementation of secondary bootloader is provided in the SDK to show the usecase of updating the application metaimage in the
SFLASH (outside of ROM bootloader) by receiving the image over any serial interface. Subsequent to successful flashing, it shows how to read the
individual core images from the flash/metalmage, load them onto respective core memories and then execute the application. In addition to the flash
read/write and metalmage parser functionality, it provides reference implementation for image validity and failsafe mechanisms. The source code for
this utility is present in the mmwave_sdk_<ver>\packagesltilutils\sbl folder. Documentation of the SBL is available at mmwave_sdk_<ver>\packages\ti\
utils\sbl\docs.

5. 4. 16. mmWave SDK - System Initialization

Application should call init APIs for the following system modules (ESM, SOC, Pinmux) to enable correct operation of the device

5.4.16. 1. ESM

ESM_init should be the first function that is called by the application in its main(). Refer to the doxygen for this function at mmwave_sdk_<ver>\packag
es\ti\drivers\esm \docs\doxygen\htmNhindex.html to understand the API specification.

5.4.16. 2. SOC

SOC_linit should be the next function that should be called after ESM_init. Refer to the doxygen for this function at mmwave_sdk_<ver>\packages\ti\dri
vers\soc \docs\doxygen\htmlindex.html to understand the API specification. It primarily takes care of following things:

DSP un-halt

This applies for mmWave devices with DSP core. Bootloader loads the DSP application from the flash onto DSP's L2/L3 memory but doesnt un-halt
the C674x core. It is the responsibility of the MSS application to un-halt the DSP. SOC_init for MSS provides this optional functionality under its hood.
It is recommended to always unhalt the DSP when application needs to use the DSP for realizing its functionality. For applications that doesnt need
DSP completely can choose to leave the DSP in its original state i.e. either in halt state when this application is running from the flash and booted by
the bootloader OR in unhalted/while 1 loop state when this application is running from CCS in development mode.

RADARSS un-halt/System Clock

To enable selection of system frequency to use "closed loop APLL", the SOC_init function unhalts the RADARSS and then spins around waiting for
acknowledgement from the RADARSS that the APLL clock close loop calibration is completed successfully.

1 Note that this function assumes that the crystal frequency is 40MHz.

MPU (Cortex R4F)

MPU or Memory Protection Unit needs to be configured on the Cortex R4F of mmWave device for the following purposes:

64

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

® Protection of memories and peripheral (I/O) space e.g not allowing execution in I/O space or writes to program (.text) space.
® Controlling properties like cacheability, buferability and orderability for correctness and performance (execution time, memory bandwidth).
Note that since there is no cache on R4F, cacheability is not enabled for any region.

Default MPU settings has been implemented in the SOC module as a private function SOC_mpu_config() that is called by public APl SOC_init() when
SOC_MPUCfg_CONFIG option is passed by the application. Doxygen of SOC (mmwave_sdk_<ver>\packages\ti\drivers\soc \docs\doxygen\html\index.
html) has SOC_mpu_config() documented with details of choice of memory regions etc. When MPU violation happens, BIOS will automatically trap
and produce a dump of registers that indicate which address access caused violation (e.g DFAR which indicates what data address access caused
violation). Note: The SOC function uses as many MPU regions as possible to cover all the memory space available on the respective device. There
may be some free MPU regions available for certain devcies (ex: X\WR14xx) for the application to use and program as per their requirement. See the
function implementation/doxygen for more details on the usage and availability of the MPU regions. If the application needs for the MPU are different
than the default settings, it can pass SOC_MPUCfg_BYPASS_CONFIG to SOC_init function and then it can either pre-configure or post configure the
MPU using exported SOC_MPUxxx() functions. Application is responsible for the correct MPU settings when SOC_MPUCfg_BYPASS_CONFIG mode
is chosen.

A build time option called DOWNLOAD_FROM_CCS has been added which when set to yes prevents program space from being protected
in case of SOC owned default MPU settings. This option should be set to yes when debugging using CCS because CCS, by default,
attempts to put software break-point at main() on program load which requires it to change (temporarily) the instruction at beginning main to
software breakpoint and this will fail if program space is read-only. Hence the benefit of code space protection is not there when using CCS
for download. It is however recommended to set this option to no when building the application for production so that program space is
protected.

MARs ( DSP/C674x)

The cacheability property of the various regions as seen by the DSP (C674x) is controlled by the MAR registers. These registers are programmed as
per driver needs in in the SOC module as a private function SOC_configMARSs() that is called by public API SOC_init(). See the doxygen
documentation of this function to get more details. Note that the drivers do not operate on L3 RAM and HS-RAM, hence L3/HS-RAM cacheability is
left to the application/demo code writers to set and do appropriate cache (writeback/invalidate etc) operations from the application as necessary,
depending on the use cases. The L3 MAR is MAR32 -> 2000_0000h - 20FF_FFFFh and HS-RAM MAR is MAR33 -> 2100_0000h - 21FF_FFFFh.

5. 4. 16. 3. Pinmux

Pinmux module is provided under mmwave_sdk_<ver>\packages\ti\drivers\pinmux with API documentation and available device pads located at mmw
ave_sdk_<ver>\packages\ti\drivers\pinmux\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<ver>/docs
/mmwave_sdk_module_documentation.html.. Application should call these pinmux APIs in the main() to correctly configure the device pads as per
their hardware design.

@ TI Pinmux Utility

TI Pinmux Tool available at https://dev.ti.com/pinmux supports mmWave devices and can be used for designing the pinmux configuration
for custom board. It also generates code that can be included by the application and compiled on top of mmWave SDK and its Pinmux
driver.

5.4.17. Usecases

5. 4.17. 1. Data Path tests using Test vector method

The data path processing on mmWave device for 1D, 2D and 3D processing consists of a coordinated execution between the MSS, HWA/DSS and
EDMA. This is demonstrated as part of the object detection processing chain and millimeter wave demo. The demo runs in real-time and has all the
associated framework for RADARSS control etc with it.

The unit tests located at mmwave_sdk_<ver>\packages\ti\datapath\dpc \objectdetection\<chain_type>\test) are stand-alone tests that allow data path
processing chain to be executed in non real-time. This allows developer to use it as a debug/development aid towards eventually making the data path
processing real-time with real chirping. Developer can easily step into the code and test against knowns input signals. The core data path processing
source code in object detection chain and the processing modules (DPUs) is shared between this test and the mmw demo. Most of the documentation
is therefore shared as well and can be looked up in the object detection DPC and mmw demo documentation.

The tests also provide a test generator, which allows user to set objects artificially at desired range, doppler and azimuth bins, and noise level so that
output can be checked against these settings. It can generate one frame of data. The test generation and verification are integrated into the tests,
allowing developer to run a single executable that contains the input vector and also verifies the output (after the data path processing chain), thereby
declaring pass or fail at the end of the test. The details of test generator can be seen in the doxygen documentation of these tests located at mmwave_
sdk_<ver>\packages\ti\datapath\dpc \objectdetection\<chain_type>\test\docs\doxygen\html\index.html and can be easily browsed via mmwave_sdk_<v
er>/docs/mmwave_sdk_module_documentation.html..

