
Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

1

MMWAVE SDK User Guide

Product Release 2.1.0

Release Date: Oct 5, 2018

Document Version: 1.0

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

2

COPYRIGHT
Copyright (C) 2014 - 2018 Texas Instruments Incorporated - http://www.ti.com

DISCLAIMER
This mmWave SDK User guide is generic and contains details about all the mmWave devices that are supported by TI in general. However,
note that not all mmWave devices may be supported in a given mmWave SDK release. Please refer to the mmWave SDK Release notes to
understand the list of devices/platforms supported in a given mmWave SDK release.

http://www.ti.com/

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

3

CONTENTS

1 Out-of-box mmWave Experience
2 System Overview

2.1 mmWave Suite
2.2 mmWave Demos
2.3 External Dependencies
2.4 Terms used in this document
2.5 Related documentation/links

3 Getting started
3.1 Programming xWR14xx/xWR16xx
3.2 Loading images onto xWR14xx/xWR16xx EVM

3.2.1 Demonstration Mode
3.2.2 CCS development mode

3.3 Running the Demos
3.3.1 mmWave Demo for xWR14xx/xWR16xx

3.4 Configuration (.cfg) File Format
3.5 Running the prebuilt unit test binaries (.xer4f and .xe674)

4 How-To Articles
4.1 How to identify the COM ports for xWR14xx/xWR16xx EVM
4.2 How to flash an image onto xWR14xx/xWR16xx EVM
4.3 How to erase flash on xWR14xx/xWR16xx EVM
4.4 How to connect xWR14xx/xWR16xx EVM to CCS using JTAG

4.4.1 Emulation Pack Update
4.4.2 Device support package Update
4.4.3 Target Configuration file for CCS (CCXML)

4.4.3.1 Creating a CCXML file
4.4.3.2 Connecting to xWR14xx/xWR16xx EVM using CCXML in CCS

4.5 Developing using SDK
4.5.1 Build Instructions
4.5.2 Setting up build environment

4.5.2.1 Windows
4.5.2.2 Linux

4.5.3 Building demo
4.5.3.1 Building demo in Windows
4.5.3.2 Building demo in Linux

4.5.4 Advanced build
4.5.4.1 Building drivers/control/alg components
4.5.4.2 "Error on warning" compiler and linker setting

5 MMWAVE SDK deep dive
5.1 System Deployment

5.1.1 xWR14xx
5.1.2 xWR16xx

5.2 Typical mmWave Radar Processing Chain
5.3 Typical Programming Sequence

5.3.1 Control Path
5.3.1.1 xWR14xx (MSS<->RADARSS)
5.3.1.2 xWR16xx

5.3.2 Data Path
5.3.2.1 xWR14xx
5.3.2.2 xWR16xx

5.4 mmWave SDK - TI components
5.4.1 Drivers
5.4.2 OSAL
5.4.3 mmWaveLink
5.4.4 mmWave API

5.4.4.1 Full configuration
5.4.4.2 Minimal configuration

5.4.5 mmWaveLib
5.4.6 Group Tracker
5.4.7 RADARSS Firmware
5.4.8 CCS Debug Utility

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

4

5.4.9 HSI Header Utility
5.4.10 mmWave SDK - System Initialization

5.4.10.1 ESM
5.4.10.2 SOC
5.4.10.3 Pinmux

5.4.11 Usecases
5.4.11.1 Data Path tests using Test vector method
5.4.11.2 CSI-2 based streaming of ADC data
5.4.11.3 Basic configuration of Front end and capturing ADC data in L3 memory

6 Appendix
6.1 Memory usage
6.2 Register layout
6.3 Enable DebugP logs
6.4 Shared memory usage by SDK demos
6.5 xWR1xxx Image Creator
6.6 xWR16xx mmw Demo: cryptic message seen on DebugP_assert
6.7 How to execute Idle instruction in idle task when using SYSBIOS
6.8 Range Bias and Rx Channel Gain/Offset Measurement and Compensation
6.9 Guidelines on optimizing memory usage
6.10 How to add a .const (table) beyond L3 heap in mmW demo where overlay is enabled
6.11 DSPlib integration in xWR16xx C674x application (Using 2 libraries simultaneously)

6.11.1 Integrating individual functions from each library
6.11.2 Patching the installation

6.12 SDK Demos: miscellaneous information
6.13 Data size restriction for a given session when sending data over LVDS
6.14 CCS Debugging of real time application

6.14.1 Using non-real time chain test code
6.14.2 Using printfs in real time
6.14.3 Viewing expressions/memory in real time

LIST OF FIGURES

Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

Figure 2: Chirp Diagram
Figure 3: xWR14xx/xWR16xx PC Connectivity - Device Manager - COM Ports
Figure 4: xWR14xx Deployment in Hybrid or Standalone mode
Figure 5: xWR14xx Deployment in Satellite mode
Figure 6: Autonomous xWR16xx sensor (Standalone mode)

Figure 7: Typical mmWave radar processing chain
Figure 8: Typical mmWave radar processing chain using xWR14xx mmWave SDK
Figure 9: Typical mmWave radar processing chain using xWR16xx mmWave SDK
Figure 10: Typical mmWave radar control flow
Figure 11: xWR14xx: Detailed Control Flow (Init sequence)
Figure 12: xWR14xx: Detailed Control Flow (Config sequence)
Figure 13: xWR14xx: Detailed Control Flow (start sequence)
Figure 14: xWR16xx: Detailed Control Flow (Init sequence)
Figure 15: xWR16xx: Detailed Control Flow (Config sequence)
Figure 16: xWR16xx: Detailed Control Flow (Start sequence)
Figure 17: Typical mmWave radar data flow in xWR14xx
Figure 18: Typical mmWave radar data flow in xWR16xx
Figure 19: mmWave SDK Drivers - Internal software design
Figure 20: mmWaveLink - Internal software design
Figure 21: mmWave API - Internal software design
Figure 22: mmWave API - 'Minimal' Config - Sample flow (xWR16xx)
Figure 23: mmWave API - 'Minimal' Config - Sample flow (xWR14xx)

LIST OF TABLES

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

5

Table 1: mmWave SDK Demos - CLI commands and parameters
Table 2: Supported drivers and their functionality

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

6

1.
2.
3.

1.
2.

1.

2.

3.

1.

1. Out-of-box mmWave Experience

To experience the mmWave technology offered by TI, you will need to procure the following

Hardware
mmWave TI EVM
Power supply cable as recommended in TI EVM user guide
PC

Software
Pre-flashed mmWave Demo running on TI EVM (See instructions in this user guide on how to update the flashed demo)
Chrome browser running on PC

Next, to visualize the data flowing out of TI mmWave devices, follow these steps

Connect the EVM to a power outlet via the power cable and to the PC via the included USB cable. EVM should be powered up and
connected to PC now.
On your PC, browse to in Chrome browser and follow the prompts to install one-time https://dev.ti.com/mmWaveDemoVisualizer
software. [No other software installation is needed at this time]
The Visualizer app should detect and connect to your device via COM ports automatically (except for the very first time where users
will need to confirm the selection via OptionsSerial Port). Select the right Platform and SDK version and start your evaluation!

 Hint : Use HelpAbout to know your Platform and SDK version

For details on how to evaluate, any troubleshooting needs and/or to understand the know-how behind these steps, continue reading this SDK
User Guide...

If the flashed demo on the EVM is an old version and you would like to upgrade to latest demo, continue reading this SDK User Guide...

https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

7

2. System Overview

The mmWave SDK is split in two broad components: mmWave Suite and mmWave Demos.

2. 1. mmWave Suite

mmWave Suite is the foundational software part of the mmWave SDK and would encapsulate these smaller components:

Drivers
OSAL
mmWaveLink
mmWaveLib
mmWave API
RADARSS Firmware
Board Setup and Flash Utilities

2. 2. mmWave Demos

SDK provides demos that depict the various control and data processing aspects of a mmWave application. Data visualization of the demo's
output on a PC is provided as part of these demos. These demos are example code that are provided to customers to understand the inner
workings of the mmWave devices and the SDK and to help them get started on developing their own application.

mmWave Processing Demo with TI Gallery App - " "mmWave Demo Visualizer

2. 3. External Dependencies

All tools/components needed for building mmWave sdk are included in the mmwave sdk installer. But the following external components (for
debugging) are not included in the mmWave SDK.

CCS (for debugging)

Please refer to the mmWave SDK Release Notes for detailed information on these external dependencies and the list of platforms that are
supported.

2. 4. Terms used in this document

Terms
used

Comment

xWR14xx This is used throughout the document where that section/component/module applies to both AWR14xx and IWR14xx

xWR16xx This is used throughout the document where that section/component/module applies to both AWR16xx and IWR16xx

xWR1xxx This is used throughout the document where that section/component/module applies to all the part: AWR14xx, IWR14xx,
AWR16xx and IWR16xx

BSS This is used in the source code and sparingly in this document to signify the RADARSS. It is also interchangeably referred
to as the mmWave Front End.

MSS Master Sub-system. It is also interchangeably referred to as Cortex R4F.

DSS DSP Sub-system. It is also interchangeably referred to as DSS or C674x core.

2. 5. Related documentation/links

Other than the documents included in the mmwave_sdk package the following documents/links are important references.

SoC links
AWR1443
AWR1642
IWR1443
IWR1642

EVM links (These pages have links for datasheet and TI EVM user guides that this document refers to)

https://dev.ti.com/mmWaveDemoVisualizer
http://www.ti.com/product/awr1443
http://www.ti.com/product/awr1642
http://www.ti.com/product/iwr1443
http://www.ti.com/product/iwr1642

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

8

AWR1443BOOST
AWR1642BOOST
IWR1443BOOST
IWR1642BOOST
MMWAVE-DEVPACK

http://www.ti.com/tool/awr1443boost
http://www.ti.com/tool/awr1642boost
http://www.ti.com/tool/iwr1443boost
http://www.ti.com/tool/iwr1642boost
http://www.ti.com/tool/mmwave-devpack

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

9

1.

2.

3. Getting started

The best way to get started with the mmWave SDK is to start running one of the various demos that are provided as part of the package. TI
mmWave EVM comes pre-flashed with the mmWave demo. However, the version of the pre-flashed demo maybe older than the SDK
version mentioned in this document. Users can follow this section and upgrade/run the flashed demo version. The demos (source and pre-
built binaries) are placed at folder.mmwave_sdk_<ver>/packages/ti/demo/<platform>

mmWave Demo

This demo is located at folder. The millimeter wave demo shows some of the radar mmwave_sdk_<ver>/packages/ti/demo/ /mmw<platform>
sensing and object detection capabilities of the xWR14xx/xWR16xx SoC using the drivers in the mmWave SDK (Software Development Kit).
It allows user to specify the chirping profile and displays the detected objects and other information in real-time. A detailed explanation of this
demo is available in the demo's docs folder: . This mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\docs\doxygen\html\index.html
demo ships out detected objects and other real-time information that can be visualized using the TI Gallery App - 'mmWave Demo Visualizer'
hosted at . DS3 LED on TI EVM is turned on when the sensor is started successfully and turned https://dev.ti.com/mmWaveDemoVisualizer
off when the sensor is stopped successfully. SW1 switch press on TI EVM will start/stop the demo (sensor needs to be configured atleast
once using the CLI). The version of the mmWave Demo running on TI mmWave EVM can be obtained from the Visualier app using the
HelpAbout menu.

Following sections describe the general procedure for booting up the device with the demos and then executing it.

3. 1. Programming xWR14xx/xWR16xx

Here is a little insight into the mmWave devices and the programmable cores they offer. For more detailed information, please refer to the
Technical reference manual for the respective mmWave device. These details are needed when loading the binaries using CCS and/or to
understand the various terminologies that exist in the "Getting started" section.

xWR14xx

xWR14xx has one cortex R4F core available for user programming and is referred to in this section as MSS or R4F. The demos and the unit
tests executable are provided to be loaded on MSS/R4F.

xWR16xx

xWR16xx has one cortex R4F core and one DSP C674x core available for user programming and are referred to as MSS/R4F and DSS
/C674X respectively. The demos have 2 executables - one for MSS and one for DSS which should be loaded concurrently for the demos to
work. See section for more details. The unit tests may have execuables for either MSS or DSS or both. These Running the Demos
executables are meant to be run in standalone operation. This means MSS unit test executable can be loaded and run on MSS R4F without
downloading any code on DSS. Similarly, DSS unit test execuable can be loaded and run on DSS C674x without downloading any code on
DSS. The only exception to this is the Mailbox unit test named "test_mss_dss_msg_exchange" and mmWave unit tests under full and
minimal.

3. 2. Loading images onto xWR14xx/xWR16xx EVM

User can choose either one of these modes for loading images onto the EVM.

3. 2. 1. Demonstration Mode

This mode should be used when either upgrading the factory flashed binaries on the EVM to latest SDK version using the pre-built binaries
provided in the SDK release or for field deployment of mmWave sensors.

Follow the procedure mentioned in the section ()How to flash an image onto xWR14xx/xWR16xx EVM . Use the mmwave_sdk_<ver>
 as the METAIMAGE1 file name./packages/ti/demo/<platform>/<demo> /<platform>_<demo>.bin

Remove the "SOP2" jumper and reboot the device to run the demo image every time on power up. No other image loading step is
required on subsequent boot to run the demo.

3. 2. 2. CCS development mode

This mode should be used when debugging with CCS is involved and/or developing an mmWave application where the .bin files keep
changing constantly and frequent flashing of image onto the board is not desirable. This mode allows you to flash once and then use CCS to
download a different image to the device's RAM on every boot.

This mode is the recommended way to run the unit tests for the drivers and components which can be found in the respective test directory
for that component. See section for location of each component's test codemmWave SDK - TI components

https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

10

1.
1.

2.

2.
1.
2.
3.

1.
2.

4.
1.
2.

5.
6.

1.

2.

EVM and CCS setup
Follow the procedure mentioned in the section: .How to flash an image onto xWR14xx/xWR16xx EVM Use mmwave_sdk_<v

 as the METAIMAGE1 filename for the one-time flash. er>/packages/ti/utils/ccsdebug /<platform>_ccsdebug.bin
Follow the steps in to setup the environment for CCS How to connect xWR14xx/xWR16xx EVM to CCS using JTAG
connectivity.

With "SOP2" jumper removed, after every power cycle/reboot of the EVM, follow these steps to load the application:
Power up the EVM
Launch ccxml file created in step 1.b above.
If the test requires an application to run on MSS

Connect CCS to Cortex_R4_0
Load the MSS program. (for example: xwr16xx_<module>_mss.xer4f prebuilt executables provided in the SDK
release package)

If the test requires an application to run on DSP (xWR16xx only)
Connect CCS to C674X_0
Load the DSS program. (for example: prebuilt executables provided in the SDK xwr16xx_<module>_dss.xe674

 release package)
Run the R4 and/or C674 cores
To reload, disconnect the connected cores, power cycle and connect again

3. 3. Running the Demos

Follow this subsection to experience the mmWave functionality using the out-of-box mmWave demo. Before you proceed further, make sure
that you have loaded the right demo binary using the section above, set the EVM to functional mode and powered up the device. Connect the
EVM to the PC using its XDS110 micro-USB port/cable.

3. 3. 1. mmWave Demo for xWR14xx/xWR16xx

Figure 1: mmWave Demo Visualizer- mmWave Device Connectivity

Power on the EVM in functional mode with right binary loaded (see above) and connect it to the PC as shown above with the section
USB cable.
Browse to the TI gallery app "mmWave Demo Visualizer" at or use the direct link http://dev.ti.com/gallery https://dev.ti.com

. Use HelpREADME.md from inside this app for more information on how to run/configure this app./mmWaveDemoVisualizer

boot-up sequence

When the xWR1xxx boots up in functional mode, the device bootloader starts executing and checks if a serial flash is attached to
the device. If yes, then it expects valid MSS application (and a valid RADARSS firmware and/or DSS application) to be present on
the flash. During xWR1xxx development phase, flashing the device with the application under development for every small change
can be cumbersome. To overcome this, user should perform a one-time flash as mentioned in the steps below. The actual user
application under development can then be loaded and reloaded to the MSS program memory (TCMA) and/or DSP L2/L3 memory
(xWR16xx only) directly via CCS in the xWR14xx/xWR16xx functional mode.