5. 4.17. 2. CSI-2 based streaming of ADC data

IWR14xx device has a high speed CSI-2 transmit interface that can be used to ship ADC data or 1D/2D processed data out of the device. An example
usecase on how to program the front end to generate the ADC samples and tie it up to CBUFF/CSI-2 interface for data shipment is provided under mm
wave_sdk_<ver>\packages\ti\drivers\test\csi_stream. Refer to the doxygen documentation located at mmwave_sdk_<ver>\packages\ti\drivers\test\csi_
stream\docs\doxygen\htmNhindex.html for more details.

5. 4. 17. 3. Basic configuration of Front end and capturing ADC data in L3 memory

65

w3 TexAs INSTRUMENTS


https://dev.ti.com/pinmux

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

To access ADC data from mmWave sensors, user need to program various basic components within the device in a given sequence. In order to help
user understand the programming model needed to configure the device and generate ADC data in device's L3 memory, an example usecase is
provided under mmwave_sdk_<ver>\packages\ti\drivers\test\mem_capture. Refer to the doxygen documentation located at mmwave_sdk_<ver>\pack
agesi\ti\drivers\testimem_capture\docs\doxygen\html\index.html for more details.

w3 TexAs INSTRUMENTS *



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

6. Appendix

6. 1. Memory usage

The map files of demo and driver unit test application captures the memory usage of various components in the system. They are located in the same
folder as the corresponding .xer4f/.xe674 and .bin files. Additionally, the doxygen for mmW demo summarizes the usage of various memories
available on the device across the demo application and other SDK components. Refer to the section "Memory Usage" in the mmwave_sdk_<ver>\pac
kages\ti\demo\<platform>\mmw\docs\doxygen\htmN\index.html documentation.

6. 2. Register layout

The register layout of the device is available inside each hardware IP's driver source code. See mmwave_sdk_<ver>\packages\ti\drivers\<ip>\include\r
eg_*.h. The system level registers (RCM, TOPRCM, etc) are available under the SOC module (mmwave_sdk_<ver>\packages\ti\drivers\soc\include\re

g_*.h).

6. 3. Enable DebugP logs

The DebugP_log OSAL APIs in ti/drivers/osal/DebugP.h are used in the drivers and test/app code for debug streaming. These are tied to BIOS's
Log_* APIs and are well documented in SYSBIOS documentation. The logs generated by these APIs can be directed to be stored in a circular buffer
and observed using ROV in CCS (http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer).

Following steps should be followed to enable these logs:

1. Enable the flag DebugP_LOG_ENABLED before the header inclusion as seen below.

#defi ne DebugP LOG ENABLED 1
#i ncl ude <ti/drivers/osal/DebugP. h>

2. Add the following lines in your SYSBIOS cfg file with appropriate setting of numEntries (number of messages) which will impact memory
space:

Application SYSBIOS cfg file

var Log = xdc. useMbdul e(' xdc. runtine. Log");

var Main = xdc. useMbdul e(' xdc. runtime. Main");

var Diags = xdc. useMbdul e(' xdc. runtine. Diags');

var Logger Buf = xdc. useMbdul e(' xdc. runti ne. Logger Buf ") ;
Logger Buf . Ti nest anpPr oxy = xdc. useMbdul e(' xdc. runti me. Ti nestanp' ) ;

/* Trace Log */

var | ogger Buf Parans = new Logger Buf. Parans();

| ogger Buf Par ans. buf Type = Logger Buf . Buf Type_Cl RCULAR; // Buf Type_FI XED

I ogger Buf Par ans. exi t Fl ush = fal se;

| ogger Buf Par ans. i nst ance. nanme = "_| ogl nfo";

| ogger Buf Par ans. nunEntries = 100; <-- nunber of nessages this will affect nmenory consunption
// | ogger Buf Par ans. buf Section = ;

_loglnfo = Logger Buf. creat e(l ogger Buf Par ans) ;

Mai n. cormon$. | ogger = _I ogl nfo;

/* Turn on USER1 |l ogs in Main nodule (all non-nodul e functions) */
Mai n. conrmon$. di ags_USERI = Di ags. RUNTI ME_ON;

/* Turn on USER1 | ogs in Task nodule */
Task. conmon$. di ags_USERL = Di ags. RUNTI ME_ON;

A sample ROV log looks like below after code is re-build and run with above changes :

67

w3 TexAs INSTRUMENTS


http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Copyright (C) 2019, Texas Instruments Incorporated

http://www.ti.com

MMWAVE SDK User Guide

4 f vim
& Hwi
@ IntrinsicsSupport
@ TaskSupport
B gates
g hal

[% Problems HH RTOS Object View (ROV) 51 | [J Memory Browser <4>

+ || Basic | Records | Raw

==

4 xdcruntimeloggerBuf
: _loglnfo

serial timestampRaw

modName

text

eventld

eventName

i1

26411

xde.runtime.Main

region 7 address = f0600000

xdec.runtime.Lol

2
3

26775
27128

xdc.runtime.Main
xde.runtime.Main

stack end = 800bf80, stack size = 1000, region 8 address = 800af80
region 9 address = 50000000

xdcruntime.Lol
xdec.runtime.Lot

> @3 heaps
> B knl
» [ timers
® BIOS
4 (3 xdc
4 8 runtime
@ Assert
Core
Defaults
Diags
Error
Gate
Log
LoggerBuf
Main

m

Memory
Dmicin

6. 3. 0. 0. 1Figure 33: Sample ROV log with debug prints

6. 4. Shared memory usage by SDK demos

Existing SDK demos (mmw) assigns all available banks of shared memory to L3 memory. No additional banks are added to MSS TCMA and TCMB;
they remain at the default memory size. See TRM for more details on the L3 memory layout and "XWR1xxx Image Creator User Guide" in SDK for
more details on shared memory allocation when creating flash images. Note that the image that is programmed into the flash of the mmWave device
determines the shared memory allocation. So in CCS development mode, it is the allocation defined in ccsdebug metalmage that applies and not the
application that you download via CCS.

In SDK code, one can change the environment variable MMWAVE_SDK_SHMEM_ALLOC to customize the shmem alloc settings. If this variable is
undefined, platform specific SDK common makefile (mmwave_sdk_<ver>\packages\ticommon\mmwave_sdk_<platform>.mak) will define the default
values. When this variable is changed, user should do a clean build of the demo or ccsdebug depending on the working mode. This setting will
influence

" the size of L3 memory section in linker command files (mmwave_sdk_<ver>\packages\ti\platform\<platform>)

= the sys_common defines for the L3, TCMA and TCMB memory sizes for the application code to use and size the buffers, heaps, etc
accordingly. (ex: SOC_XWR16XX_MSS_TCMA_SIZE, SOC_XWR16XX_MSS_L3RAM_SIZE, etc)

= the shmem_alloc input parameter to generateMetalmage script in ccsdebug and mmw demo makefiles.

Since there is a chance for sys_common defines for the memories and metalmage bank allocation to go out of sync (due to user error such as failure
to do clean build), SOC module init does a sanity check of the hardware programmed L3 bank allocations (that are fed via metalmage header) and the
sys_common defines. If the sys_common defined memory size is greater than hardware programmed bank allocations, the module throws an assert.