Refer to Help inside Code Composer Studio (CCS) to learn more about connecting, loading, running the cores, in general.

http://dev.ti.com/gallery
https://dev.ti.com/mmWaveDemoVisualizer
https://dev.ti.com/mmWaveDemoVisualizer

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

11

2.

1.

2.

1.

1.

2.

3.

4.

5.

6.

1.

2.

3.
3.

First Time Setup
If this is the first time you are using this App, you may be requested to install a plug-in and the TI Cloud Agent
Application. This step will also install the right needed for UART port detection.XDS110 drivers
Once the demo is running on the mmWave sensors and the USB is connected from the board to the PC, the
app will try to automatically detect the COM ports for your device.

If auto-detection doesn't work, then you will need to configure the serial ports in this App. Run the
device manager on the PC and locate the following COM ports as shown in the section "How to

 below. In the Visualizer App, go to the Menu-identify the COM ports for xWR14xx/xWR16xx EVM"
>Options->Serial Port and perform the settings as shown below.

CFG_port: Use COM port number for " ": Baud: XDS110 Class Application/User UART
115200. This is the port where runs for all the demos.CLI (command line interface)
Data_port: Use COM port " ": Baud: 921600. This is the XDS110 Class Auxiliary Data port
port on which binary data generated by the processing chain in the mmWave demo will be
received by the PC. This is the detected object list and its properties (range, doppler, angle,
etc).

At this point, this app will automatically try to connect to the target (mmWave Sensor). If it does not connect or if the
connection fails, you should try to connect to the target by clicking in the bottom left corner of this App. If that fails as well,
redo the serial port configuration as shown in "First time Setup" panel above.

After the App is connected to the target, you can select the configuration parameters in this App (Frequency Band, Platform,
etc) in the "Scene Selection" and "Object Detection" area of the tab.CONFIGURE
Besides selecting the configuration parameters, you should select which plots you want to see. This can be done using the
"check boxes" in the "Plot Selection" area. Adjust the frame rate depending on number of plots you want to see. For
selecting heatmap plots, set frame rate to less than or equal to 4 fps. When selecting frame rate to be 25-30fps, for better
GUI performance, select only the scatter plot and statistics plot.
Once the configuration is selected, you can send the configuration to the device (use "SEND CONFIG TO MMWAVE
DEVICE" button).
After the configuration is sent to the device, you can switch to the view/tab and the plots that you selected will be PLOTS
shown.
You can switch back from "Plots" tab to "Configure" tab, reconfigure your "Scene Selection", "Object Detection" and/or "Plot
Selection" values and re-send the configuration to the device to try a different profile. After a new configuration has been
selected, just press the "SEND CONFIG TO MMWAVE DEVICE" button again and the device will be reconfigured. This can
be done without rebooting the device. If you change the parameters in the "Setup Details", then you will need to take further
action before trying the new configurations

If Platform is changed: make sure the COM ports match the TI EVM/platform you are trying to configure and
visualizer
If SDK version is changed: make sure the mmW demo running on the connected TI EVM matches the selected
SDK version in the GUI
If Antenna Config is changed: make sure the TI EVM is rebooted before sending the new configuration.

If board is rebooted, follow the steps starting from 1 above.

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown
below. Please use the correct COM port number from your setup for following steps.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

12

3.

Inner workings of the GUI
In the background, GUI performs the following steps:

Creates or reads the configuration file and sends to the mmWave device using the COM port called . It CFG_port
saves the information locally to be able to make sense of the incoming data that it will display. Refer to the CFG

 for details on the configuration file contents.Section
Receives the data generated by the demo on the visualization/Data COM port and processes it to create various
displays based on the GUI configuration in the cfg file.

The format of the data streamed out of the demo is documented in mmw demo's doxygen mmwave_sdk_<ver>
under section: "Output information sent to \packages\ti\demo\ \mmw\docs\doxygen\html\index.html <platform>

host".
On every reconfiguration, it sends a 'sensorStop' command to the device first to stop the active run of the mmWave
device. Next, it sends the command 'flushCfg' to flush the old configuration before sending the new configuration. It is
mandatory to flush the old configuration before sending a new configuration. Additionally, it is mandatory to send all
the commands for that demo/platform even if the user desires the functionality to be disabled i.e. no commands are
optional.

Advanced GUI options

User can configure the device from their own configuration file or the saved app-generated configuration file by using
the "LOAD CONFIG FROM PC AND SEND" button on the tab. Make sure the first two commands in this PLOTS
config file are "sensorStop" followed by "flushCfg".
User can temporarily pause the mmWave sensor by using the "STOP" button on the plots tab. The sensor can be
restarted by using the "START" button. In this case, sensor starts again with the already loaded configuration and no
new configuration is sent from the App.
User can simultaneously plot and record the processed/detected objects data coming out of the DATA_port using the
"RECORD START" button in the plots tab. Set the max limits for file size or record time as per your requirements to
prevent infinite capturing of data. The saving of data can be manually stopped using the "Record Stop" button (if the
max limits are not reached).

Console Messages window in Visualizer
Console message window echoes the following debug information for the users

Every command that is sent to the TI mmWave EVM and the response back from the EVM
Any runtime assert conditions detected by the demo running on TI mmWave EVM after the sensor is started. This is
helpful when mmW demo is flashed ont the EVM and CCS connectivity is not available. It spits out file name and line
number to allow users to browse to the source code and understand the error.

Init time calibration status after the first sensorStart is issued post reboot for debugging boot time or start failures

Here is an example of plots that mmWave Demo Visualizer produces based on the config that is passed to the demo application running on
mmWave sensor.

COM port after reboot

Whenever TI EVM is power-cycled (rebooted), you will need to use the bottom left serial port connection icon inside TI
 Note that if you used the CLI for disconnecting and reconnecting the COM ports.gallery app "mmWave Demo Visualizer"

COM port directly to send the commands (instead of TI gallery app) you will have to close the CLI teraterm window and
open a new one on every reboot.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

13

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

14

3. 4. Configuration (.cfg) File Format

Each line in the .cfg file describes a command with parameters. The various commands and their arguments are described in the table below
(arguments are in sequence). Note that some of the commands (ex: guiMonitor) are available for mmWave Demo only. For mmW demo,
users can create their own config files from the Visualizer GUI by using the "Save Config to PC" button or starting from the few sample
profiles provided in the directory.mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles

Most of the parameters described below are the same as the mmwavelink API specifications (see doxygen mmwave_sdk_<ver>\packages\ti\
.) Additionally, users can refer to the chirp diagram below to understand the chirp and control\mmwavelink\docs\doxygen\html\index.html

profile related parameters.

Figure 2: Chirp Diagram

Configuration command Command details Command Parameters Usage in mmW demo
 xwr14xx

Usage in mmW demo
 xwr16xx

dfeDataOutputMode The values in this command should not change
between sensorStop and sensorStart.

Reboot the board to try config with different set of
values in this command

This is a mandatory command.

<modeType>
 1 - frame based chirps
 2 - continuous chirping
 3 - advanced frame config

only option 1 is supported only option 1 and 3 are suppeorted

channelCfg Channel config message to RadarSS. See
mmwavelink doxgen for details.

 The values in this command should not change
between sensorStop and sensorStart.

Reboot the board to try config with different set of
values in this command

This is a mandatory command.

<rxChannelEn>
 Receive antenna mask e.g
for 4 antennas, it is 0x1111b
= 15

4 antennas supported 4 antennas supported

<txChannelEn>
 Transmit antenna mask

The 2 azimuth antennas can be
enabled using bitmask 0x5 (i.e. tx1
and tx3)

The azimuth and elevation antennas
can be enabled using bitmask 0x7 (i.
e. tx1, tx2 and tx3)

The 2 azimuth antennas can be
enabled using bitmask 0x3 (i.e. tx1
and tx2)

<cascading>
 SoC cascading, not
applicable, set to 0

n/a n/a

adcCfg

Converting configuration from older SDK release to current SDK release

As new versions of SDK releases are available, there are usually changes to the configuration commands that are supported in the
new release. Now, users may have some hand crafted config file which worked perfectly well on older SDK release version but will
not work as is with the new SDK release. If user desires to run the same configuration against the new SDK release, then there is
a script mmwDemo_<platform>_update_config.pl provided in the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\profiles
directory that they can use to convert the configuration file from older release to a compatible version for the new release. Refer to
the perl file for details on how to run the script. Note that users will need to install perl on their machine (there is no strict version
requirement at this time). For any new commands inserted by the script, there will be a comment preceeding that line which is
similar to something like this: "Inserting new mandatory command. Check users guide for details."

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

15

ADC config message to RadarSS. See
mmwavelink doxgen for details.

 The values in this command should not change
between sensorStop and sensorStart.

Reboot the board to try config with different set of
values in this command

This is a mandatory command.

<numADCBits>
 Number of ADC bits (0 for
12-bits, 1 for 14-bits and 2
for 16-bits)

only 16-bit is supported only 16-bit is supported

<adcOutputFmt>
 Output format :
 0 - real
 1 - complex 1x (image band
filtered output)
 2 - complex 2x (image band
visible))

only complex modes are supported only complex modes are supported

adcbufCfg adcBuf hardware config. The values in this
command can be changed between sensorStop
and sensorStart.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1.

For advanced frame mode, it
should be set to either the intended
subframe number or -1 to apply
same config to all subframes.

<adcOutputFmt>
 ADCBUF out format
 0-Complex,
 1-Real

only complex modes are supported only complex modes are supported

<SampleSwap>
 ADCBUF IQ swap selection:
 0-I in LSB, Q in MSB,
 1-Q in LSB, I in MSB

only option 0 is supported only option 0 is supported

<ChanInterleave>
 ADCBUF channel interleave
configuration:
 0 - interleaved(not
supported on XWR16xx),
 1 - non-interleaved

only option 0 is supported only option 1 is supported

<ChirpThreshold>
 Chirp Threshold
configuration used for
ADCBUF buffer to trigger
ping/pong buffer switch.

Valid values:

0-8 for xWR16xx (conditions
apply, see description in "Us

 age in mmW demo
 column) xwr16xx"

only 1 for xWR14xx

only value of 1 is supported 0: Determine chirp threshold
automatically to either maximize 32
KB usage of ADCBUF memory or
cap to value of 8, while meeting
requirement that the threshold must
divide the number of chirps in a
frame.

 n (i.e. any values in the range 1-8):
Set to n unless..
 1. n exceeds what is determined
to be possible maximum based on
0 interpretation above.

In such case, the demo app will cap
the value to the max with a
diagnostic warning message that
threshold has been capped to max.
 2. n does not meet divisibility
requirement stated above and in
this case, demo app will throw an
assert.

Note: n = 1 is a valid value.

profileCfg Profile config message to RadarSS and datapath.
See mmwavelink doxgen for details.

 The values in this command can be changed
between sensorStop and sensorStart.

This is a mandatory command.

<profileId>
 profile Identifier

could be any allowed value but only
one valid profile per config is
supported

Legacy frame (dfeOutputMode=1):
could be any allowed value but only
one valid profile per config is
supported

 Advanced frame
(dfeOutputMode=3): could be any
allowed value but only one profile
per subframe is supported.
However, different subframes can
have different profiles

<startFreq>
 "Frequency Start" in GHz
(float values allowed)

Examples:

77

78.1

any value as per mmwavelink
doxgen/device datasheet but
represented in GHz

any value as per mmwavelink
doxgen/device datasheet but
represented in GHz

<idleTime>
 "Idle Time" in u-sec (float
values allowed)

Examples:

7

7.15

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

txCalibEnCfg Field

This CLI command doesn't expose the
txCalibEnCfg field in the mmwavelink
structure. User should follow the
mmwavelink documentation and update
the CLI profileCfg handler function
accordingly. The current handler sets the
value to 0 for this field (backward
compatible mode)

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

16

<adcStartTime>
 "ADC Valid Start Time" in u-
sec (float values allowed)

Examples:

7

7.34

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

<rampEndTime>
"Ramp End Time" in u-sec
(float values allowed)

Examples:

58
216.15

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

<txOutPower>
 Tx output power back-off
code for tx antennas

only value of '0' has been tested only value of '0' has been tested

<txPhaseShifter>
 tx phase shifter for tx
antennas

only value of '0' has been tested only value of '0' has been tested

<freqSlopeConst>
 "Frequency slope" for the
chirp in MHz/usec (float
values allowed)

Examples:

68

16.83

any value greater than 0 as per
mmwavelink doxgen/device
datasheet but represented in MHz
/usec

any value greater than 0 as per
mmwavelink doxgen/device
datasheet but represented in MHz
/usec

<txStartTime>
"TX Start Time" in u-sec
(float values allowed)

Examples:

1
2.92

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

any value as per mmwavelink
doxgen/device datasheet but
represented in usec

<numAdcSamples>
 number of ADC samples
collected during "ADC
Sampling Time" as shown in
the chirp diagram above

Examples:

256

224

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet but with
multiplicity of 4 required due to
windowing library function
requirement and ADCBuf channel
offset requirement (since samples
are complex)

<digOutSampleRate>
 ADC sampling frequency in
ksps.

(<numAdcSamples> /
<digOutSampleRate> =
"ADC Sampling Time")

Examples:

5500

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

<hpfCornerFreq1>
 HPF1 (High Pass Filter 1)
corner frequency
 0: 175 KHz
 1: 235 KHz
 2: 350 KHz
 3: 700 KHz

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

<hpfCornerFreq2>
 HPF2 (High Pass Filter 2)
corner frequency
 0: 350 KHz
 1: 700 KHz
 2: 1.4 MHz
 3: 2.8 MHz

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

<rxGain>
 OR'ed value of RX gain in
dB and RF gain target (See
mmwavelink doxgen for
details)

any value as per mmwavelink
doxgen/device datasheet

any value as per mmwavelink
doxgen/device datasheet

chirpCfg Chirp config message to RadarSS and datapath.
See mmwavelink doxgen for details.

 The values in this command can be changed
between sensorStop and sensorStart.

This is a mandatory command.

chirp start index any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

chirp end index any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

profile identifier should match the profileCfg-
>profileId

should match the profileCfg-
>profileId

start frequency variation in
Hz (float values allowed)

only value of '0' has been tested only value of '0' has been tested

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

17

frequency slope variation in
kHz/us (float values allowed)

only value of '0' has been tested only value of '0' has been tested

idle time variation in u-sec
(float values allowed)

only value of '0' has been tested only value of '0' has been tested

ADC start time variation in u-
sec (float values allowed)

only value of '0' has been tested only value of '0' has been tested

tx antenna enable mask
(Tx2,Tx1) e.g (10)b = Tx2
enabled, Tx1 disabled.

See note under "Channel Cfg"
command above.
 Individual chirps should have either
only one distinct Tx antenna enabled
(MIMO) or same TX antennas
should be enabled for all chirps

See note under "Channel Cfg"
command above.
 Individual chirps should have
either only one distinct Tx antenna
enabled (MIMO) or same TX
antennas should be enabled for all
chirps

bpmCfg BPM MIMO configuration.

Every frame consists of alternating chirps with
pattern TX1_Tx2 and TX1-TX2. This is alternate
configuration to TDM-MIMO scheme and
provides SNR improvement by running 2Tx
simultaneously.When using this scheme, user
should enable both the azimuth TX in the
chirpCfg. See profile in the profile_2d_bpm.cfg
xwr16xx mmW demo profiles directory for
example usage.