6. 5. mmWave Device Image Creator

This section outlines the tools used for image creation needed for flashing the mmWave devices. The application executable generated after the
compile and link step needs to be converted into a bin form for the bootloader to understand and burn it onto the serial flash present on the device.
The demos inside the mmWave SDK already incorporate the step of bin file generation as part of their makefile and no further steps are required. This
section is helpful for application writers that do not have makefiles similar to the SDK demos. Once the compile and link step is done, application
image generation is described as follows.

The Application Image interpreted by the bootloader is a consolidated Multicore image file that includes the RPRC image file of individual subsystems
along with a Meta header. The Meta Header is a Table of Contents like information that contains the offsets to the individual subsystem RPRC images
along with an integrity check information using CRC. In addition, the allocation of the shared memory to the various memories of the subsystems also
has to be specified. The bootloader performs the allocation accordingly. It is recommended that the allocation of shared memory is predetermined and
not changed dynamically.

Use the generateMetalmage script present under mmwave_sdk_<ver>\packages\ scripts\windows or mmwave_sdk_<ver>\packages\ scripts\linux for
merging the MSS .xer4f, DSS .xe674 and RADARSS RPRC binaries into one metalmage and appending correct CRC. The RPRC image for MSS and
DSS are generated internally in this script from the input ELF formatted files for those subsystem (i.e. output of linker command - .xer4f, .xe674). Set
MMWAVE_SDK_INSTALL_PATH=mmwave_sdk_<ver>\packages in your environment before calling this script. This script needs 5 parameters:

w3 TexAs INSTRUMENTS

68



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

®* FLASHIMAGE: [output] multicore file that will be generated by this script and should be used for flashing onto the board

® SHMEM_ALLOC: [input] shared memory allocation in 32-bit hex format where each byte (left to right) is the number of banks
needed for RADARSS (BSS),TCMB,TCMA and DSS. Refer to the the TRM on details on L3 shared memory layout and "Image Creator User
Guide" in the SDK. It is advisable to pass MMWAVE_SDK_SHMEM_ALLOC environment variable here to keep the compiled code and
metalmage in sync. See Shared memory usage by SDK demos section for more details.

®* MSS_IMAGE_OUT: [input] MSS input image in ELF (.xer4f) format as generated by the linker. Use keyword NULL if not needed

® BSS_IMAGE_BIN: [input] RADARSS (BSS) input image in RPRC (.bin) format, use keyword NULL if not needed. Use mmwave_sdk
_<ver>\firmware\radarss\<platform>_radarss_rprc.bin here. For xWR14xx, select xwrl2xx_xwrl4xx_radarss_rprc.bin.

® DSS_IMAGE_OUT: [input] DSP input image in ELF (,xe674) format as generated by the linker. Use keyword NULL if not needed

The FLASHIMAGE file generated by this script should be used for the METAIMAGEL1 during flashing step (How to flash an image onto mmWave EVM)
. Refer to "Image Creator User Guide" in the SDK docs directory for details on the internal layout and format of the files generated in these steps.

6. 6. mmw Demo: cryptic message seen on DebugP_assert

In mmw demo, the BIOS cfg file dss_mmw.cfg has below code at the end to optimize BIOS size. Because of some of these changes, exceptions, such
as those generated through DebugP_assert() calls may give a cryptic message instead of file name and line number that helps identify easily where
the exception is located. To be able to restore this capability, the user can comment out the lines marked with the comment " below. For more
information, refer to the BIOS user guide.

/* Sone options to reduce Bl OS code and data size, see Bl OS User Guide section
"M nimzing the Application Footprint" */

System maxAtexitHandl ers = 0; /* COWENT THI S FOR FI XI NG DebugP_Assert PRI NTS */

Bl CS. swi Enabl ed = false; /* W don't use SWs */

BI CS. 1i bType = BI CS. Li bType_Cust om

Task. defaul t St ackSi ze = 1500;

Task. i dl eTaskSt ackSi ze = 800;

Program stack = 1048; /* for isr context */

var Text = xdc.useMbdul e(' xdc. runtinme. Text"');

Text.islLoaded = fal se;

6. 7. How to execute Idle instruction in idle task when using SYSBIOS

The idle function hook provided by SYSBIOS can be used to install application specific function which in turn could call the "idle" asm instruction. See
code snapshots below or refer to mmwW demo for details.

BIOS CFG file

var ldle = xdc. useMbdul e('ti.sysbios. knl.ldle');
I dl e. addFunc(' &MmwbDeno_sl eep’ ) ;

WFI instruction for R4F

voi d MmDeno_sl eep(voi d)

{
/* issue WFl (Wit For Interrupt) instruction */
asm(" WFl ");

IDLE instruction for C674x

voi d MmDenp_sl eep(voi d)

{
/* issue IDLE instruction */
asn(" IDLE ");

6. 8. Range Bias and Rx Channel Gain/Offset Measurement and Compensation

Refer to the section "Range Bias and Rx Channel Gain/Offset Measurement and Compensation” in the mmwave_sdk_<ver>\packages\ti\datapath\dpc\
objectdetection\<chain_type>\docs\doxygen\html\index.html documentation for the procedure and internal implementation details. To execute the
procedure using Visualizer GUI, here are the steps:

" Set the target as explained in the demo documentation and update the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles\profil
e_calibration.cfg appropriately.

= Set up Visualizer and mmW demo as mentioned in the section Running the Demos.

= Use the "Load Config From PC and Send" button on plots tab to send the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles\pr
ofile_calibration.cfg.

69

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

® The Console messages window on the Configure tab will dump the "compRangeBiasAndRxChanPhase" command to be used for

subsequent runs where compensation is desired.

® Copy and save the string for that particular mmWave sensor to your PC. You can use it in the "Advanced config" tab in the Visualizer and

tune any running profile in real time. Alternatively, you can add this to your custom profile configs and use it via the "Load Config From PC
and Send" button.

6. 9. Guidelines on optimizing memory usage

Depending on requirements of a given application, there may be a need to optimize memory usage, particularly given the fact that the mmwWave
devices do not have external RAM interfaces to augment on-chip memories. Below is a list of some optimizations techniques, some of which are
illustrated in the mmWave SDK demos (mmW demo). It should be noted, however, that the demo application memory requirements are dictated by
requirements like ease/flexibility of evaluation of the silicon etc, rather than that of an actual embedded product deployed in the field to meet specific
customer user cases.

1.

On R4F, compile your application with ARM thumb option (depending on the compiler use). If using the TI ARM compiler, the option to do
thumb is code_st at e=16 . Another relevant compiler option (when using TI compiler) to play with to trade-off code size versus speed is - -
opt _f or _speed=0-5 . For more information, refer to ARM Compiler Optimizations and ARM Optimizing Compiler User's Guide. The pre-
built drivers in the SDK are already built with the thumb option. The demo code and BIOS libraries are also built with thumb option. Note the
code_state=16 flag and the ti.targets.arm.elf.R4Ft target in the mmwave_sdk_<ver>\packages\ti common\mmwave_sdk.mak.