This config is supported only for xWR16xx

<subFrameIdx>
subframe Index (exists only
in xwr16xx mmW demo)

n/a For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled>

0-Disabled

1-Enabled

n/a all values supported

<chirp0Idx>

 BPM enabled:
 If BPM is enabled in
previous argument, this is
the chirp index for the first
BPM chirp.
 It will have phase 0 on both
TX antennas (TX0+ , TX1+).
Note that the chirpCfg
command for this chirp index
must have both TX antennas
enabled.

 BPM disabled:
 If BPM is disabled, a BPM
disable command (set phase
to zero on both TX
antennas) will be issued for
the chirps in the range [chirp
0Idx..chirp1Idx]

n/a value should have a corresponding
valid chirpCfg

<chirp1Idx>

 BPM enabled:
 If BPM is enabled, this is
the chirp index for the
second BPM chirp.
 It will have phase 0 on TX0
and phase 180 on TX1
(TX0+ , TX1-). Note that the
chirpCfg command for this
chirp index must have both
TX antennas enabled.

 BPM disabled:
 If BPM is disabled, a BPM
disable command (set phase
to zero on both TX
antennas) will be issued for
the chirps in the range [chirp

.0Idx..chirp1Idx]

value should have a corresponding
valid chirpCfg

lowPower Low Power mode config message to RadarSS.
See mmwavelink doxgen for details.

 The values in this command should not change
between sensorStop and sensorStart.

Reboot the board to try config with different set of
values in this command.

This is a mandatory command.

<don’t_care> set to 0 set to 0

ADC Mode
 0x00 : Regular ADC mode
 0x01 : Low power ADC
mode

use value of '0' or '1' for IWR14xx
(depending on profileCfg-
>digOutSampleRate)

use value of '1' only for AWR14xx

only value of '1' is supported

frameCfg frame config message to RadarSS and datapath.
See mmwavelink doxgen for details.

dfeOutputMode should be set to 1 to use this
command

 The values in this command can be changed
between sensorStop and sensorStart.

This is a mandatory command when
dfeOutputMode is set to 1.

chirp start index (0-511) any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

chirp end index (chirp start
index-511)

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

18

number of loops (1 to 255) any value as per mmwavelink
doxgen/device datasheet but should
be a power of 2

any value as per mmwavelink
doxgen/device datasheet but
should be a power of 2 and should
have a minimum value of 16 due to
DSP Library requirements

number of frames (valid
range is 0 to 65535, 0
means infinite)

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

frame periodicity in ms (float
values allowed)

any value as per mmwavelink
doxgen and represented in msec.
However frame duration should not
have more than 50% duty cycle (i.e.
active chirp time should be <= 50%
of frame period) and should allow
enough time for selected UART
output to be shipped out (selections
based on guiMonitor command)

any value as per mmwavelink
doxgen and represented in msec.
However frame should not have
more than 50% duty cycle (i.e.
active chirp time should be <= 50%
of frame period) and should allow
enough time for selected UART
output to be shipped out (selections
based on guiMonitor command)

trigger select
 1: Software trigger
 2: Hardware trigger.

only option for Software trigger is
selected

only option for Software trigger is
selected

Frame trigger delay in ms
(float values allowed)

any value as per mmwavelink
doxgen and represented in msec.

any value as per mmwavelink
doxgen and represented in msec.

advFrameCfg Advanced config message to RadarSS and
datapath. See mmwavelink doxgen for details.
The dfeOutputMode should be set to 3 to use this
command. See profile_advanced_subframe.cfg
profile in the xwr16xx mmW demo profiles
directory for example usage.

 The values in this command can be changed
between sensorStop and sensorStart.

This is a mandatory command when
dfeOutputMode is set to 3.

command not suported

<numOfSubFrames>
 Number of sub frames
enabled in this frame

n/a any value as per mmwavelink
doxgen

<forceProfile>
 Force profile

n/a only value of 0 is supported

<numFrames>
 Number of frames to
transmit (1 frame = all
enabled sub frames)

n/a any value as per mmwavelink
doxgen

<triggerSelect>
 trigger select
 1: Software trigger
 2: Hardware trigger.

n/a only option for Software trigger is
selected

<frameTrigDelay>
 Frame trigger delay in ms
(float values allowed)

n/a any value as per mmwavelink
doxgen and represented in msec.

subFrameCfg Subframe config message to RadarSS and
datapath. See mmwavelink doxgen for details.

The dfeOutputMode should be set to 3 to use this
command. See profile_advanced_subframe.cfg
profile in the xwr16xx mmW demo profiles
directory for example usage

 The values in this command can be changed
between sensorStop and sensorStart.

This is a mandatory command when
dfeOutputMode is set to 3.

command not suported

<subFrameNum>
 subframe Number for which
this command is being given

n/a value of 0 to
RL_MAX_SUBFRAMES-1

<forceProfileIdx>
 Force profile index

n/a ignored as <forceProfile> in
advFrameCfg should be set to 0

<chirpStartIdx>
 Start Index of Chirp

n/a any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

<numOfChirps>
 Num of unique Chirps per
burst including start index

n/a any value as per mmwavelink
doxgen but corresponding number
of chirpCfg should be defined

<numLoops>
 No. of times to loop through
the unique chirps

n/a any value as per mmwavelink
doxgen but corresponding chirpCfg
should be defined

<burstPeriodicity>

Burst periodicty in msec
(float values allowed) and
meets the criteria
 burstPeriodicity >=
(numLoops)* (numOfChirps)
+ InterBurstBlankTime

n/a any value as per mmwavelink
doxgen and represented in msec
but subframe should atleast have
50% duty cycle and allow enough
time for selected UART output to
be shipped out (selections based
on guiMonitor command)

<chirpStartIdxOffset>
 Chirp Start address
increament for next burst

n/a set it to 0 since demo supports only
one burst per subframe

<numOfBurst>
 Num of bursts in the
subframe

n/a set it to 1 since demo supports only
one burst per subframe

<numOfBurstLoops>
 Number of times to loop
over the set of above
defined bursts, in the sub
frame

n/a set it to 1 since demo supports only
one burst per subframe

<subFramePeriodicity>

subFrame periodicty in msec
(float values allowed) and
meets the criteria
 subFramePeriodicity >=
Sum total time of all bursts +
InterSubFrameBlankTime

n/a set to same as <burstPeriodicity>
since demo supports only one burst
per subframe

guiMonitor Plot config message to datapath.
 The values in this command can be changed
between sensorStop and sensorStart.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

19

This is a mandatory command. All parameters below are
flags (1 to enable and 0 to
disable)

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<detected objects>
 1 - enable export of
detected objects
 0 - disable

all values supported all values supported

<log magnitude range>
 1 - enable export of log
magnitude range profile at
zero Doppler
 0 - disable

all values supported all values supported

<noise profile>
 1 - enable export of log
magnitude noise profile
 0 - disable

all values supported all values supported

<rangeAzimuthHeatMap>
 range-azimuth heat map
related information
 1 - enable export of zero
Doppler radar cube matrix,
all range bins, all antennas
to calculate and display
azimuth heat map.
 0 - disable
 (the GUI computes the FFT
of this to show heat map)

all values supported all values supported

<rangeDopplerHeatMap>
 range-doppler heat map
 1 - enable export of the
whole detection matrix. Note
that the frame period should
be adjusted according to
UART transfer time.
 0 - disable

all values supported all values supported

<statsInfo>
 statistics (CPU load,
margins, etc)
 1 - enable export of stats
data.
 0 - disable

all values supported all values supported

cfarCfg CFAR config message to datapath.

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<procDirection>
 Processing direction:
 0 – CFAR detection in
range direction
 1 – CFAR detection in
Doppler direction

only Range direction is supported all values supported; 2 separate
commands need to be sent; one for
Range and other for doppler

<mode>
 CFAR averaging mode:
 0 - CFAR_CA (Cell
Averaging)
 1 - CFAR_CAGO (Cell
Averaging Greatest Of)
 2 - CFAR_CASO (Cell
Averaging Smallest Of)

all values supported all values supported

<noiseWin>
 noise averaging window
length:
 Length of the noise
averaged cells in samples

supported supported

<guardLen>
 guard length in samples

supported supported

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

20

<divShift>
 Cumulative noise sum
divisor expressed as a shift.

Sum of noise samples is
divided by 2^<divShift>.
Based on platform, <mode>
and <noiseWin> , this value
should be set as shown in
next columns.

 The value to be used here
should match the "CFAR
averaging mode" and the
"noise averaging window
length" that is selected
above.

The actual value that is used
for division (2^x) is a power
of 2, even though the "noise
averaging window length"
samples may not have that
restriction.

CFAR_CA:
 <divShift> = log (2 x <noiseWin>)2
 CFAR_CAGO/_CASO:
 <divShift> = log (<noiseWin>)2

 In profile_2d.cfg, value of 3 means
that the noise sum is divided by
2^3=8 to get the average of noise
samples with window length of 8
samples in CFAR -CASO mode.

CFAR_CA:
 <divShift> = log (2 x <noiseWin>)2
 CFAR_CAGO/_CASO:
 <divShift> = log (2 x <noiseWin>)2

 In profile_2d.cfg, value of 4 means
that the noise sum is divided by
2^4=16 to get the average of noise
samples with window length of 8
samples in CFAR -CA mode.

cyclic mode or Wrapped
around mode.
 0- Disabled
 1- Enabled

used for programming the CFAR
engine inside HWA

This control is not supported on
xWR16xx, where it is always
enabled in CFAR detection in
Doppler direction and always
disabled in CFAR detection in
range direction.

Threshold scale.
 This is used in conjuntion
with the noise sum divisor
(say x).
 the CUT comparison for log
input is:

 CUT > Threshold scale +
(noise sum / 2^x)

Detection threshold is specified as
log2 value, expressed in Q9 format
for xWR14xx. The threshold value
can be converted from the value
expressed in dB as

 Tcli = 512 x TdB / 6 x N / N'

where N is numVirtualAntennas

N' = 2^ceil(log2(N)).

 Note: log input is used for xWR14xx
mmw demo

Detection threshold is specified as
log2 value, expressed in Q8 format
for xWR16xx. The threshold value
can be converted from the value
expressed in dB as

 Tcli = 256 x numVirtualAntennas x
TdB / 6.

 Note: log input is used for
xWR16xx mmw demo

peakGrouping Peak grouping config message to datapath.

 With peak grouping scheme enabled, instead of
reporting a cluster of detected neighboring points,
only one point, the highest one, will be reported,
this reducing the total number of detected points
per frame. Only the points between start and end
range index are considered. Detected points
falling outside this range are dropped and not
shipped out as part of point cloud.

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<scheme>
 1 –
MMW_PEAK_GROUPING_
DET_MATRIX_BASED
 Peak grouping is based on
peaks of the neighboring
bins read from detection
matrix. CFAR detected peak
is reported if it is greater
than its neighbors, located in
detection matrix.
 2 –
MMW_PEAK_GROUPING_
CFAR_PEAK_BASED
 Peak grouping is based on
peaks of neighboring bins
that are CFAR detected.
CFAR detected peak is
reported if it is greater than
its neighbors, located in the
list of CFAR detected peaks.

 For more detailed look at
mmw demo’s doxygen
documentation.

only option 1 is supported both options are supported

peak grouping in Range
direction:
 0 - disabled
 1 - enabled

supported supported

peak grouping in Doppler
direction:
 0 - disabled
 1 - enabled

supported supported

Start Range Index
 Minimum range index of
detected object that should
be sent out.

 Ex: Value of 1 means Skip
0th bin and start peak
grouping from range bin#1

supported supported

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

21

End Range Index
 Maximum range index of
detected object that should
be sent out.

 Ex: Value of (Range FFT
size -1) means skip last bin
and stop peak grouping at
(Range FFT size -1)

supported supported

multiObjBeamForming Multi Object Beamforming config message to
datapath.

 This feature allows radar to separate reflections
from multiple objects originating from the same
range/Doppler detection.

The procedure searches for the second peak
after locating the highest peak in Azimuth FFT. If
the second peak is greater than the specified
threshold, the second object with the same range
/Doppler is appended to the list of detected
objects. The threshold is proportional to the
height of the highest peak.

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<Feature Enabled>
 0 - disabled
 1 - enabled

supported supported

<threshold>
 0 to 1 – threshold scale for
the second peak detection in
azimuth FFT output.
Detection threshold is equal
to <thresholdScale>
multiplied by the first peak
height. Note that FFT output
is magnitude squared.

supported supported

calibDcRangeSig DC range calibration config message to datapath.

 Antenna coupling signature dominates the range
bins close to the radar. These are the bins in the
range FFT output located around DC.

When this feature is enabled, the signature is
estimated during the first N chirps, and then it is
subtracted during the subsequent chirps.

During the estimation period the specified
bins (defined as [negativeBinIdx, positiveBinIdx])
around DC are accumulated and averaged. It is
assumed that no objects are present in the
vicinity of the radar at that time.

This procedure is initiated by the following CLI
command, and it can be initiated any time while
radar is running. Note that the maximum number
of compensated bins is 32.

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

doesn’t exist For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled>
 Enable DC removal using
first few chirps
 0 - disabled
 1 - enabled

supported supported

<negativeBinIdx>
 negative Bin Index (to
remove DC from farthest
range bins)

 Maximum negative range
FFT index to be included for
compensation. Negative
indices are indices wrapped
around from far end of 1D
FFT.

 Ex: Value of -5 means last 5
bins starting from the
farthest bin

supported supported

<positiveBinIdx>
 positive Bin Index (to
remove DC from closest
range bins)
 Maximum positive range
FFT index to be included for
compensation

 Value of 8 means first 9
bins (including bin#0)

supported supported

<numAvg>
 number of chirps to average
to collect DC signature
(which will then be applied to
all chirps beyond this).
 The value must be power of
2, and also in xWR14xx, it
must be greater than the
number of Doppler bins.

 Value of 256 means first
256 chirps (after command
is issued and feature is
enabled) will be used for
collecting (averaging) DC
signature in the bins
specified above. From 257th
chirp, the collected DC
signature will be removed
from every chirp.

The value must be power of 2, and
must be greater than the number of
Doppler bins.

The value must be power of 2

extendedMaxVelocity Velocity disambiguation config message to
datapath.

 A simple technique for velocity disambiguation is
implemented. It corrects target velocities up to
(2*vmax). Enabling this feature results in loss of
multiObjBeamForming feature.

command doesn’t exist

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

22

 See mmW demo doxygen for xwr16xx for more
details.

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<subFrameIdx>
 subframe Index (exists only
in xwr16xx mmW demo)

n/a For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled>
 Enable velocity
disambiguation technique
 0 - disabled
 1 - enabled

n/a

clutterRemoval Static clutter removal config message to
datapath.

 Static clutter removal algorithm implemented by
subtracting from the samples the mean value of
the input samples to the 2D-FFT

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<enabled>
 Enable static clutter
removal technique
 0 - disabled
 1 - enabled

supported supported

compRangeBiasAndRxChanPhase Command for datapath to compensate for bias in
the range estimation and receive channel gain
and phase imperfections.
 Refer to the procedure mentioned here

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<rangeBias>
 Compensation for range
estimation bias in meters

supported supported

<Re(0,0)> <Im(0,0)> <Re
(0,1)> <Im(0,1)> ... <Re(0,R-
1)> <Im(0,R-1)> <Re(1,0)>
<Im(1,0)> ... <Re(T-1,R-1)>
<Im(T-1,R-1)>

 Set of Complex value
representing compensation
for virtual Rx channel phase
bias in Q15 format. Pairs of I
and Q should be provided
for all Tx and Rx antennas in
the device

12 pairs of values should be
provided here since the device has 4
Rx and 3 Tx (total of 12 virtual
antennas)

8 pairs of values should be
provided here since the device has
4 Rx and 2 Tx (total of 8 virtual
antennas)

measureRangeBiasAndRxChanPh
ase

Command for datapath to enable the
measurement of the range bias and receive
channel gain and phase imperfections. Refer to
the procedure mentioned here

 The values in this command can be changed
between sensorStop and sensorStart and even
when the sensor is running.