. On C674X, compile portions of code that are not in compute critical path with appropriate -mfX option. The -mf3 options is presently used in

the SDK drivers, demos and BIOS cfg file. This option does cause compiler to favor code size over performance and hence some cycles
impact are to be expected. However, on mmWave device, using mf3 option only caused about 1% change in the CPU load during active and
interframe time and around 3-5% increase in config cycles when benchmarked using driver unit tests. For more details on the "mf" options,
refer to The TI C6000 compiler user guide at C6000 Optimizing Compiler Users Guide. Another option to consider is -mo (this is used in
SDK) and for more information, see section "Generating Function Subsections (--gen_func_subsections Compiler Option)" in the compiler
user guide. A link of references for optimization (both compute and memory) is at Optimization Techniques for the TI C6000 Compiler.

. Even with aggressive code size reduction options, the C674X tends to have a bigger footprint of control code than the same C code compiled

on R4F. So if feasible, partition the software to use C674X mainly for compute intensive signal-processing type code and keep more of the
control code on the R4F. An example of this is in the mmw demo, where we show the usage of mmwave API to do configuration (of
RADARSS) from R4F instead of the C674X (even though the API allows usage from either domain). In mmw demo, this prevents linking of nm
wave (in mmwave_sdk_<ver>\packages\ ti\control ) and mmwavelink (in mmwave_sdk_<ver>\packages\ti\control ) code that is involved in
configuration (profile config, chirp config etc) on the C674X side as seen from the .map files of mss and dss located along with application
binary.

. Ifusing TI BIOS as the operating system, depending on the application needs for debug, safety etc, the BIOS footprint in the application may

be reduced by using some of the techniques listed in the BIOS User Guide in the section "Minimizing the Application Footprint". Some of
these are illustrated in the mmw demo on R4F and C674X. Some common ones are disabling system_printf (printf strings do contribute to
significant code size), choosing sysmin and using ROV for debugging, disabling assert (although this should be done only when variability in
driver configuration is not expected and existing configuration has been proven to function correctly). The savings from these features could
be anywhere from 2KB to 10KB but user would lose some perks of debuggability.

. If there is no requirement to be able to restart an application without reloading, then following suggestions may be used:

a. one time/first time only program code can be overlaid with data memory buffers used after such code is executed. Note: Ability to
place code at function granularity requires to use the aforementioned -mo option.

b. the linker option - - r am nbdel may be used to eliminate the . ci ni t section overhead. For more details, see compiler user guide
referenced previously. Presently, ram model cannot be used on R4F due to bootloader limitation but can be used on C674X. The
SDK uses ram model when building C674X executable images (unit tests and demos).

. On C674X, smaller LAD/L1P cache sizes may be used to increase static RAM. The L1P and L1D can be used as part SRAM and part cache.

Smaller L1 caches can increase compute time due to more cache misses but if appropriate data/code is allocated in the SRAMSs, then the
loss in compute can be compensated (or in some cases can also result in improvement in performance). In the demos, the caches are sized
to be 16 KB, allowing 16 KB of L1D and 16 KB of L1P to be used as SRAM. Typically, the L1D SRAM can be used to allocate some buffers
involved in data path processing whereas the L1P SRAM can be used for code that is frequently and more fully accessed during data path
processing. Thus we get overall 32 KB more memory. The caches can be reduced all the way down to O to give the full 32 KB as SRAM: how
much cache or RAM is a decision each application developer can make depending on the memory and compute (MIPS) needs.

. When modeling the application code using mmW demo as reference code, it might be useful to trim the heaps in mmw demo to claim back

the unused portion of the heaps and use it for code/data memory. Ideally, a user can run their worst case profile that they would like to
support using mmW demo, record the heap usage/free metrics for (L1D, L2)/TCMB and L3 heaps on 'sensorStart’. These values can then be
used to resize or re-allocate heap globals (example: gDPC_ObjDetTCM, gMmwL3, etc) in mmwave_sdk_<ver>\packages\ti\demo\<platform>\
mmw. The freed up space in DSS could be used as follows:

a. Free heap space in L1D could be used to move some of the L2 buffers to L1D. The freed L2 space can be used for code/data.

b. Free heap space in L2 could be trimmed by changing the heap's global variable (ex: gMmwL2) definition and used for code/data
memory (note that code memory by default is L2 so no other change is required to get more code space).

c. Free heap space in L3 could be trimmed by changing the heap's global variable (ex: gMmwL3) definition and used for code/data
space.

When using Tl compilers for both R4F and C674x, the map files contain a nice module summary of all the object files included in the application.
Users can use this as a guide towards identifying components/source code that could be optimized. See one sample snapshot below:

Module summary inside application's .map file

MODULE SUMVARY

Mdul e code ro data rw data

obj _xwr 14xx/

w3 TexAs INSTRUMENTS

70


http://processors.wiki.ti.com/index.php/ARM_compiler_optimizations
http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/sprui04c/sprui04c.pdf
http://processors.wiki.ti.com/index.php/Optimization_Techniques_for_the_TI_C6000_Compiler

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

mai n. oer 4f 5191 0 263980
dat a_pat h. oer 4f 8441 0 65536
config_hwa_util. oer4f 4049 0 0
post_processi ng. oer 4f 2480 0 0
mmw _cl i . oer 4f 2308 0 0
config _edma_util. oer4f 1276 0 0
sensor_ngnt . oer 4f 1144 0 24

Fomm e e e e eeemeieeeaaaaaa- Fomm e Fommmm e Fommmmea +
Tot al 24889 0 329540

6. 10. How to add a .const (table) beyond L3 heap in mmWave application where overlay is enabled

To achieve L3 heap overlaid with the code to be copied into L1P at init time, L3 heap is in PAGE 1 and code is in Page 0. PAGE 0 is the only loadable
page whereas PAGE 1 is just a dummy page to allocate uninitialized sections to implement overlay. As a result the ".const" section (which is loadable
section) cannot simply be allocated to PAGE 1 to go after the heap. If the .const is allocated in PAGE 0, then it will overlap the heap and will be
overwritten once heap is allocated. To resolve this, the HIGH feature of the linker could be used is used to push the const table to the highest address
ensuring no overlap with L3 heap. The suggested changes would be as follows:

1. Shrink the L3 heap by the size of the table (but L3 heap must still be bigger than the size of the L1P cache).

2. Place the table in a named section and allocate the named section in the HIGH space of PAGE 0 of L3RAM.

This ensures that the table will be allocated at the high address and will not be overlapping with L3 heap or the L1P intended code which are located
at the low address.

Sample code is shown below.

I'n application Cfile:

#define TABLE LENGTH 4
#define TABLE ALI GNMENT 8 /* bytes */

/*! L3 RAM buffer, shrunk by table */

#pragma DATA_SECTI OM(gMmL.3, .| 3data");

#pragma DATA_ALI GN(gMmL3, 8);

uint8_t gMmL3[ SOC XWR16XX_DSS L3RAM Sl ZE - TABLE LENGTH*si zeof (float) - TABLE ALI GNVENT] ;

#pragma DATA SECTI ON(gArray, ".I|3data_garray"”);
#pragma DATA ALI GNV(gArray, TABLE ALI GNVENT) ;
const float gArray[ TABLE LENGTH = {1.5, 3.2, 0.8, -9.6};

I'n I'inker command file:
.| 3data_garray: |o0ad=L3SRAM PAGE 0 (H GH)

6. 11. Enabling L3 cache for DSP/C674x on mmWave devices

In a given usecase for mmWave devices, if L3 RAM is not fully utilized for Radar Cube storage, then the remaining free L3 memory could ideally be
used for code and other internal data storages for the application. However, access to L3 memory from DSP/C674x core in mmWave devices is
slower than accessing L1/L2. The cache-based memory system of C674x can be efficiently used in such cases. Refer to C674x DSP Cache User
Guide (http://www.ti.com/lit/ug/sprug82a/sprug82a.pdf) for more details on the L1P/L1D/L2 two-level hierarchy that exists within the C674x memory
architecture. L1P, L1D and L2D can be partitioned into SRAM and cache. L1P, L1D and L2 cache size can be set through linker command file -please
refer to mmwave_sdk_<ver>/packagest/ti/platform/<platform>/c674x_linker.cmd for more details. L2 SRAM addresses are always cached in L1P and
L1D. However, external memory addresses (ex: code/data in L3) by default are configured as non-cacheable in L1D and L2 caches. Cacheability for
external memory addressed (ex: L3) must first be explicitly enabled by the user using the MAR registers. Note that L1P cache is not affected by this
configuration and always caches external memory addresses.

® Cache writeback: To maintain cache coherency between different masters (CPU, DMA, R4F, etc), content in cache needs to be written back
to memory after it is changed before triggering the other master to access that memory location.

® Cache Invalidate: Before reading the content from the physical memory that was updated by another master, the content in cache needs to
be invalidated, so that updated data from memory can be loaded in cache.

= APIs: User can use DSPICFGRegs directly from mmwave_sdk_<ver>/packagesi/ti/drivers/soc/include/reg_dspicfg.h or the TI BIOS cache
module APIs to perform these MAR settings, cache invalidates and cache writebacks.

® Codein L3: mmWave code can be placed from L2 to L3 (via linker command file) with no explicit need for cache enablement and/or cache
operations during real time. The only setting that needs to be adjusted is the size of L1P cache and that should be balanced against the need
for LLP SRAM to place real time optimized functions (and avoid any cache misses, etc).

= Datain L3: If data cache is enabled for L3 memory via the MAR registers, then at first, one needs to take care of cache invalidates and
writebacks for existing data structures in L3 memory. Radarcube and detection matrix are the primary data structures placed in L3 memory in
case of a typical mmwave application on our device. Typically Radarcube is accessed (read/write) only via EDMA during the Range and
Doppler FFT. Post that, it is more common for the DSP core to access the radarcube directly (i.e. no EDMA) and primarily it is a read access.
In such scenario, the Radarcube can be invalidated at the end of current frame but before the start of next frame (i.e. when EDMA master
begins to access radarcube). If the Radarcube was modified by the core directly (write operation) during the interframe time, then cache
writeback_invalidate is needed at the end of current frame but before the start of next frame. Same consideration would apply for detection
matrix. Next, mmWave internal data structures that are accessed purely by DSP can also be moved from L2 to L3 (via linker command file).
No explicit cache writeback/invalidations are required for such structures. If user chooses to place the frame results structures in L3 (point
cloud, etc) which are shared with MSS (R4F), then cache writeback+invalidate needs to be performed before signaling the MSS about

71

w3 TexAs INSTRUMENTS


http://www.ti.com/lit/ug/sprug82a/sprug82a.pdf

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

availability of frame results. Note: If the analysis of L3 data access pattern between the DSP, MSS and EDMA shows that cache writeback
/invalidate of all L3 data content can be done towards the end of the current frame, then performing writeback+invalidate on entire L1D cache
might be a better option than calling such API on individual structures.

6. 12. DSPIlib integration in mmWave C674x based application (Using 2 libraries simultaneously)

The TI C674X DSP is a merger of C64x+ (fixed point) and C67x+ (floating point) DSP architectures and DSPIib offers two different flavors of library for
each of these DSP architectures. An application on C674X may need functions from both architectures. Normally this would be a straight-forward
exercise like integrating other Tl components/libraries. However there is a problem during integration of the two DSPLib libraries in the same

application since the top level library APl header dspl i b. h has the same name and same relative path from the packages/ directory as seen below in
the installation:

Cltildsplib_c64Px_3 4 0 0| packages\tildsplibldsplib.h
C\tildsplib_c674x_3_4 0 0\ packages\ti\dsplibldsplib.h

Typically when integrating TI components, the build paths are specified up to packages\ directory and headers are referred as below:

#i nclude <ti/dsplib/dsplib. h>

However this will create an ambiguity when both libraries are to be integrated because the above path is same for both. There are a couple of ways to
resolve this:

6. 12. 1. Integrating individual functions from each library

In this case, the headers individual functions are included in the application source file and the build infrastructure (makefiles for example) refers to the
paths to the individual functions. This style of integration is illustrated in the following code snippets:

Sample DSPLib integration using individual functions

In application's makefile:

dss_mmw.mak

dssDenp: C674_CFLAGS += --cnd_fil e=$(BU LD CONFI GPKG)/ conpi l er. opt |
/* include path for DSP fft16x16 */ |
-1 $( C64Px_DSPLI B_| NSTALL_PATH) / packages/ti/dspl i b/src/DSP fft16x16/c64P |
/* include path for DSP fft32x32 */ |
-1 $(C64Px_DSPLI B_| NSTALL_PATH)/ packages/ti/dspli b/ src/DSP_fft32x32/c64 |
-i $(C674x_MATHLI B_| NSTALL_PATH)/ packages |

In application C file:

dss_data_path.c

#i ncl ude "DSP_fft32x32. h"
#i ncl ude "DSP fft16x16. h"

The C674P library can be integrated in the above code similar to the how the C64P has been done, this will not create any conflict.

A variant of the above could be as follows where the paths are now in the .c and .mak only refers to the installation:

dss_mmw.mak

dssDenp: C674_CFLAGS += --cnd_fil e=$(BU LD _CONFI GPKG) / conpi | er. opt |
-1 $( C64Px_DSPLI B_| NSTALL_PATH) / packages |
-i $(C674x_MATHLI B_| NSTALL_PATH) / packages |

dss_data_path.c

#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft32x32. h>
#include <ti/dsplib/src/DSP _fft16x16/c64P/DSP_fft16x16. h>

72

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

6. 12. 2. Patching the installation
The previous method can get cumbersome if there are many functions to be integrated from both libraries. Patching the installation to rename

/duplicate the top level API header dspl i b. h allows a straight-forward integration. This prevents the name conflict of the two headers. So the
installation after patching would look like below for example:

Cltildsplib_c64Px_3 4 0 0\ packages\ti\dsplibldsplib_c64P. h [one can retain the ol der dsplib.h if one wants to]
C \tildsplib_c674x_3_4 0_ 0\ packages\ti\dsplibldsplib_c674x. h [one can retain the ol der dsplib.h if one wants to]

And the .mak and code will look like below:

Sample DSPLib integration after renaming header files

I'n application makefile:

dss_mmw.mak

dssDenp: C674_CFLAGS += --cnd_fil e=$(BU LD CONFI GPKG) / conpi | er. opt |
-i $(C64Px_DSPLI B_| NSTALL_PATH)/ packages | <-- C64P dsplib
-1 $(C674x_DSPLI B_| NSTALL_PATH) / packages | <-- C674x dsplib
-i $(C674x_MATHLI B_I NSTALL_PATH)/ packages |

In application Cfile:

dss_data_path.c

#include <ti/dsplib/dsplib_c64P. h>
#i nclude <ti/dsplib/dsplib_c674x. h>

The present dsplibs do not have name conflicts among their functions so they can both be integrated in the above manner.