This is a mandatory command.

<enabled>
 1 - enable measurement.
This parameter should be
enabled only using the

 profile profile_calibration.cfg
in the mmW demo profiles
directory
 0 - disable measurement.
This should be the value to
use for all other profiles.

supported supported

<targetDistance>
 distance in meters where
strong reflector is located to
be used as test object for
measurement. This field is
only used when
measurement mode is
enabled.

supported supported

<searchWin>
 distance in meters of the
search window around
<targetDistance> where the
peak will be searched

supported supported

nearFieldCfg OOB processing chain assumes that the object of
interests are located in the far field so that the
rays between the object and the multiple TX/RX
antennas are parallel. However for very close by
objects this assumption (of parallel lines) is not
valid and can induce a significant phase error
when processed using regular FFT techniques.
User can use this command to enable the near
field correction algorithm.

See mmW demo doxygen for xwr16xx for more
details.

<subFrameIdx>

subframe Index (exists only
in xwr16xx mmW demo)

n/a For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enabled>

Enable near field correction

0 - disabled

1 - enabled

n/a supported

<startRangeIndex>

This is the first range bin
index at which the algorithm
would start correcting

n/a supported

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

23

<endRangeIndex>

This is the last range bin
index beyond which the
algorithm would stop
correcting.

n/a supported

CQRxSatMonitor Rx Saturation Monitoring config message for
Chirp quality to RadarSS and datapath. See
mmwavelink doxgen for details on
rlRxSatMonConf_t.

<profile>

 Valid profile Id for this
monitoring configuraiton.

This profile ID should have a
matching profileCfg

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<satMonSel>

RX Saturation monitoring
mode

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<priSliceDuration>

Duration of each slice,
1LSB=0.16us, range: 4 -
number of ADC samples

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<numSlices>

primary + secondary slices ,
range 1-127. Maximum
primary slice is 64.

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<rxChanMask>

RX channgel mask, 1 -
Mask, 0 - unmask

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

CQSigImgMonitor Signal and image band energy Monitoring config
message for Chirp quality to RadarSS and
datapath. See mmwavelink doxgen for details on
rlSigImgMonConf_t.

The enable/disable for this command is controlled
via the "analogMonitor" CLI command

<profile>

 Valid profile Id for this
monitoring configuraiton.

This profile ID should have a
matching profileCfg

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<numSlices>

primary + secondary slices ,
range 1-127. Maximum
primary slice is 64.

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

<numSamplePerSlice>

Possible range is 4 to
"number of ADC samples" in
the corresponding
profileCfg. It must be an
even number.

any value as per mmwavelink
doxgen

any value as per mmwavelink
doxgen

analogMonitor Controls the enable/disable of the various
monitoring features supported in the demos.

<rxSaturation>

CQRxSatMonitor enable
/disable

1:enable

0: disable

all values supported all values supported

<sigImgBand>

CQSigImgMonitor enable
/disable

1:enable

0: disable

all values supported all values supported

lvdsStreamCfg Enables the streaming of various data streams
over LVDS lanes (xWR16xx).

<subFrameIdx>

subframe Index (exists only
in xwr16xx mmW demo)

n/a For legacy mode, that field should
be set to -1 whereas for advanced
frame mode, it should be set to
either the intended subframe
number or -1 to apply same config
to all subframes.

<enableHeader>

0 - Disable HSI header for
all active streams

1 - Enable HSI header for all
active streams

n/a all values supported

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

24

<dataFmt>

Controls HW streaming.
Specifies the HW streaming
data format.

0-HW STREAMING
DISABLED

1-ADC

2-CP_ADC

3-ADC_CP

4-CP_ADC_CQ

n/a all values supported

<enableSW>

0 - Disable user data (SW
session)

1 - Enable user data

n/a all values supported

sensorStart sensor Start command to RadarSS and datapath.
 Starts the sensor. This function triggers the
transmission of the frames as per the frame and
chirp configuration. By default, this function also
sends the configuration to the mmWave Front
End and the processing chain.

This is a mandatory command.

 Optionally, user can provide
an argument 'doReconfig'
 1 - Do full reconfiguration of
the device
 0 - Skip reconfiguration and
just start the sensor using
already provided
configuration.

supported supported

sensorStop sensor Stop command to RadarSS and datapath.
 Stops the sensor.
 If the sensor is running, it will stop the mmWave
Front End and the processing chain.
 After the command is acknowledged, a new
config can be provided and sensor can be
restarted or sensor can be restarted without a
new config (i.e. using old config). See
'sensorStart' command.

This is mandatory before any reconfiguration is
performed post sensorStart.

supported supported

flushCfg This command should be issued after
'sensorStop' command to flush the old
configuration and provide a new one.

This is mandatory before any reconfiguration is
performed post sensorStart.

supported supported

% Any line starting with '%'
character is considered as
comment line and is skipped
by the CLI parsing utility.

supported supported

Table 1: mmWave SDK Demos - CLI commands and parameters

3. 5. Running the prebuilt unit test binaries (.xer4f and .xe674)

Unit tests for the drivers and components can be found in the respective test directory for that component. See section "mmWave SDK - TI
 for location of each component's test code. For example, UART test code that runs on TI RTOS is in components" mmwave_sdk_<ver>

. In this test directory, you will find .xer4f and .xe674 files (either prebuilt or build as a part of /packages/ti/drivers/uart/test/<platform>
instructions mentioned in). Follow the instructions in section " to download "Building drivers/control components" CCS development mode"
and execute these unit tests via CCS.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

25

1.

4. How-To Articles

4. 1. How to identify the COM ports for xWR14xx/xWR16xx EVM

When the EVM is powered on and connected to Windows PC via the supplied USB cable, there should be two additional COM Ports in
Device Manager. See your mmWave devices' TI EVM User Guide for details on the COM port.

After following the above steps, disconnect and re-connect the EVM and you should see the COM ports now. See the highlighted COM ports
in the belowFigure

Figure 3: xWR14xx/xWR16xx PC Connectivity - Device Manager - COM Ports

4. 2. How to flash an image onto xWR14xx/xWR16xx EVM

You will need the mmWave Device TI EVM, USB cable and a Windows/Linux PC to perform these steps.

Setup the Booster Pack EVM for Flashing

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumper locations (See "Sense-on-Power
" section in mmWave device's EVM user guide). To put the EVM in flashing mode, power off the board and place (SOP) Jumpers

jumpers on pins marked as SOP2 and SOP0 .

1.

2.

3.

4.

Troubleshooting Tip

If the COM ports don't show up in the Device Manager or are not working (i.e. no demo output seen on the data port), then one of
these steps would apply depending on your setup:

If you want to run the Out-of-box demo, simple browse to the Visualizer () and https://dev.ti.com/mmWaveDemoVisualizer
follow the one-time setup instructions.
If you are trying to flash the board, using Uniflash tool and following the cloud or desktop version installation instructions
would also install the right drivers for the COM ports.
If above methods didnt work and if TI code composer studio is not installed on that PC, then download and install the stand

. alone XDS110 drivers
If TI code composer studio is installed, then version of CCS and emulation package need to be checked and updated as
per the mmWave SDK release notes. See section for more details.Emulation Pack Update

COM Port

Please note that the COM port numbers on your setup maybe different from the one shown above. Please use the correct COM
port number from your setup for following steps.

https://confluence.itg.ti.com/download/attachments/76059979/Device_Manager.png?version=1&modificationDate=1519333409000&api=v2
https://dev.ti.com/mmWaveDemoVisualizer
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package
http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

26

1.

2.

1.
2.

3.

4.

1.
2.
3.

SOP2

jumper

SOP1

jumper

SOP0

jumper

Bootloader mode & operation

0 0 1 Functional Mode

Device Bootloader loads user application from QSPI Serial Flash to internal RAM and switches the control
to it

1 0 1 Flash Programming Mode

Device Bootloader spins in loop to allow flashing of user application to the serial flash.

Procure the Images
For flashing xWR1xxx devices, TI Uniflash tool should be used. Users can either use the cloud version available at https://dev.ti.com

 or download the desktop version available at . Detailed instructions on how to use the /uniflash/ http://www.ti.com/tool/UNIFLASH
GUI are described in the Uniflash document " " located at UniFlash User Guide for mmWave Devices http://processors.wiki.ti.com

. This document talks about the steps from the perspective of desktop GUI but the flashing steps /index.php/Category:CCS_UniFlash
(except for installation) should apply for cloud version as well. For the SDK packaged demos and ccsdebug utility, there is a bin file
provided in their respective folder: <platform>_<demo|ccsdebug>.bin which is the metaImage to be used for flashing. The
metaImage already has the MSS, BSS (RADARSS) and DSS (xWR16xx only) application combined into one file. These bin files can
be selected in Uniflash based on the working mode. Users can use these instructions to flash the metaImage of their custom demo
as well.

For demo mode, should be selected.mmwave_sdk_<ver>\ti\demo\<platform>\mmw\<platform>_mmw_demo.bin
For CCS development mode, should be selected. mmwave_sdk_<ver>\ti\ utils\ccsdebug\<platform>_ccsdebug.bin

Flashing procedure

Power up the EVM and check the Device Manager in your windows PC. Note the number for the serial port marked as "XDS110
" for the EVM. Lets say for this example, it showed up as COM25. Use this COM port in the TI Class Application/User UART

Uniflash tool. Follow the remaining instructions in the " " to complete the flashing. UniFlash v4 User Guide for mmWave Devices
Switch back to Functional Mode

Refer to the EVM User Guide to understand the bootup modes of the EVM and the SOP jumpers (See "Sense-on-Power (SOP)
" section in mmWave device's EVM user guide). To put the EVM in functional mode, power off the board and remove Jumpers

jumpers from "SOP2" pin and leave the jumper on "SOP0" pin.

4. 3. How to erase flash on xWR14xx/xWR16xx EVM

Setup the Booster Pack EVM for flashing as mentioned in step 1 of the section: How to flash an image onto xWR14xx/xWR16xx EVM
Follow the instructions in " " section " ". UniFlash v4 User Guide for mmWave Devices Format SFLASH Button
Switch back to Functional Mode as mentioned in step 4 of the section: How to flash an image onto xWR14xx/xWR16xx EVM

4. 4. How to connect xWR14xx/xWR16xx EVM to CCS using JTAG

Debug/JTAG capability is available via the same XDS110 micro-USB port/cable on the EVM. TI Code composer studio would be required for
accessing the debug capability of the device. Refer to the release notes for TI code composer studio and emulation pack version that would
be needed.

4. 4. 1. Emulation Pack Update

Refer to the mmWave SDK release notes for the emulation pack version that would be needed within CCS to connect to the EVM. Check if
that particular or its later version of "TI Emulators" is available within your CCS installation. If you have an older version on your system, refer
to CCS help on how to update software packages within CCS.

4. 4. 2. Device support package Update

To create the ccxml file for connecting to the EVM, you will need to first update the device support package within CCS. Refer to the
mmWave SDK release notes for the device support package version that would be needed within CCS to connect to the EVM. Check if that
particular or its later version of "mmWave Radar Device Support" is available within your CCS installation. If you have an older version on
your system, refer to CCS help on how to update software packages within CCS.

4. 4. 3. Target Configuration file for CCS (CCXML)

4. 4. 3. 1. Creating a CCXML file

Assuming you have updated the device support package and Emulation pack as mentioned in the above, follow the steps mentioned section
below to create a target configuration file in CCS.

https://dev.ti.com/uniflash/
https://dev.ti.com/uniflash/
http://www.ti.com/tool/UNIFLASH
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash
http://processors.wiki.ti.com/index.php/Category:CCS_UniFlash

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

27

1.
2.
3.
4.

If your CCS does not already show "Target Configurations" window, do View->Target Configurations
This will show the "Target Configurations" window, right click in the window and select "New Target Configuration"
Give an appropriate name to the ccxml file you want to create for the EVM
Scroll the "Connection" list and select "Texas Instruments XDS110 USB Debug Probe", when this is done, the "Board or Device" list
will be filtered to show the possible candidates, find and choose AWR1642 or AWR1443 and check the box. Click Save and the file
will be created.

4. 4. 3. 2. Connecting to xWR14xx/xWR16xx EVM using CCXML in CCS

Follow steps in above to create a ccxml file. Once created, the target configuration file will be seen in the " " list section Target Configurations
and you can launch the target by selecting it and with right-click select the "Launch Selected Configuration" option. This will launch the target
and the Debug window will show all the cores present on the device. You can connect to the target with right-click and doing "Connect
Target".

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

28

1.

2.

4. 5. Developing using SDK

4. 5. 1. Build Instructions

Follow the mmwave_sdk_release_notes instructions to install the mmwave_sdk in your development environment (windows or linux). All the
tools needed for mmwave sdk build are installed as part of mmwave sdk installer.

4. 5. 2. Setting up build environment

4. 5. 2. 1. Windows

Create command prompt at < folder. Under this folder you should see a mmwave_sdk_<ver> install path>\packages\scripts\windows
setenv.bat file that has all the tools environment variables set automatically based on the installation folder. Review this file and
change the few build variables shown below (if needed) and save the file. Please note that the rest of the environment variables
should not be modified if the standard installation process was followed.

Build variables that can be modified (if needed) in setenv.bat
@REM ###
@REM # Build variables (to be modified based on build need)
@REM ###
@REM Select your device. Options (case sensitive) are: awr14xx, iwr14xx, awr16xx, iwr16xx
set MMWAVE_SDK_DEVICE=awr16xx

@REM If download via CCS is needed, set below define to yes else no
@REM yes: Out file created can be loaded using CCS.
@REM Binary file created can be used to flash
@REM no: Out file created cannot be loaded using CCS.
@REM Binary file created can be used to flash
@REM (additional features: write-protect of TCMA, etc)
set DOWNLOAD_FROM_CCS=yes

@REM If using a secure device this variable needs to be updated with the path to
mmwave_secdev_<ver> folder
set MMWAVE_SECDEV_INSTALL_PATH=

@REM If using a secure device, this variable needs to be updated with the path to hsimage.cfg file
that
@REM has customer specific certificate/key information. A sample hsimage.cfg file is in the secdev
package
set MMWAVE_SECDEV_HSIMAGE_CFG=%MMWAVE_SECDEV_INSTALL_PATH%/hs_image_creator/hsimage.cfg

Run as shown below.setenv.bat

Run setenv.bat
setenv.bat

Refer to the MMWAVE-SECDEV User Guide to setup environment needed for builds for high secure (HS) devices. For
non secure devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.bat file then most probably the wrong installer was used (Linux installation being
compiled under Windows)

set MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual
installation folder path

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

29

2.

1.

2.

3.

4.

This should not give errors and should print the message . The build environment is "mmWave Build Environment Configured"
now setup.

4. 5. 2. 2. Linux

Open a terminal and cd to < . Under this folder you should see a setenv.sh mmwave_sdk_<ver> install path>/packages/scripts/unix
file that has all the tools environment variables set automatically based on the installation folder. Review this file and change the few
build variables shown below (if needed) and save the file. Please note that the rest of the environment variables should not be
modified if the standard installation process was followed.