6. 13. SDK Demos: miscellaneous information

A detailed explanation of the mmW demao is available in the demo's docs folder: mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\docs\doxyge
n\htmNindex.html. Some miscellaneous details are captured here:

" |n demos that use HWA as the only processing node and elevation is enabled during run-time via configuration file, the number of detected
objects are limited by the amount of HWA memory that is available for post processing.

= Demo's rov.xs file is provided in the SDK package to facilitate the CCS debugging of pre-built binaries when demo is directly flashed onto the
device (instead of loading via CCS).

" When using non-interleaved mode for ADCBuUf, the ADCBuUf offsets for every RX antenna/channel enabled need to be multiple of 16 bytes.

" Output packet of mmW demo data over UART is in TLV format and its length is a multiple of 32 bytes. This enables post processing
elements on the remote side (PC, etc) to process TLV format with header efficiently.

6. 14. Data size restriction for a given session when sending data over LVDS
For the current implementation of the CBUFF/LVDS driver and its intended usage, the CBUFF data size for a given session needs to be multiple of 8.

User should take care of this restriction when writing their custom application using the SDK LVDS driver. This alignment is taken care by the HSI
header library if the application uses the headers for LVDS streaming. If no header are used while streaming data over LVDS lanes, user should
calculate the total data size in bytes for the hardware triggered session (i.e. per chirp) and make sure it follows the rules mentioned above. Similar
rules apply for the user data sent during the software triggered session.

6. 15. CCS Debugging of real time application

It is relatively easier to debug code before real-time starts because single-stepping or adding break-points does not affect the debugging since there is
no real-time data and deadline to process the data. But once real-time starts, which is after sensor is started, such debugging can be intrusive and
problematic. Below are some tips that may be helpful in real-time debugging, some of them are relevant to the out of box demos but may be applied in
user applications if relevant.

6. 15. 1. Inter-chirp debugging

In out of box demos and many application specialized demos based on the SDK provided by TI (through the Tl resource explorer), the inter-chirp
processing is based on either HWA or DSP but not a mix of the two. In the case of HWA, the CPU/CPUs are idling with respect to inter-chirp
processing so there is no need to halt. If one intends to stop and examine the state of HWA-EDMA during any of the intermediate processing steps,
the design would have to be changed to issue a HWA or EDMA interrupt to the CPU that configured these (typically MSS CPU) at this intermediate

73

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

state and the interrupt could read out some state and store in global variables that could be examined later. If code is halted using a break-point in the
interrupt, the EDMA will automatically halt but HWA will not unless HWA is waiting on EDMA, so HWA could continue to run even if the CPU is halted.
The current radar SoCs do not have the feature to halt the HWA when any of the CPUs are halted.

In case of DSP doing the inter-chirp processing, there can be a need to single-step/break the processing. However, (unlike the MSS CPU) when DSP
is halted, the RadarSS (front end) doesnt halt and the chirping activity does not stop. Because of this, the DSP will miss the chirp processing deadline
and the code is typically written to throw an exception. So basically halted debug is not useful unless a single chirp is configured and problem can be
recreated with a single chirp. There might be other limitations in the demo code that may prevent a single chirp configuration (e.g in the AWR1642
demo, minimum number of doppler bins is required to be 16 due to DSPLIB FFT function restrictions and there is an error check for this during config
validation - but this check may be disabled temporarily as it wouldn't affect the inter-chirp processing). Other techniques shown in below sections (real-
time logging, using non real-time unit test bench) may be more practical but have their own limitations. In most implementations however, 1D
processing uses a hardened component from the SDK - the range DPU - so the need for real-time debugging in the active chirping period is low.

6. 15. 2. Inter-frame debugging

As there is no RadarSS chirping activity when MSS CPU is halted, it is possible to do halted debug in MSS during inter-frame debugging without
running out of real-time. But on DSP, the device behavior is the opposite i.e the chirping will continue even if DSP is in halted state, so stepping in the
DSP will cause an inter-frame deadline miss exception when running the out of box demo and other special demos that are implemented similarly.
One technique that may be helpful in this situation is if the problem can be observed in the first frame itself, configure the chirping profile to do only
one frame (frameCfg CLI command). This way after the active frame period, there is no chirp overrun (of the next frame) pressure when single-
stepping in the inter-frame processing.

6. 15. 3. Using non-real time chain test code

See section "Data Path tests using Test vector method" on details about the non-real time chain that is provided with the mmWave SDK. Users can
use these tests to step through the OOB processing chain in non-real time mode and debug or learn the components of the OOB processing chain.

6. 15. 4. Using printfs in real time

This applies to SYSBIOS and debugging using CCS. Once the application starts real-time processing (i.e. once sensor start is issued), there should
ideally be no prints on the console because CCS will halt the processor (unless CIO is disabled) on which such prints are issued for as long as it takes
it to transfer the print string data from target to PC over JTAG and print the string on the PC (which can be of the order of seconds). This is true for any
real-time application that uses SYSBIOS on any SoC (not just mmWave SDK/devices). For logging in real-time, SYSBIOS offers other options like
LOG module, etc - although these will incur some memory overheads. For example, see "Enable DebugP logs" section. It is also possible in cfg file of
SYSBIOS based application to direct System_printfs to an internal log buffer (circular or saturate) which will also prevent the hiccup by CCS (See 'xdc.
runtime. SysMin' in SYSBIOS/XDC).

The out of box demos based on the DPC/DPU/DPM architecture have by default the DebugP type real-time logging enabled. In order to visualize the
logs, the CCS feature of Run Time Object Viewer (ROV) can be used. Instructions of how to use this feature can be seen at http://processors.wiki.ti.
com/index.php/Runtime_Object_View_(ROV). Below is a sample log for the xwr68xx out of box demo.

'+ workspace_v8_3 - mmwave_sdk/ti/demao/xwrB8o/mmw/main.c - Code Composer Studio - - -

File Edit View Project Tools Run  Scripts Window Help
Huilhd Do m2 B EYE- *- SR IRIT S

1% Target Configurations BB ROV: sowrBc_mmw_demo_mssxerdf - Cortex R4 0 53

=
1 < R
v Viewable Modules = Runtime Object View c o 2 X

=

=2 BIOS LoggerBuf Records m =
Clock eh - c x

Diags loginfo w

= Event -

in Exception serial  timestampRaw modName text ventld  eventName argd arg
GateHwi 541653 1818035633765 xdc runtime Main ObjDet DPC: Range Proc Triggered in export IOCTL xde runtime Log_print 10608 0O
GatelMutax 541654 1818035635796 xdc.runtime Main App: DPM Report IOCTL, command = 113 xdc.runtime.Log_print 28745 113
HeapBuf 541655 1818050704736 xdc.runtime.Main ObjDet DPC: Frame Start, framelndx = 90245, subFramelndx = 0 xde.runtime.Log_print 65456 902
Heaphlem 541656 1818050706365 xdc.runtime.Main OCbjDet DPC: Processing sub-frame O xdc.runtime. Log_print 32600 O
Hwi 541657 1818051107533 xdc.runtime.Main CbjDet DPC: Range Proc Done xdc.runtime.Log_print 32640 0
Idle 5416538 1818051340477 xdc.runtime Main OCbjDet DPC: number of detected objects after CFAR = 34 xdc.runtime Log_print 32672 34
Load 541659 1518055712123 xdc.runtime.Main ObjDet DPC: Range Proc Triggered in export IOCTL xdc.runtime.Log_print 10608 O
LoggerBuf 541660 1818055714146 xdc.runtime Main App: DPM Report IOCTL, command = 113 xdc.runtime Log_print 29748 113
Pmu 541661 1818070704729 xdc.runtime. Main ObjDet DPC: Frame Start, framelndx = 90246, subFramelndx =0 xdc.runtime Log_print 65456 002

541662 1818070706368 =xdc.runtime.Main ObjDet DPC: Processing sub-frame O xdc.runtime.Log_print 32600 0

g“e.“‘t* 541663 1518071107554 xdc.runtime.Main ObjDet DPC: Range Proc Done xdc.runtime.Log_print 32640 0
£gIsiry 541664 1818071350197 xdc.runtime.Main ObjDet DPC: number of detected objects after CFAR = 33 xde.runtime.Log_print 32672 33
Semaphare 541665 1818075632797 xdc.runtime.Main ObjDet DPC: Range Proc Triggerad in export IOCTL xdc.runtime.Log_print 10608 0
Startup 541666 1818075634827 xdc.runtime.Main App: DPM Report ICCTL, command = 113 xde.runtime.Log_print 28748 113
System 541667 1818030704729 xdc.runtime. Main ObjDet DPC: Frame Start, framelndx = 90247, subFramelndx =0 xdc.runtime.Log_print 65456 902
Task 5416638 1518090706368 xdc.runtime.Main ObjDet DPC: Processing sub-frame 0 xdc.runtime.Log_print 32600 0
Timer 541669 1818091107547 xdc.runtime. Main ObjDet DPC: Range Proc Done xdc.runtime.Log_print 32640 0

541670 1818091350220 xdc.runtime Main ObjDet DPC: number of detected objects after CFAR = 34
541671 1818095711859 xdc.runtime Main ObjDet DPC: Range Proc Triggered in export [OCTL

541672 1818095713889 xdc.runtime Main App: DPM Report IOCTL, command = 113

B41673 1818110704729 xdc runtime Main ObjDet DPC: Frame Start, framelndx = 90248, subFramelndx = 0
541674 1818110706368 xdc.runtime Main ObjDet DPC: Processing sub-frame O

541675 1818111107540 xdc.runtime.Main ObjDet DPC: Range Proc Done

541676 1818111349106 xdc.runtime Main ObjDet DPC: number of detected objects after CFAR = 32
541677 1818115623861 xdc.runtime.Main OCbiDet DPC: Range Proc Triggered in export IOCTL

xdc.runtime Log_print 32672 34
xdc.runtime Log_print 10608 O
xdc.runtime Log_print 29748 113
xde runtime Log_print 65456 902
xdc.runtime. Log_print 32600 O
xde.runtime.Log_print 32840 0
xdc.runtime Log_print 32672 32
xdc.runtime.Log print 10605 0

= e = e e e N Y === N=N=N=N=y}

6. 15. 5. Viewing hardware registers

w3 TexAs INSTRUMENTS

74


http://processors.wiki.ti.com/index.php/Runtime_Object_View_(ROV)
http://processors.wiki.ti.com/index.php/Runtime_Object_View_(ROV)

Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide

http://www.ti.com

During debug, there may be a need to examine registers of HWA, EDMA, external I/O peripherals etc. These can be done us|

ing View->Registers

menu and when a core is selected, the register view will display all registers that the core can see organized into various categories. An example is

shown below:

¥ workspace_v8 - C:\tilbios_6_73_01.C ic - Code Comp adio | - " B ud - - - T = O om
Ele Edit View Project Run Tools Scripts Window Help

[mid @®-2n =3 e B B ROB SRR TIPS s B
4 Debug 52 ¥ = B (9= Variables € Expressions [{lf Registers 57 & v =8
4 ¥ xwilxscoml [Code Composer Studic - Device Debugging] Name Value Description

» H# Core Registers
» K RegisterPairs

4 58 Group1
4 4fP Tewas Instruments XDS110 USB Debug Probe 0/CT4X 0 (Suspended)

i syshios_family_c64p_Hwi_getStackinfo_E(struct ti syshios_interfaces IHwi_Stackinfo ", unsigned short]( at Hwi.c:681 0x007FDICA , M4 Dss REG
Lsysbios_hal_Hwi_checkStack() at Hwi.c:104 0:007FDAGD » &% DSS_REG2
i_sysbios_knl Idle_ run_EQ atldle.c76 0:007FFOCO 54 DSS_CBUFF
i_sysbios_kn| Idle_loop_E(unsigned int, unsigned int)() at Idle.c:53 0:0080252C » & DSS_ADCBUF
i_sysbios_kn| Task_eit_E( at Task.c489 0:007F4620 (an error occurred: debug info does not indicate the return address) » ¥4 Dss SCI

Instruments XDST10 USB Debug Probe 0/Cortex R4 0 (Suspended)
mwDemo_sleep() at mss main.c:2,677 0:0000ELAE

Lsyshios_knlIdle_run_E( at die.c76 0:00013768

sysbios_knlIdle_loop_E(unsigned int, unsigned int)() at Idle.c:53 0:00014D14

bios knl_Task_exit_EQ at Task.c502 00000AEAD (nert frame is identical to an existing frame)

» b DSS_HW_ACC_PARAM
» K DSS_HW_ACC
» M4 TPTCO

b WA TPTCL

» B4 TPTC2

» b TPTCE

» KA TPCCO

» HhTPCCL

> M RTIA

» it RTIB
=

> A& CRC

» K MBX_DSS2MSS
> & MBX_MSS2DSS
» #f MBX_DSSZRSS
» it MBX_Rss2Dss

Core Registers
RegisterPairs

DSP subsystem control registers 16x/14s

DSPSS control module registers 1o

DSS_CBUFF (CBUFF) module configuration registers (refer to H..
DSS_ADCBUF (ADC buffer) memory space