Build variables that can be modified (if needed) in setenv.sh
###
Build variables (to be modified based on build need)
###
Select your device. Options (case sensitive) are: awr14xx, iwr14xx, awr16xx, iwr16xx
export MMWAVE_SDK_DEVICE=awr16xx

If download via CCS is needed, set below define to yes else no
yes: Out file created can be loaded using CCS.
Binary file created can be used to flash
no: Out file created cannot be loaded using CCS.
Binary file created can be used to flash
(additional features: write-protect of TCMA, etc)
export DOWNLOAD_FROM_CCS=yes

If using a secure device, this variable needs to be updated with the path to mmwave_secdev_<ver>
folder
export MMWAVE_SECDEV_INSTALL_PATH=

If using a secure device, this variable needs to be updated with the path to hsimage.cfg file
that
has customer specific certificate/key information. A sample hsimage.cfg file is in the secdev
package
export MMWAVE_SECDEV_HSIMAGE_CFG=${MMWAVE_SECDEV_INSTALL_PATH}/hs_image_creator/hsimage.cfg

Assuming build is on a Linux 64bit machine, install modules that allows Linux 32bit binaries to run. This is needed for Image Creator
binaries

sudo dpkg --add-architecture i386

Install mono. One of the Image Creator binaries (out2rprc.exe) is a windows executable that needs mono to run in Linux environment

sudo apt-get --assume-yes install mono-complete

Run as shown below. setenv.sh

Run setenv.sh
source ./setenv.sh

Refer to the MMWAVE-SECDEV User Guide to setup environment needed for builds for high secure (HS) devices. For
non secure devices the MMWAVE_SECDEV_INSTALL_PATH environment variable should be empty.

If you see the following line in the setenv.sh file then most probably the wrong installer was used (Windows installation
being compiled under Linux)

export MMWAVE_SDK_TOOLS_INSTALL_PATH=__MMWAVE_SDK_TOOLS_INSTALL_PATH__

In a proper installation the __MMWAVE_SDK_TOOLS_INSTALL_PATH__ would have been replaced with the actual
installation folder path

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

30

4.

This should not give errors and should print the message . The build environment is "mmWave Build Environment Configured"
now setup.

4. 5. 3. Building demo

To clean build a demo, first make sure that the environment is setup as detailed in earlier section. Then run the following commands. On
successful execution of the commands, the output is <demo>.xe* which can be used to load the image via CCS and <demo>.bin which can
be used as the binary in the steps mentioned in section "."How to flash an image onto xWR14xx/xWR16xx EVM

4. 5. 3. 1. Building demo in Windows

Building demo in windows
REM Use xwr14xx or xwr16xx for <device type> below. Use mmw for <demo> below
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/<device type>/<demo>

REM Clean and build
gmake clean
gmake all

REM Incremental build
gmake all

REM For example to build the mmw demo for awr14xx or iwr14xx
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr14xx/mmw
gmake clean
gmake all
REM This will create xwr14xx_mmw_demo_mss.xer4f & xwr14xx_mmw_demo_mss.bin binaries under
REM %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr14xx/mmw folder

REM For example to build the mmw demo for awr16xx or iwr16xx
cd %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr16xx/mmw
gmake clean
gmake all
REM This will create xwr16xx_mmw_demo_mss.xer4f, xwr16xx_mmw_demo_dss.xe674 & xwr14xx_mmw_demo.bin
REM binaries under %MMWAVE_SDK_INSTALL_PATH%/ti/demo/xwr16xx/mmw folder

4. 5. 3. 2. Building demo in Linux

Building demo in linux
Use xwr14xx or xwr16xx for <device type> below. Use mmw for <demo> below
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/<device type>/<demo>

Clean and build
make clean
make all

Incremental build
make all

For example to build the mmw demo for awr14xx or iwr14xx
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr14xx/mmw
make clean
make all
This will create xwr14xx_mmw_demo_mss.xer4f & xwr14xx_mmw_demo_mss.bin binaries under
${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr14xx/mmw folder

For example to build the mmw demo for awr16xx or iwr16xx
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr16xx/mmw
make clean
make all
This will create xwr16xx_mmw_demo_mss.xer4f, xwr16xx_mmw_demo_dss.xe674 & xwr14xx_mmw_demo.bin
binaries under ${MMWAVE_SDK_INSTALL_PATH}/ti/demo/xwr16xx/mmw folder

Each demo has dependency on various drivers and control components. The libraries for those components need to be available
in their respective lib folders for the demo to build successfully.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

31

4. 5. 4. Advanced build

The mmwave sdk package includes all the necessary libraries and hence there should be no need to rebuild the driver, algorithms or control
component libraries. In case a modification has been made to any of these modules then the following section details how to build these
components.

4. 5. 4. 1. Building drivers/control/alg components

To clean build driver, control or alg component and its unit test, first make sure that the environment is setup as detailed in earlier section.
Then run the following commands

Building component in windows
cd %MMWAVE_SDK_INSTALL_PATH%/ti/<path to the component>
gmake clean
gmake all

REM For example to build the adcbuf lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/drivers/adcbuf
gmake clean
gmake all
REM If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will create
REM libadcbuf_xwr14xx.aer4f library under ti/drivers/adcbuf/lib folder
REM xwr14xx_adcbuf_mss.xer4f unit test binary under ti/drivers/adcbuf/test/xwr14xx folder
REM If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will create
REM libadcbuf_xwr16xx.aer4f library for MSS under ti/drivers/adcbuf/lib folder
REM xwr16xx_adcbuf_mss.xer4f unit test binary for MSS under ti/drivers/adcbuf/test/xwr16xx folder
REM libadcbuf_xwr16xx.ae674 library for DSS under ti/drivers/adcbuf/lib folder
REM xwr16xx_adcbuf_dss.xe674 unit test binary for DSS under ti/drivers/adcbuf/test/xwr16xx folder
REM Above paths are relative to %MMWAVE_SDK_INSTALL_PATH%/

REM For example to build the mmwavelink lib and unit test
cd %MMWAVE_SDK_INSTALL_PATH%/ti/control/mmwavelink
gmake clean
gmake all
REM If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will create
REM libmmwavelink_xwr14xx.aer4f library under ti/control/mmwavelink/lib folder
REM xwr14xx_link_mss.xer4f unit test binary under ti/drivers/control/mmwavelink/test/xwr14xx folder
REM If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will create
REM libmmwavelink_xwr16xx.aer4f library for MSS under ti/control/mmwavelink/lib folder
REM xwr16xx_link_mss.xer4f unit test binary for MSS under ti/control/mmwavelink/test/xwr16xx folder
REM libmmwavelink_xwr16xx.ae674 library for DSS under ti/control/mmwavelink/lib folder
REM xwr16xx_link_dss.xe674 unit test binary for DSS under ti/control/mmwavelink/test/xwr16xx folder
REM Above paths are relative to %MMWAVE_SDK_INSTALL_PATH%/

REM Additional build options for each component can be found by invoking make help
gmake help

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

32

Building component in linux
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/<path to the component>
make clean
make all

For example to build the adcbuf lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/drivers/adcbuf
make clean
make all
If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will create
libadcbuf_xwr14xx.aer4f library under ti/drivers/adcbuf/lib folder
xwr14xx_adcbuf_mss.xer4f unit test binary under ti/drivers/adcbuf/test/xwr14xx folder
If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will create
libadcbuf_xwr16xx.aer4f library for MSS under ti/drivers/adcbuf/lib folder
xwr16xx_adcbuf_mss.xer4f unit test binary for MSS under ti/drivers/adcbuf/test/xwr16xx folder
libadcbuf_xwr16xx.ae674 library for DSS under ti/drivers/adcbuf/lib folder
xwr16xx_adcbuf_dss.xe674 unit test binary for DSS under ti/drivers/adcbuf/test/xwr16xx folder
Above paths are relative to ${MMWAVE_SDK_INSTALL_PATH}/

For example to build the mmwavelink lib and unit test
cd ${MMWAVE_SDK_INSTALL_PATH}/ti/control/mmwavelink
make clean
make all
If MMWAVE_SDK_DEVICE is set to awr14xx or iwr14xx, the commands will create
libmmwavelink_xwr14xx.aer4f library under ti/control/mmwavelink/lib folder
xwr14xx_link_mss.xer4f unit test binary under ti/drivers/control/mmwavelink/test/xwr14xx folder
If MMWAVE_SDK_DEVICE is set to awr16xx or iwr16xx, the commands will create
libmmwavelink_xwr16xx.aer4f library for MSS under ti/control/mmwavelink/lib folder
xwr16xx_link_mss.xer4f unit test binary for MSS under ti/control/mmwavelink/test/xwr16xx folder
libmmwavelink_xwr16xx.ae674 library for DSS under ti/control/mmwavelink/lib folder
xwr16xx_link_dss.xe674 unit test binary for DSS under ti/control/mmwavelink/test/xwr16xx folder
Above paths are relative to ${MMWAVE_SDK_INSTALL_PATH}/

Additional build options for each component can be found by invoking make help
make help

example output of make help for drivers and mmwavelink
**
* Makefile Targets for the ADCBUF
clean -> Clean out all the objects
drv -> Build the Driver only
drvClean -> Clean the Driver Library only
test -> Builds all the unit tests for the SOC
testClean -> Cleans the unit tests for the SOC
**

example output of make help for mmwave control and alg component
**
* Makefile Targets for the mmWave Control
clean -> Clean out all the objects
lib -> Build the Core Library only
libClean -> Clean the Core Library only
test -> Builds all the Unit Test
testClean -> Cleans all the Unit Tests
**

4. 5. 4. 2. "Error on warning" compiler and linker setting

Please note that not all drivers are supported for all devices. List of supported drivers for each device is listed in the Release Notes.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

33

By default, the SDK build uses "–emit_warnings_as_errors" option to help users identify certain common mistakes in code that are flagged as
warning but could lead to unexpected results. If user desires to disable this feature, then please set the flag
MMWAVE_DISABLE_WARNINGS_AS_ERRORS to 1 in the above mentioned setenv.bat or setenv.sh and invoke that file again to update
the build environment.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

34

1.

1.
2.
3.

2.
1.
2.
3.

3.
1.

2.
3.

5. MMWAVE SDK deep dive

5. 1. System Deployment

5. 1. 1. xWR14xx

A typical mmWave application using xWR14xx would perform these operations:

Control and monitoring of RF front-end through mmwaveLink
External communications through standard peripherals
Some radar data processing using FFT HW accelerator

Typical xWR14xx system deployments could be envisioned as follows:

Autonomous xWR14xx sensor (aka Standalone mode)

xWR14xx program code is downloaded from the serial flash memory to xWR14xx (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data

Hybrid xWR14xx sensor + Controller
Serial flash is attached/in-built to external controller and exists between xWR14xx and controllerSPI interface
High level control from controller (code download, GPIO toggling, etc)
Sends output (objects detected) to controller.low speed data

Satellite xWR14xx sensor + DSP
Program code is either in serial flash memory attached to xWR14xx (via QSPI) or downloaded via the control interface
between xWR14xx and DSP (ex: via SPI)
High level control from DSP
Sends output (1D/2D FFT output) to DSPhigh speed data

These deployments are depicted in the and . Figure 4 Figure 5

Figure 4: xWR14xx Deployment in Hybrid or Standalone mode

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

35

1.
2.
3.
4.

Figure 5: xWR14xx Deployment in Satellite mode

Note that the software architecture presented above demonstrates only the mmWave SDK components running on the external devices –
MCU, DSP, PC. There are other software components running on those external devices which are part of the ecosystem of those devices
and out of scope for this document. The mmWave SDK package would provide, in future, sample code for the mmWave API running on
these external devices but the porting of this layer onto these external device ecosystem is the responsibility of system integrator/application
code provider.

5. 1. 2. xWR16xx

A typical xWR16xx application would perform these operations:

Control and monitoring of RF front-end through mmaveLink
Transport of external communications through standard peripherals
Some radar data processing using DSP

Typical xWR16xx customer deployment is shown in :Figure 6

xWR16xx program code for MSS and DSP-SS is downloaded from the serial flash memory to xWR16xx (via QSPI)attached
Optional high level control from remote entity
Sends output (objects detected) to remote entitylow speed data
Optional high speed data (debug) sent out of device over LVDS

Figure 6: Autonomous xWR16xx sensor (Standalone mode)

5. 2. Typical mmWave Radar Processing Chain

Following shows a typical mmWave Radar processing chain:figure

https://confluence.itg.ti.com/download/attachments/76059979/typical_mmwave_processing_chain.png?version=1&modificationDate=1519333415000&api=v2

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

36

Figure 7: Typical mmWave radar processing chain

Using mmWave SDK the above chain could be realized as shown in the following for xWR14xx and xWR16xx. In the following figure, figure
green arrow shows the control path and red arrow shows the data path. Blue blocks are mmWave SDK components and yellow blocks are
custom application code. The hierarchy of software flow/calls is shown with embedding boxes. Depending on the complexity of the higher
algorithms (such as clustering, tracking, etc) and their memory/mips consumption, they can either be partially realized inside the AR device
or would run entirely on the external processor.

Figure 8: Typical mmWave radar processing chain using xWR14xx mmWave SDK

https://confluence.itg.ti.com/download/attachments/76059979/image2016-9-30%2010%3A27%3A32.png?version=1&modificationDate=1519333415000&api=v2

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

37

Figure 9: Typical mmWave radar processing chain using xWR16xx mmWave SDK

Please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw folder for more details and
example code on how this chain is realized using mmWave SDK components.

5. 3. Typical Programming Sequence

The above processing chain can be split into two distinct blocks: control path and data path.

5. 3. 1. Control Path

The control path in the above processing chain is depicted by the following blocks.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

38

Figure 10: Typical mmWave radar control flow

Following set of figures shows how an application programming sequence would be for setting up the typical control path - init, config, start.
This is a high level diagram simplified to highlight the main sofwtare APIs and may not show all the processing elements and call flow. For an
example implementation of this call flow, please refer to the code and documentation inside the mmwave_sdk_<ver>\packages\ti\demo\<platf
orm>\mmw folder.

5. 3. 1. 1. xWR14xx (MSS<->RADARSS)

On xWR14xx, the control path runs on the Master subsystem (Cortex-R4F) and the application can simply call the mmwave APIs in the SDK
to realize most of the functionality.

Figure 11: xWR14xx: Detailed Control Flow (Init sequence)

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

39

Figure 12: xWR14xx: Detailed Control Flow (Config sequence)

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

40

Figure 13: xWR14xx: Detailed Control Flow (start sequence)

5. 3. 1. 2. xWR16xx

On xWR16xx, the control path can run on MSS only, DSS only or in "co-operative" mode where the init and config are initiated by the MSS
and the start is initiated by the DSS after the data path configuration is complete. In the figures below, control path runs on MSS entirely and
MSS is responsible for properly configuring the RADARSS (RF) and DSS (data processing). The co-operative mode can be seen in the
MMW demo. The mmWave unit tests provide a sample implementation of all 3 modes.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

41

Figure 14: xWR16xx: Detailed Control Flow (Init sequence)

Figure 15: xWR16xx: Detailed Control Flow (Config sequence)

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

42

Figure 16: xWR16xx: Detailed Control Flow (Start sequence)

5. 3. 2. Data Path

5. 3. 2. 1. xWR14xx

In xWR14xx, the data path in the above processing chain is depicted by the following blocks running on the MSS (Cortex-R4F).

Figure 17: Typical mmWave radar data flow in xWR14xx

Please refer to the documentation provided here for mmwave_sdk_<ver>\packages\ti\demo\xwr14xx\mmw\docs\doxygen\html\index.html
more details on each of the individual blocks of the data path.

5. 3. 2. 2. xWR16xx

In xWR16xx, the data path in the above processing chain is depicted by the following blocks running primarlity on the DSS (C674x).

Figure 18: Typical mmWave radar data flow in xWR16xx

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

43

Please refer to the documentation provided here for mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\docs\doxygen\html\index.html
more details on each of the individual blocks of the data path.

5. 4. mmWave SDK - TI components

The mmWave SDK functionality broken down into components are explained in next few subsections.