DS5_5CI (SCVUART) module Configuration registers
DSS_HWACC_PARAM (Hardware Accelarator) Parameter Confi,
DSS_HWACE (Hardware Accelarator) module Configuration re.
TPTC-0 Configuration Registers

TPTC-1 Configuration Registers

TPTC-2 Configuration Registers

TPTC-3 Configuration Registers

TPCC-0 Configuration Registers

TPCC-L Configuration Registers

RTL-A Configuration Registers

RTL-B Configuration Registers

ESM Configuration Registers

CRC Configuration Registers

DSS to MSS MBX Configuration Registers

IISS to DSS MBX Configuration Registers

DSS to RSS MBX Configuration Registers

RSS to DSS MEX Configuration Registers

Individual hardware entities can be expanded further in the view to see registers specific to the hardware entity. The following picture illustrates
viewing a certain PARAM set in instance #0 of the EDMA (TPCCO), note how the bit fields are automatically parsed and displayed in a user friendly
manner which saves the burden of manually parsing or developing special parsing tools and facilitates quick debugging. Default number formats of bit
fields are binary which is not always convenient, this can be changed by selecting the field/fields and right-clicking to see the number format menu as
shown in the example below where the A and B counts of EDMA are about to be chosen for Decimal format. Once chosen, the GUI will remember the

user choice for that specific field so user does not have to repeat this action in future debug sessions.

w3 TexAs INSTRUMENTS

75



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

(%)= Variables " Expressions 1l{ Registers 5%

Mame
a MR TPCCO

4 PARAMSET
4

Value

(0x80000000
1 - SUPERVISOR
0000

0 - DISABLE
0 - DISABLE
0 - DISABLE
0 - DISABLE
o

000000

0 - NORMAL
000 -8

0 - NORMAL
0 - ASYNC
0-INCR
0-INCR
006080860
0x00020004

Description

TPCC-0 Configuration Registers

Option [Memory Mapped]

Bo|®|cicte ¥ =0

Privilege level (supervisor versus user) for the host/CPU/DMA t

Reserved

Privilege ID for external host/cpu/dma

Intermediate transfer completion chaining enable

Transfer completion chaining enable

Intermediate transfer completion interrupt enable

Transfer completion interrupt enable

Reserved
Transfer completion code
Transfer completion mode
Fifo Width

Reserved ]
Static set

Transfer Synchronizati
Destination address m
Source address mode

Source Address [Memd
A Count [Memory Mag

0000000000000010
0000000000000100

006080804
MANNANNNS

4

2 [2] Problems [%) Target Configurations &g Progress
‘Completed)

I

Xy
:?y

Ctrl+A
Ctrl+C

Select All
Copy Registers

MNumber Format 3

Default

Hex

Decimal

Octal

Binary

Float Scientific
Float Real
Signed Int

Restore To Preference

View Memory at Address
View Memory at Value

Find... Ctrl+F

Export...
Watch

=& G«

SIF

= g

v = H

In the above picture, one can also see the "Watch" menu item. If this is selected, then the two fields of interest will appear in the Expressions view, this
is a convenient way to see some fields of interest during debug without having to navigate the register structure again (although when a particular
structure such as PARAM set #16 above is expanded, if the top level TPCCO is shrunk and expanded again, thePARAM #16 is shown expanded as
before because GUI remembers sub-structure expansion/non-expansion state).

6. 15. 6. Viewing expressions/memory in real time

When debugging real time application (for example: mmw demo) in CCS, if the continuous refresh of variables in the Expression or Memory browser
window is enabled without enabling the silicon real-time mode as shown in the picture, the code may crash at a random time showing the message in
the console window. To avoid this crash, please put CCS in to “Silicone Real-time” mode after selecting the target core.

Continuous refresh:

Continuous refresh

v Quick Access 11 [ja
. selected ;
(x)= Variables €% Expressions 2 [i}f Registers E B | e & Y= 0
Expression Type Value Address -
® chirpIntHandle void * (000000000 0x008160F4
» frameStartintHandle void * 000000000 0x008160F8
A lamminaDidfacAailakla LasiAasa A slhae 1 NANQ1ANCT
Crash in Console window:
76

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated MMWAVE SDK User Guide
http://www.ti.com

[C674X_©] Debug: Logging UART Instance @@@81556@ has been opened successtully
Debug: DSS Mailbox Handle @eesefsse

Debug: MMWDemoDSS create event handle succeeded

Debug: MMWDemoDSS mmWave Control Initialization succeeded

Debug: MMWDemoDSS ADCBUF Instance(@) @0@81553@ has been opened successfully
Debug: MMWDemoDSS Data Path init succeeded

Debug: MMWDemoDSS initTask exit

[cortexR4-e] EE E R P E S R 2 2R R Rt b bbbt e o e

Debug: Launching the Millimeter Wave Demo
AR E R R R R R R R R R R e ek k%
Debug: MMWDemoMSS Launched the Initialization Task
Debug: MMWDemoMSS mmWave Control Initialization was successful
Debug: CLI is operational
Sensor has been stopped|
Debug: MMWDemoMSS Received CLI sensorStart Event
[C674X_@] Heap L1 : size 16384 (©x4000), free 2816 (@xbee)
Heap L2 : 51ze 49152 (exceee), free 35368 (@x8a28)
: - free 368640 (©x5a000)

Ae=ex@ Al=exffffff2e
A2=0x78 A3=@xffffffas
Ad4=0xa7 A5=0x7a
A6=0x5a827999 A7=-0x5a827999
AB=exed A9=ex7fffffff
Ale=0x2 All=exfeez22e
A12=0xf002a0 A13=0x0
Al4=0x804be@ AlS5=exfee2ee
Al6=0x5a827999 A17=0xa57d8667 C674x CPU Exception
A18=0xfffffflb A19=0xfffffdfs

A20=oxfffffffe A21=exffffffaa

A22=0xab A23=exffffffee

A24=xfffffea7 A25=Oxfffffedf

A26=0x114 A27=0x17

A28=Oxffffff34 A29-0x0

A30=0x6 A31=0x0

Be=exe Bl=exffffffse

B2=exffffffds B3=ex2

B4=8x8 B5=0x0

B6=0x93 B7=exfffffecb

B3=0x@ B9=exfee213

Blo=oxfffffeee Bll=exffffffa7

Enable “Silicone Real-time” mode:

Select the corefirst and

/then enable the “Silicon real time” mode

File Edit View Project Tools Run Scripts Window Help
O~ @ 80 o BiE % @)

v7d"vg___i‘-‘.‘lv?é’:f;ﬂ?#v?qnv

5 %5 Debug &2
[ 4 & awrl6uoucoml [Code Composer Studio - Device Debugging]
4 2 Groupl
XQ Texas Instruments XDS110 USB Debug Probe_0/C674X_0 (Disconnected : Unknown)
XQ Texas Instruments XDS110 USB Debug Probe_0/Cortex_R4_0 (Disconnected : Unknown)

77

w3 TexAs INSTRUMENTS



Copyright (C) 2019, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

w3 TexAs INSTRUMENTS

78



	MMWAVE SDK User Guide