5. 4. 1. Drivers

Drivers encapsulate the functionality of the various hardware IPs in the system and provide a well defined API to the higher layers. The
drivers are designed to be OS-agnostic via the use of OSAL layer. Following figure shows typical internal software blocks present in the SDK
drivers. The source code for the SDK drivers are present in the folder. Documentation of the mmwave_sdk_<ver>\packages\ti\drivers\<ip>
API is available via doxygen and placed at . The driver's unit test mmwave_sdk_<ver>\packages\ti\drivers\<ip>\docs\doxygen\html\index.html
code, running on top of SYSBIOS is also provided as part of the package . The library for mmwave_sdk_<ver>\packages\ti\drivers\<ip>\test\
the drivers are placed in the directory and the file is named lib<ip>_<platform>.aer4f for mmwave_sdk_<ver>\packages\ti\drivers\<ip>\lib
MSS and lib<ip>_<platform>.ae 674 for DSP.

Figure 19: mmWave SDK Drivers - Internal software design

Drivers
/Hardware
IP

Platform
supported

Driver Functionality Implemented in mmWave SDK

ADCBUF xWR14xx
R4F

xWR16xx
R4F
xWR16xx
DSP

All features of IP (ADCBUF, CQ) are implemented in the driver

CAN xWR14xx
R4F

xWR16xx
R4F

Following features of IP are implemented in the driver:
 Configure Rx and Tx I/O Control registers
 Configure DCAN mode of operation
Configure DCAN controller, interrupts, ECC, parity
Set bit time parameters
Configure Rx and Tx message objects
Receive and Transmit a CAN message
Retrieve Tx message object transmission status and Rx message object reception status
Check the validity of the received message

CANFD AWR16xx
R4F

Following features of IP are implemented in the driver:

Reset MCAN driver
Initialize MCAN clock stop controls, auto wakeup, MCAN mode - classic versus FD mode,
transceiver delay conpensation
Configure MCAN controller and global filters
Configure MCAN mode of operation
Set bit time parameters

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

44

Configure message filters, Rx/Tx FIFOs
Add and cancel Tx requests
Transmits a CAN message
Receive a CAN message
Check the validity of the received message
Configure interrupt multiplexer to service message objects
Retrieve interrupt line status, interrupt pending status, parity error status, bit error status, ECC
diagnostics status, ECC error status and MCAN error status
Clear interrupt pending status, ECC diagnostics error status, ECC error status and MCAN error status
Configure MCAN parity function, self test mode, ECC Diagnostic mode

CBUFF xWR14xx
R4F

xWR16xx
R4F
xWR16xx
DSP

Following features of IP are implemented in the driver:
 Supports Platform defined HSI: LVDS or CSI (IWR14xx only).
 Initialize and setup the CBUFF Driver
 Configure the Linked List and EDMA Channels to support the data transfer
 Supports Interleaved and Non-Interleaved data mode
 Supports the data formats: ADC, ADC_CP, CP_ADC, CP_ADC_CQ
 Supports CRC

CBUFF
(LVDS)

xWR14xx
R4F

xWR16xx
R4F
xWR16xx
DSP

Following features of IP are implemented in the driver:
 LVDS driver supports the chirp and continuous mode of data transmission.
 Supports only 2 and 4 lane configuration in Format0.
 Supports transfer of S/W triggered user data over CBUFF/LVDS interface

CRC xWR14xx
R4F

xWR16xx
R4F
xWR16xx
DSP

All features of IP are implemented in the driver including:
 CRC-16
 CRC-32
 CRC-64

CRYPTO xWR16xx
(HS) R4F

The driver supports following AES mode of encryption:

Electronic codebook mode (ECB)
Cipher-block chaining mode (CBC)
Cipher feedback mode (CFB)
Counter mode (CTR)
Integer counter mode (ICM)
Galios/counter mode (GCM)
Counter with CBC-MAC mode (CCM)

The driver supports following HMAC modes:

MD5
SHA-1
SHA-224
SHA-256

CSI-2 IWR14xx
R4F

Following features of IP are implemented in the driver:
 Initialization and Setup of the Protocol Engine
 Initialization and configuration of the DSI PHY
 DSI Phy Parameters can be customized by the application

DMA xWR14xx
R4F

xWR16xx
R4F

Following features of IP are implemented in the driver:
 software and hardware triggered transfer
 frame based transfer
 block based transfer
 Addressing mode (Constant, Indexed, Post Increment)
 FTC, BTC, LFS, HBC interrupts
 channel chaining
 auto-initiation mode
 interrupt based and polling based channel completion APIs

EDMA xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver except "privilege" feature

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

45

xWR16xx
DSP

ESM xWR14xx
R4F

xWR16xx
R4F

xWR16xx
DSP

Default ESM FIQ Interrupt handler for R4F and hook function for DSP's NMI

Provide application to register callback functions on specific ESM errors.

GPIO xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver

HWA xWR14xx
R4F

All features of IP are implemented in the driver

I2C xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver

MAILBOX xWR14xx
R4F

xWR16xx
R4F
xWR16xx
DSP

All features of IP are implemented in the driver.

OSAL xWR14xx
R4F

xWR16xx
R4F

xWR16xx
DSP

Provides an abstraction layer for some of the common OS services:
Semaphore
Mutex
Debug
Interrupts
Clock
Memory

PINMUX xWR14xx
R4F

xWR16xx
R4F

All Pinmux fields can be set and all device pad definitions are available

QSPI xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver.

QSPIFLASH xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver.

RTI xWR14xx
R4F

xWR16xx
R4F

Part of TI RTOS offering

SOC xWR14xx
R4F

xWR16xx
R4F

Provides abstracted APIs for system-level initialization. See section "mmWave SDK - System
Initialization" for more details.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

46

xWR16xx
DSP

SPI (MIBSPI) xWR14xx
R4F

xWR16xx
R4F

All features of IP are implemented in the driver including:
 4-wire Slave and master mode
 3-wire Slave and Master mode
 both polling mode and DMA mode for read/write
 char length 8-bit and 16-bit.

VIM xWR14xx
R4F

xWR16xx
R4F

Part of TI RTOS offering

UART xWR14xx
R4F

xWR16xx
R4F

xWR16xx
DSP

All features of IP are implemented in the driver including:
 Standard Baud Rates: 9600, 14400, 19200 till 921600
 Data Bits: 7 and 8 Bits
 Parity: None, Odd and Even
 Stop Bits: 1 and 2 bits
 Blocking and Polling API for reading and writing to the UART instance
 DMA support for read/write APIs

WATCHDOG xWR14xx
R4F

xWR16xx
R4F

xWR16xx
DSP

All features of IP are implemented in the driver.

Table 2: Supported drivers and their functionality

5. 4. 2. OSAL

An OSAL layer is present within the mmWave SDK to provide the OS-agnostic feature of the foundational components (drivers,
mmWaveLink, mmWaveAPI). This OSAL provides an abstraction layer for some of the common OS services: Semaphore, Mutex, Debug,
Interrupts, Clock, Memory. The source code for the OSAL layer is present in the folder. mmwave_sdk_<ver>\packages\ti\drivers\osal
Documentation of the APIs are available via doxygen and placed at mmwave_sdk_<ver>\packages\ti\drivers\osal\docs\doxygen\html\index.

. A sample porting of this OSAL for TI RTOS is provided as part of the mmWave SDK. System integrators could port the OSAL for their html
custom OS or customize the same TI RTOS port for their custom application, as per their requirements.

Examples of what integrators may want to customize:

MemoryP module - for example, choosing from among a variety of heaps available in TI RTOS (SYSBIOS), or use own allocator.
Hardware interrupt mappings. This case is more pronounced for the C674 DSP on xWR16xx which has only 16 interrupts (of which
12 are available under user control) whereas the events in the SOC are much more than 16. These events go to the C674 through
an interrupt controller (INTC) and Event Combiner (for more information see the C674x megamodule user guide at http://www.ti.com

). The default OSAL implementation provided in the release routes all events used by the drivers through /lit/ug/sprufk5a/sprufk5a.pdf
the event combiner. If a user chooses to route differently (e.g for performance reasons), they may add conditional code in OSAL
implementation to route specific events through the INTC and event combiner blocks. User can conveniently use event defines in ti
/common/sys_common_*.h to acheive this.

5. 4. 3. mmWaveLink

mmWaveLink is a control layer and primarily implements the protocol that is used to communicate between the Radar Subsystem
(RADARSS) and the controlling entity which can be either Master subsystem (MSS R4F) and/or DSP subsystem (DSS C674x, xWR16xx
only). It provides a suite of low level APIs that the application (or the software layer on top of it) can call to enable/configure/control the
RADARSS. It provides a well defined interface for the application to plug in the correct communication driver APIs to communicate with the
RADARSS. it acts as driver for Radar SS and exposes services of Radar SS. It includes APIs to configure HW blocks of Radar SS and
provides communication protocol for message transfer between MSS/DSS and RADAR SS.

Link between application and Radar SS
Handles communication errors, Notifies exceptions
Platform and OS independent
Can work in single threaded (non OS) environment

http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf
http://www.ti.com/lit/ug/sprufk5a/sprufk5a.pdf

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

47

Following figure shows the various interfaces/APIs of the mmWaveLink component. The source code for mmWaveLink is present in the mmw
ave_sdk_<ver>\packages\ti\control\mmwavelink .folder Documentation of the API is available via doxygen and placed at mmwave_sdk_<ver

. The component's unit test code, running on top of SYSBIOS is also >\packages\ti\control\mmwavelink\docs\doxygen\html\index.html
provided as part of the package: .mmwave_sdk_<ver>\packages\ti\control\mmwavelink\test\

Figure 20: mmWaveLink - Internal software design

5. 4. 4. mmWave API

mmWaveAPI is a higher layer control running on top of mmWaveLink and LLD API (drivers API). It is designed to provide a layer of
abstraction in the form of simpler and fewer set of APIs for application to perform the task of mmWave radar sensing. In xWR16xx, it also
provides a layer of abstraction over IPC to synchronize and pass configuration between the MSS and DSS domains. The source code for
mmWave API layer is present in the . Documentation of the API is available via mmwave_sdk_<ver>\packages\ti\control\mmwave folder
doxygen and placed at . The component's unit test code, mmwave_sdk_<ver>\packages\ti\control\mmwave\docs\doxygen\html\index.html
running on top of SYSBIOS is also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\control\mmwave\test\

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

48

Figure 21: mmWave API - Internal software design

There are two modes of configurations which are provided by the mmWave module.

5. 4. 4. 1. Full configuration

The "full" configuration mode implements the basic chirp/frame sequence of mmWave Front end and is the recommended mode for
application to use when using the basic chirp/frame configuration. In this mode the application will use the entire set of services provided by
the mmWave control module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS on the xwr16xx
Asynchronous Event Management
Start & Stop services
Configuration of the RADARSS for Frame, advanced frame & Continuous mode
Configuration synchronization between the MSS and DSS

In the full configuration mode; it is possible to create multiple profiles with multiple chirps. The following APIs have been added for this
purpose:-

Chirp Management:

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

49

MMWave_addChirp
MMWave_delChirp

Profile Management:

MMWave_addProfile
MMWave_delProfile

Currently API rlSetBpmChirpConfig and rlSetBpmCommonConfig are not handled by the mmWave API layer as part of the full configuration.
Users desiring this functionality can call these APIs between MMWave_config and MMWave_start.

5. 4. 4. 2. Minimal configuration

For advanced users, that either need to use advanced frame config of mmWave Front End or need to perform extra sequence of commands
in the CONFIG routine, the minimal mode is recommended. In this mode the application has access to only a subset of services provided by
the mmWave control module. These features includes:-

Initialization of the mmWave Link
Synchronization services between the MSS and DSS on the xr16xx
Asynchronous Event Management
Start & Stop services

In this mode the application is responsible for directly invoking the mmWave Link API in the correct order as per their configuration
requirements. The configuration services are not available to the application; so in xWR16xx, the application is responsible for passing the
configuration between the MSS and DSS if required.

See sample call flow below:

Figure 22: mmWave API - 'Minimal' Config - Sample flow (xWR16xx)

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

50

Figure 23: mmWave API - 'Minimal' Config - Sample flow (xWR14xx)

5. 4. 5. mmWaveLib

mmWave Front End Calibrations

mmWave API, by default, enables all init/boot time time calibrations for mmWave Front End. There is a provision for user to
provide custom calibration mask in MMWave_open API and/or to provide a buffer that has pre-stored calibration data.

When application requests the one-time and periodic calibrations in MMWave_start API call, mmWave API enables all the
available one-time and periodic calibrations for mmWave Front End.

mmWave API doesn't expose the mmwavelink's LDO bypass API (rlRfSetLdoBypassConfig/rlRfLdoBypassCfg_t) via any of its API.
If this functionality is needed by the application (either because of the voltage of RF supply used on the TI EVM/custom board or
from monitoring point of view), user should refer to mmwavelink doxygen (mmwave_sdk_<ver>\packages\ti\ \docontrol\mmwavelink

) on the usage of this API and call this API from their application before calling MMWave_open().cs\doxygen\html\index.html

mmWave_open

Although mmWave_close API is provided, it is recommended to perform mmWave_open only once per power-cycle of the sensor.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

51

mmWaveLib is a collection of algorithms that provide basic functionality needed for FMCW radar-cube processing. This component is
available for xWR16xx only and contains optimized library routines for C674 DSP architecture only. This component is not available for
cortex R4F (MSS). These routines do not encapsulate any data movement/data placement functionality and it is the responsibility of the
application code to place the input and output buffers in the right memory (ex: L2) and use EDMA as needed for the data movement. The
source code for mmWaveLib is present in the . Documentation of the API is available mmwave_sdk_<ver>\packages\ti\alg\mmwavelib folder
via doxygen and placed at . The component's unit test code, mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.htmlalg\mmwavelib
running on top of SYSBIOS is also provided as part of the package: .mmwave_sdk_<ver>\packages\ti\ \test\alg\mmwavelib

Functionality supported by the library:

collection of algorithms that provide basic functionality needed for FMCW radar-cube processing.
Windowing (16-bit complex input, 16 bit complex output, 16-bit windowing real array)
Windowing (16-bit complex input, 32 bit complex output, 32-bit windowing real array)
log2 of absolute value of 32-bit complex numbers
vector arithmetic (accumulation)
CFAR-CA, CFAR-CASO, CFAR-CAGO (logarithmic input samples)
16-point FFT of input vectors of length 8 (other FFT routines are provided as part of DSPLib)
single DFT value for the input sequences at one specific index

Optimized and available for xWR16xx C674x DSP only
CFAR algorithms

Floating-point CFAR-CA:
mmwavelib_cfarfloat_caall supports CFAR cell average, cell accumulation, SO, GO algorithms, with input signals in
floating point formats;
mmwavelib_cfarfloat_caall_opt implements the same functionality as mmwavelib_cfarfloat_caall except with less
cycles, but the detected objects will not be in the ascending order.
mmwavelib_cfarfloat_wrap implements the same functionality as mmwavelib_cfarfloat_caall except the noise
samples for the samples at the edges are the circular rounds samples at the other edge.
mmwavelib_cfarfloat_wrap_opt implements the same functionality as mmwavelib_cfarfloat_wrap except with less
cycles, but the detected objects will not be in the ascending order.

CFAR-OS: Ordered-Statistic CFAR algorithm
mmwavelib_cfarOS accepts fixed-point input data (16-bit accumulated over antennae). Search log-magnitude

 window size is defined at compile time.
Floating-point AOA estimation:

mmwavelib_aoaEstBFSinglePeak implements Bartlett beamformer algorithm for AOA estimation with single object detected,
it also outputs the variance of the detected angle.
mmwavelib_aoaEstBFSinglePeakDet implements the save functionality as mmwavelib_aoaEstBFSinglePeak without the
variance of detected angle calculation.
mmwavelib_aoaEstBFMultiPeak also implements the Bartlett beamformer algorithm but with multiple detected angles, it
also outputs the variances for every detected angles.
mmwavelib_aoaEstBFMultiPeakDet implements the same functionality as mmwavelib_aoaEstBFMultiPeak but with no
variances output for every detected angles.

DBscan Clustering:
mmwavelib_dbscan implements density-based spatial clustering of applications with noise (DBSCAN) data clustering
algorithm.
mmwavelib_dbscan_skipFoundNeiB also implements the DBSCAN clustering algorithm but when expanding the cluster, it
skips the already found neighbors.

Clutter Removal:
mmwavelib_vecsum: Sum the elements in 16-bit complex vector.
mmwavelib_vecsubc: Subtract const value from each element in 16-bit complex vector.

Windowing:
mmwavelib_windowing16xl6_evenlen: Supports multiple-of-2 length(number of input complex elements), and
mmwavelib_windowing16x16 supports multiple-of-8 length.
mmwavelib_windowing16x32: This is updated to support multiple-of-4 length(number of input complex elements). It was
multiple-of-8 previously.

Floating-point windowing:
mmwavelib_windowing1DFltp: support fixed-point signal in, and floating point signal out windowing, prepare the floating
point data for 1D FFT.
 mmwavelib_chirpProcWin2DFxdpinFltOut, mmwavelib_dopplerProcWin2DFxdpinFltOut: prepare the floating point data for
2D FFT, with fixed point input. The difference is mmwavelib_chirpProcWin2DFxdpinFltOut is done per chip bin, while
mmwavelib_dopplerProcWin2DFxdpinFltOut is done per Doppler bin.
mmwavelib_windowing2DFltp: floating point signal in, floating point signal out windowing to prepare the floating point data
for 2D FFT.

Vector arithmetic
Floating-point power accumulation: accumulates signal powers in floating point version.
Histogram: mmwavelib_histogram right-shifts unsigned 16-bit vector and calculates histogram.
Right shift operation on signed16-bit vector or signed 32-bit vector

mmwavelib_shiftright16 shifts each signed 16-bit element in the input vector right by k bits.
mmwavelib_shiftright32 shifts each signed 32-bit element in the input vector right by k bits.

Complex vector element-wise multiplication.
mmwavelib_vecmul16x16: multiplies two 16-bit complex vectors element by element. 16-bit complex output written
in place to first input vector.
mmwavelib_vecmul16x32: multiplies a 16-bit complex vector and a 32-bit complex vector element by element, and

 outputs to the 32-bit complex output vector.
Sum of absolute value of 16-bit vector elements

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

52

mmwavelib_vecsumabs returns the 32-bit sum.
Max power search on 32-bit complex data

mmwavelib_maxpow outputs the maximum power found and returns the corresponding index of the complex
sample

FFT utility: mmwavelib_dftSingleBinWithWindow calculates single bin DFT with windowing.

5. 4. 6.
Group Tracker

The algorithm is designed to track multiple targets, where each target is represented by a set of measurement points (point cloud output of
CFAR detection layer). Each measurement point carries detection informations, for example, range, angle, and radial velocity. Instead of
tracking individual reflections, the algorithm predicts and updates the location and dispersion properties of the group. The group is defined as
the set of measurements (typically, few tens; sometimes few hundreds) associated with a real life target. This algorithm is provided for
xWR16xx device only but is supported for both R4F and C674x. The source code for gtrack is present in the mmwave_sdk_<ver>\packages\ti

 folder. Documentation of the API is available via doxygen and placed at \alg\gtrack mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\alg\gtrack
. The component's unit test code, running on top of SYSBIOS is also provided as part of the package: html\index.html mmwave_sdk_<ver>\pa

 .ckages\ti\ \test\alg\gtrack

5. 4. 7. RADARSS Firmware

This is a binary () that runs on Radar subsystem of the xWR14xx/xWR16xx and realizes the mmWave mmwave_sdk_<ver>\firmware\radarss
front end. It exposes configurability via a set of messages over mailbox which is understood by the mmWaveLink component running on the
MSS. RADARSS firmware is responsible for configuring RF/analog and digital front-end in real-time, as well as to periodically schedule
calibration and functional safety monitoring. This enables the mmWave front-end to be self-contained and capable of adapting itself to handle
temperature and ageing effects, and to enable significant ease-of-use from an external host perspective. Features/enhancements information
can be found under firmare/radarss/mmwave_radarss_release_notes.pdf

5. 4. 8. CCS Debug Utility

This is a simple binary that can flashed onto the board to facilitate the development phase of mmWave application using TI Code Composer
Studio (CCS). See section for more details. For xWR14xx, this binary is for R4F (MSS) and for xWR16xx, there is CCS Development mode
an executable for both R4F (MSS) and C674 (DSS) and is combined into one metaImage for flashing along with RADARSS firmware. Note
that the CCS debug application for C674 (DSS) has the L1 and L2 cache turned off so that new application that gets downloaded via CCS
can enable it as needed, without any need for cache flush operations, etc during switching of applications. CCS debug for MSS (R4F) has
the while loop implemented using ARM instruction set since its purpose is to allow users to load another application using CCS and the first
instruction that the application would run will be _c_int00 which is compiled only in ARM mode.

5. 4. 9. HSI Header Utility

An optional utility library is provided for user to create a header that it can attach to the data being shipped over LVDS. This library accepts
the CBUFF session configuration and creates a header with appropriate information filled in and passes it back to the calling application. The
calling application can then supply this created header to CBUFF APIs. This config inside the header is intended to help user parse the LVDS
on the receiving end. The source code for this utility is present in the folder. Documentation mmwave_sdk_<ver>\packages\ti\utils\hsiheader
of the API is available via doxygen and placed at .mmwave_sdk_<ver>\packages\ti\ \docs\doxygen\html\index.htmlutils\hsiheader

5. 4. 10. mmWave SDK - System Initialization

Application should call init APIs for the following system modules (ESM, SOC, Pinmux) to enable correct operation of the device

5. 4. 10. 1. ESM

ESM_init should be the first function that is called by the application in its main(). Refer to the doxygen for this function at mmwave_sdk_<ver
 to understand the API specification. >\packages\ti\drivers\esm \docs\doxygen\html\index.html

5. 4. 10. 2. SOC

SOC_init should be the next function that should be called after ESM_init. Refer to the doxygen for this function at mmwave_sdk_<ver>\packa
 to understand the API specification. It primarily takes care of following things:ges\ti\drivers\soc \docs\doxygen\html\index.html

DSP un-halt

This applies for xWR16xx only. Bootloader loads the DSP application from the flash onto DSP's L2/L3 memory but doesnt un-halt the C674x
core. It is the responsibility of the MSS application to un-halt the DSP. SOC_init for xWR16xx MSS provides this functionality under its hood.

RADARSS un-halt/System Clock

To enable selection of system frequency to use "closed loop APLL", the SOC_init function unhalts the RADARSS and then spins around
waiting for acknowledgement from the RADARSS that the APLL clock close loop calibration is completed successfully.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

53

MPU (Cortex R4F)

MPU or Memory Protection Unit needs to be configured on the Cortex R4F of xWR14xx and xWR16xx for the following purposes:

Protection of memories and peripheral (I/O) space e.g not allowing execution in I/O space or writes to program (.text) space.
Controlling properties like cacheability, buferability and orderability for correctness and performance (execution time, memory
bandwidth). Note that since there is no cache on R4F, cacheability is not enabled for any region.

MPU has been implemented in the SOC module as a private function SOC_mpu_config() that is called by public API SOC_init(). Doxygen of
SOC (has SOC_mpu_config() documented with details of mmwave_sdk_<ver>\packages\ti\drivers\soc \docs\doxygen\html\index.html)
choice of memory regions etc. When MPU violation happens, BIOS will automatically trap and produce a dump of registers that indicate
which address access caused violation (e.g DFAR which indicates what data address access caused violation). Note: The SOC function
uses as many MPU regions as possible to cover all the memory space available on the respective device. There may be some free MPU
regions available for certain devcies (ex: xWR14xx) for the application to use and program as per their requirement. See the function
implementation/doxygen for more details on the usage and availability of the MPU regions.

MARs (xWR16xx C674)

The cacheability property of the various regions as seen by the DSP (C674x in xWR16xx) is controlled by the MAR registers. These registers
are programmed as per driver needs in in the SOC module as a private function SOC_configMARs() that is called by public API SOC_init().
See the doxygen documentation of this function to get more details. Note that the drivers do not operate on L3 RAM and HS-RAM, hence L3
/HS-RAM cacheability is left to the application/demo code writers to set and do appropriate cache (writeback/invalidate etc) operations from
the application as necessary, depending on the use cases. The L3 MAR is MAR32 -> 2000_0000h - 20FF_FFFFh and HS-RAM MAR is
MAR33 -> 2100_0000h - 21FF_FFFFh.

5. 4. 10. 3. Pinmux

Pinmux module is provided under with API documentation and available device pads mmwave_sdk_<ver>\packages\ti\drivers\pinmux
located at . Application should call these pinmux APIs in the mmwave_sdk_<ver>\packages\ti\drivers\pinmux\docs\doxygen\html\index.html
main() to correctly configure the device pads as per their hardware design.

5. 4. 11. Usecases

5. 4. 11. 1. Data Path tests using Test vector method

The data path processing on mmWave device for 1D, 2D and 3D processing consists of a coordinated execution between the MSS, HWA
/DSS and EDMA. This is demonstrated as part of millimeter wave demo. The demo runs in real-time and has all the associated framework
for RADARSS control etc with it.

The “HWA_EDMA” for xwr14xx and "DSP_EDMA" for xwr16xx tests (located at) are stand-mmwave_sdk_<ver>\packages\ti\drivers \test
alone tests that allow data path processing chain to be executed in non real-time. This allows developer to use it as a debug/development aid
towards eventually making the data path processing real-time with real chirping. Developer can easily step into the code and test against
knowns input signals. The core data path processing source code is shared between this test and the mmw demo. Most of the
documentation is therefore shared as well and can be looked up in the mmw demo documentation.

The “HWA_EDMA” and "DSP_EDMA" tests also provide a test generator, which allows user to set objects artificially at desired range,
doppler and azimuth bins, and noise level so that output can be checked against these settings. It can generate one frame of data. The test
generation and verification are integrated into the “HWA_EDMA” and "DSP_EDMA" tests, allowing developer to run a single executable that
contains the input vector and also verifies the output (after the data path processing chain), thereby declaring pass or fail at the end of the
test. The details of test generator can be seen in the doxygen documentation of these tests located at mmwave_sdk_<ver>\packages\ti\driver

. s\test\<test_dir>\docs\doxygen\html\index.html

Note that this function assumes that the crystal frequency is 40MHz.

A build time option called DOWNLOAD_FROM_CCS has been added which when set to yes prevents program space from being
protected. This option should be set to yes when debugging using CCS because CCS, by default, attempts to put software break-
point at main() on program load which requires it to change (temporarily) the instruction at beginning main to software breakpoint
and this will fail if program space is read-only. Hence the benefit of code space protection is not there when using CCS for
download. It is however recommended to set this option to no when building the application for production so that program space is
protected.

TI Pinmux Utility

TI Pinmux Tool available at supports mmWave devices and can be used for designing the pinmux https://dev.ti.com/pinmux
configuration for custom board. It also generates code that can be included by the application and compiled on top of mmWave
SDK and its Pinmux driver.

https://dev.ti.com/pinmux

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

54

5. 4. 11. 2. CSI-2 based streaming of ADC data

IWR14xx device has a high speed CSI-2 transmit interface that can be used to ship ADC data or 1D/2D processed data out of the device. An
example usecase on how to program the front end to generate the ADC samples and tie it up to CBUFF/CSI-2 interface for data shipment is
provided under . Refer to the doxygen documentation located at mmwave_sdk_<ver>\packages\ti\drivers\test\csi_stream mmwave_sdk_<ver>

 for more details.\packages\ti\drivers\test\csi_stream\docs\doxygen\html\index.html

5. 4. 11. 3. Basic configuration of Front end and capturing ADC data in L3 memory

To access ADC data from mmWave sensors, user need to program various basic components within the device in a given sequence. In
order to help user understand the programming model needed to configure the device and generate ADC data in device's L3 memory, an
example usecase is provided under . Refer to the doxygen documentation located mmwave_sdk_<ver>\packages\ti\drivers\test\mem_capture
at for more details.mmwave_sdk_<ver>\packages\ti\drivers\test\mem_capture\docs\doxygen\html\index.html

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

55

1.

2.

6. Appendix

6. 1. Memory usage

The map files of demo and driver unit test application captures the memory usage of various components in the system. They are located in
the same folder as the corresponding .xer4f/.xe674 and .bin files. Additionally, the doxygen for mmW demo summarizes the usage of various
memories available on the device across the demo application and other SDK components. Refer to the section "Memory Usage" in the mmw

 documentation.ave_sdk_<ver>\packages\ti\demo\<platform>\mmw\docs\doxygen\html\index.html

6. 2. Register layout

The register layout of the device is available inside each hardware IP's driver source code. See mmwave_sdk_<ver>\packages\ti\drivers\<ip>\
. The system level registers (RCM, TOPRCM, etc) are available under the SOC module (include\reg_*.h mmwave_sdk_<ver>\packages\ti\driv

).ers\soc\include\reg_*.h

6. 3. Enable DebugP logs

The DebugP_log OSAL APIs in ti/drivers/osal/DebugP.h are used in the drivers and test/app code for debug streaming. These are tied to
BIOS's Log_* APIs and are well documented in SYSBIOS documentation. The logs generated by these APIs can be directed to be stored in
a circular buffer and observed using ROV in CCS ().http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Following steps should be followed to enable these logs:

Enable the flag DebugP_LOG_ENABLED before the header inclusion as seen below.

#define DebugP_LOG_ENABLED 1
#include <ti/drivers/osal/DebugP.h>

Add the following lines in your SYSBIOS cfg file with appropriate setting of numEntries (number of messages) which will impact
memory space:

Application SYSBIOS cfg file
var Log = xdc.useModule('xdc.runtime.Log');
var Main = xdc.useModule('xdc.runtime.Main');
var Diags = xdc.useModule('xdc.runtime.Diags');
var LoggerBuf = xdc.useModule('xdc.runtime.LoggerBuf');
LoggerBuf.TimestampProxy = xdc.useModule('xdc.runtime.Timestamp');

/* Trace Log */
var loggerBufParams = new LoggerBuf.Params();
loggerBufParams.bufType = LoggerBuf.BufType_CIRCULAR; //BufType_FIXED
loggerBufParams.exitFlush = false;
loggerBufParams.instance.name = "_logInfo";
loggerBufParams.numEntries = 100; <-- number of messages this will affect memory consumption
// loggerBufParams.bufSection = ;
_logInfo = LoggerBuf.create(loggerBufParams);
Main.common$.logger = _logInfo;

/* Turn on USER1 logs in Main module (all non-module functions) */
Main.common$.diags_USER1 = Diags.RUNTIME_ON;

/* Turn on USER1 logs in Task module */
Task.common$.diags_USER1 = Diags.RUNTIME_ON;

A sample ROV log looks like below after code is re-build and run with above changes :

http://rtsc.eclipse.org/docs-tip/Runtime_Object_Viewer

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

56

6. 4. Shared memory usage by SDK demos

Existing SDK demos (mmw) for xWR1642 and xWR1443 assigns all 6 banks of shared memory to L3 memory. No additional banks are
added to MSS TCMA and TCMB; they remain at the default memory size. See TRM for more details on the L3 memory layout and "xWR1xxx
Image Creator User Guide" in SDK for more details on shared memory allocation when creating flash images. Note that the image that is
programmed into the flash of the xWR1642/xWR1443 device determines the shared memory allocation. So in CCS development mode, it is
the allocation defined in ccsdebug metaImage that applies and not the application that you download via CCS.

In SDK code, one can change the environment variable MMWAVE_SDK_SHMEM_ALLOC to customize the shmem alloc settings. If this
variable is undefined, platform specific SDK common makefile () mmwave_sdk_<ver>\packages\ti\common\mmwave_sdk_<platform>.mak
will define the default values. When this variable is changed, user should do a clean build of the demo or ccsdebug depending on the working
mode. This setting will influence

the size of L3 memory section in linker command files ()mmwave_sdk_<ver>\packages\ti\platform\<platform>
the sys_common defines for the L3, TCMA and TCMB memory sizes for the application code to use and size the buffers, heaps, etc
accordingly. (ex: SOC_XWR16XX_MSS_TCMA_SIZE, SOC_XWR16XX_MSS_L3RAM_SIZE, etc)
the shmem_alloc input parameter to generateMetaImage script in ccsdebug and mmw demo makefiles.

Since there is a chance for sys_common defines for the memories and metaImage bank allocation to go out of sync (due to user error such
as failure to do clean build), SOC module init does a sanity check of the hardware programmed L3 bank allocations (that are fed via
metaImage header) and the sys_common defines. If the sys_common defined memory size is greater than hardware programmed bank
allocations, the module throws an assert.

6. 5. xWR1xxx Image Creator

This section outlines the tools used for image creation needed for flashing the mmWave devices. The application executable generated after
the compile and link step needs to be converted into a bin form for the xWR1xxx bootloader to understand and burn it onto the serial flash
present on the device. The demos inside the mmWave SDK already incorporate the step of bin file generation as part of their makefile and
no further steps are required. This section is helpful for application writers that do not have makefiles similar to the SDK demos. Once the
compile and link step is done, application image generation is described as follows.

The Application Image interpreted by the bootloader is a consolidated Multicore image file that includes the RPRC image file of individual
subsystems along with a Meta header. The Meta Header is a Table of Contents like information that contains the offsets to the individual
subsystem RPRC images along with an integrity check information using CRC. In addition, the allocation of the shared memory to the
various memories of the subsystems also has to be specified. The bootloader performs the allocation accordingly. It is recommended that the
allocation of shared memory is predetermined and not changed dynamically.

Use the generateMetaImage script present under or mmwave_sdk_<ver>\packages\ scripts\windows mmwave_sdk_<ver>\packages\ scripts\l
 for merging the MSS .xer4f, DSS .xe674 and RADARSS RPRC binaries into one metaImage and appending correct CRC. The RPRC inux

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

57

image for MSS and DSS are generated internally in this script from the input ELF formatted files for those subsystem (i.e. output of linker
command - .xer4f, .xe674). Set in your environment before calling this MMWAVE_SDK_INSTALL_PATH= mmwave_sdk_<ver>\packages
script. This script needs 5 parameters:

FLASHIMAGE: [output] multicore file that will be generated by this script and should be used for flashing onto the board
SHMEM_ALLOC: [input] shared memory allocation in 32-bit hex format where each byte (left to right) is the number of
banks needed for RADARSS (BSS),TCMB,TCMA and DSS. Refer to the the TRM on details on L3 shared memory layout and
"xWR1xxx Image Creator User Guide" in the SDK. It is advisable to pass MMWAVE_SDK_SHMEM_ALLOC environment variable
here to keep the compiled code and metaImage in sync. See section for more details.Shared memory usage by SDK demos
MSS_IMAGE_OUT: [input] MSS input image in ELF (.xer4f) format as generated by the linker. Use keyword NULL if not
needed
BSS_IMAGE_BIN: [input] RADARSS (BSS) input image in RPRC (.bin) format, use keyword NULL if not needed. Use mmw

 here. For xWR14xx, select xwr12xx_xwr14xx_radarss_rprc.bin.ave_sdk_<ver>\firmware\radarss\<platform>_radarss_rprc.bin
DSS_IMAGE_OUT: [input] DSP input image in ELF (,xe674) format as generated by the linker. Use keyword NULL if not
needed

The FLASHIMAGE file generated by this script should be used for the METAIMAGE1 during flashing step (How to flash an image onto
). Refer to "xWR1xxx Image Creator User Guide" in the SDK docs directory for details on the internal layout and xWR14xx/xWR16xx EVM

format of the files generated in these steps.

6. 6. xWR16xx mmw Demo: cryptic message seen on DebugP_assert

In mmw demo, the BIOS cfg file dss_mmw.cfg has below code at the end to optimize BIOS size. Because of some of these changes,
exceptions, such as those generated through DebugP_assert() calls may give a cryptic message instead of file name and line number that
helps identify easily where the exception is located. To be able to restore this capability, the user can comment out the lines marked with the
comment "" below. For more information, refer to the BIOS user guide.

/* Some options to reduce BIOS code and data size, see BIOS User Guide section
 "Minimizing the Application Footprint" */
System.maxAtexitHandlers = 0; /* COMMENT THIS FOR FIXING DebugP_Assert PRINTS */
BIOS.swiEnabled = false; /* We don't use SWIs */
BIOS.libType = BIOS.LibType_Custom;
Task.defaultStackSize = 1500;
Task.idleTaskStackSize = 800;
Program.stack = 1048; /* for isr context */
var Text = xdc.useModule('xdc.runtime.Text');
Text.isLoaded = false;

6. 7. How to execute Idle instruction in idle task when using SYSBIOS

The idle function hook provided by SYSBIOS can be used to install application specific function which in turn could call the "idle" asm
instruction. See code snapshots below or refer to mmW demo for details.

BIOS CFG file
var Idle = xdc.useModule('ti.sysbios.knl.Idle');
Idle.addFunc('&MmwDemo_sleep');

WFI instruction for R4F
void MmwDemo_sleep(void)
{
 /* issue WFI (Wait For Interrupt) instruction */
 asm(" WFI ");
}

IDLE instruction for C674x
void MmwDemo_sleep(void)
{
 /* issue IDLE instruction */
 asm(" IDLE ");
}

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

58

1.

2.

3.

4.

5.
1.

2.

6.

7.

6. 8. Range Bias and Rx Channel Gain/Offset Measurement and Compensation

Refer to the section "Range Bias and Rx Channel Gain/Offset Measurement and Compensation" in the mmwave_sdk_<ver>\packages\ti\dem
 documentation for the procedure and internal implementation details. To execute the o\xwr16xx\mmw\docs\doxygen\html\index.html

procedure using Visualizer GUI, here are the steps:

Set the target as explained in the demo documentation and update the mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\profiles
 appropriately.\profile_calibration.cfg

Set up Visualizer and mmW demo as mentioned in the section .Running the Demos
Use the "Load Config From PC and Send" button on plots tab to send the mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\profi
les\profile_calibration.cfg.
The Console messages window on the Configure tab will dump the "compRangeBiasAndRxChanPhase" command to be used for
subsequent runs where compensation is desired.
Copy and save the string for that particular mmWave sensor to your PC. You can use it in the "Range/Angle Bias compensation
config" textbox in the Visualizer and any new profile generated by the Visualizer will use these values. Alternatively, you can add this
to your custom profile configs and use it via the "Load Config From PC and Send" button.

6. 9. Guidelines on optimizing memory usage

Depending on requirements of a given application, there may be a need to optimize memory usage, particularly given the fact that the
mmWave devices do not have external RAM interfaces to augment on-chip memories. Below is a list of some optimizations techniques,
some of which are illustrated in the mmWave SDK demos (mmW demo). It should be noted, however, that the demo application memory
requirements are dictated by requirements like ease/flexibility of evaluation of the silicon etc, rather than that of an actual embedded product
deployed in the field to meet specific customer user cases.

On R4F, compile your application with ARM thumb option (depending on the compiler use). If using the TI ARM compiler, the option
to do thumb is Another relevant compiler option (when using TI compiler) to play with to trade-off code size code_state=16 .
versus speed is --opt_for_speed=0-5 . For more information, refer to and ARM Compiler Optimizations ARM Optimizing

. The pre-built drivers in the SDK are already built with the thumb option. The demo code and BIOS libraries Compiler User's Guide
are also built with thumb option. Note the code_state=16 flag and the ti.targets.arm.elf. target in the R4Ft mmwave_sdk_<ver>\packa

 . ges\ti\ common\mmwave_sdk.mak
On C674X, compile portions of code that are not in compute critical path with appropriate -msX option. The -ms0 options is presently
used in the SDK drivers, demos and BIOS cfg file. This option does cause compiler to favor code size over performance and hence
some cycles impact are to be expected. However, on xWR16xx, using ms0 option only caused about 1% change in the CPU load
during active and interframe time and around 3-5% increase in config cycles when benchmarked using driver unit tests. For more
details on the "ms" options, refer to The TI C6000 compiler user guide at . Another option to C6000 Optimizing Compiler Users Guide
consider is -mo (this is used in SDK) and for more information, see section "Generating Function Subsections (--
gen_func_subsections Compiler Option)" in the compiler user guide. A link of references for optimization (both compute and
memory) is at .Optimization Techniques for the TI C6000 Compiler
Even with aggressive code size reduction options, the C674X tends to have a bigger footprint of control code than the same C code
compiled on R4F. So if feasible, partition the software to use C674X mainly for compute intensive signal-processing type code and
keep more of the control code on the R4F. An example of this is in the mmw demo, where we show the usage of mmwave API to do
configuration (of RADARSS) from R4F instead of the C674X (even though the API allows usage from either domain). In mmw demo,
this prevents linking of (in) and mmwave mmwave_sdk_<ver>\packages\ ti\control
mmwavelink (in mmwave_sdk_<ver>\packages\ti\control) code that is involved in configuration (profile config, chirp config etc) on
the C674X side as seen from the .map files of mss and dss located at ti/demo/xwr16xx/mmw.
If using TI BIOS as the operating system, depending on the application needs for debug, safety etc, the BIOS footprint in the
application may be reduced by using some of the techniques listed in the BIOS User Guide in the section "Minimizing the Application
Footprint". Some of these are illustrated in the mmw demo on R4F and C674X. Some common ones are disabling system_printf
(printf strings do contribute to significant code size), choosing sysmin and using ROV for debugging, disabling assert (although this
should be done only when variability in driver configuration is not expected and existing configuration has been proven to function
correctly). The savings from these features could be anywhere from 2KB to 10KB but user would lose some perks of debuggability.
If there is no requirement to be able to restart an application without reloading, then following suggestions may be used:

one time/first time only program code can be overlaid with data memory buffers used after such code is executed. This is
illustrated in the mmw demo on C674X code for xWR16xx and on R4F code for xWR14xx where such code is overlaid with
(load time uninitialized) radar cube data in L3 RAM, refer to the file mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\d

 and (Note: Ability to ss\dss_mmw_linker.cmd mmwave_sdk_<ver>\packages\ ti\demo\xwr14xx\mmw\mss_mmw_linker.cmd
place code at function granularity requires to use the aforementioned -mo option).
the linker option may be used to eliminate the section overhead. For more details, see compiler --ram_model .cinit
user guide referenced previously. Presently, ram model cannot be used on R4F due to bootloader limitation but can be used
on C674X. The SDK uses ram model when building C674X executable images (unit tests and demos).

On C674X, smaller L1D/L1P cache sizes may be used to increase static RAM. The L1P and L1D can be used as part SRAM and
part cache. Smaller L1 caches can increase compute time due to more cache misses but if appropriate data/code is allocated in the
SRAMs, then the loss in compute can be compensated (or in some cases can also result in improvement in performance). In the
demos, the caches are sized to be 16 KB, allowing 16 KB of L1D and 16 KB of L1P to be used as SRAM. On the mmw demo, the
L1D SRAM is used to allocate some buffers involved in data path processing whereas the L1P SRAM has code that is frequently
and more fully accessed during data path processing. Thus we get overall 32 KB more memory. The caches can be reduced all the
way down to 0 to give the full 32 KB as SRAM, how much cache or RAM is a decision each application developer can make
depending on the memory and compute (MIPS) needs.
When modeling the application code using mmW demo as reference code, it might be useful to trim the heaps in mmW demo to
claim back the unused portion of the heaps and use it for code/data memory. Ideally, a user can run their worst case profile that they

http://processors.wiki.ti.com/index.php/ARM_compiler_optimizations
http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/spnu151o/spnu151o.pdf
http://www.ti.com/lit/ug/sprui04a/sprui04a.pdf
http://processors.wiki.ti.com/index.php/Optimization_Techniques_for_the_TI_C6000_Compiler

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

59

7.

1.

2.

3.

would like to support using mmW demo, record the heap usage/free metrics for L1D, L2 and L3 heaps on 'sensorStart'. These
values can then be used to resize or re-allocate gMmwL1, gMmwL2 and gMmwL3 in mmwave_sdk_<ver>\packages\ti\demo\xwr16xx

. The freed up space could be used as follows:\mmw\dss\dss_data_path.c

Free heap space in L1D could be used to move some of the L2 buffers to L1D. Refer to section "EDMA versus Cache
based Processing" in documentation mmwave_sdk_<ver>\packages\ti\demo\xwr16xx\mmw\docs\doxygen\html\index.html
for overview of data buffer layout. The freed L2 space can be used for code/data.
Free heap space in L2 could be trimmed by changing the gMmwL2 definition and used for code/data memory (note that
code memory by default is L2 so no other change is required to get more code space).
Free heap space in L3 could be trimmed by changing the gMmwL3 definition and used for code/data space. One caveat is
that L3 in mmW demo is un-cached and hence one could see some cycles impact but this is a decision each application
developer can make depending on the memory and compute (MIPS) needs.

When using TI compilers for both R4F and C674x, the map files contain a nice module summary of all the object files included in the
application. Users can use this as a guide towards identifying components/source code that could be optimized. See one sample snapshot
below:

Module summary inside application's .map file
MODULE SUMMARY

 Module code ro data rw data
 ------ ---- ------- -------

 obj_xwr14xx/
 main.oer4f 5191 0 263980
 data_path.oer4f 8441 0 65536
 config_hwa_util.oer4f 4049 0 0
 post_processing.oer4f 2480 0 0
 mmw_cli.oer4f 2308 0 0
 config_edma_util.oer4f 1276 0 0
 sensor_mgmt.oer4f 1144 0 24
 +--+-------------------------------+--------+---------+---------+
 Total: 24889 0 329540

6. 10. How to add a .const (table) beyond L3 heap in mmW demo where overlay is
enabled

In mmW demo for xWR16xx, L3 heap is overlaid with the code to be copied into L1P at init time. To achieve this overlay, L3 heap is in PAGE
1 and code is in Page 0. PAGE 0 is the only loadable page whereas PAGE 1 is just a dummy page to allocate uninitialized sections to
implement overlay. As a result the ".const" section (which is loadable section) cannot simply be allocated to PAGE 1 to go after the heap. If
the .const is allocated in PAGE 0, then it will overlap the heap and will be overwritten once heap is allocated. To resolve this, the HIGH
feature of the linker could be used is used to push the const table to the highest address ensuring no overlap with L3 heap. The suggested
changes would be as follows:
1. Shrink the L3 heap by the size of the table (but L3 heap must still be bigger than the size of the L1P cache).
2. Place the table in a named section and allocate the named section in the HIGH space of PAGE 0 of L3RAM.

This ensures that the table will be allocated at the high address and will not be overlapping with L3 heap or the L1P intended code which are
located at the low address.

Sample code is shown below.

In dss_data_path.c file:

#define TABLE_LENGTH 4
#define TABLE_ALIGNMENT 8 /* bytes */

/*! L3 RAM buffer, shrunk by table */
#pragma DATA_SECTION(gMmwL3, ".l3data");
#pragma DATA_ALIGN(gMmwL3, 8);
uint8_t gMmwL3[SOC_XWR16XX_DSS_L3RAM_SIZE - TABLE_LENGTH*sizeof(float) - TABLE_ALIGNMENT];

#pragma DATA_SECTION(gArray, ".l3data_garray");
#pragma DATA_ALIGN(gArray, TABLE_ALIGNMENT);
const float gArray[TABLE_LENGTH] = {1.5, 3.2, 0.8, -9.6};

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

60

In dss_mmw_linker.cmd file:
 .l3data_garray: load=L3SRAM PAGE 0 (HIGH)

6. 11. DSPlib integration in xWR16xx C674x application (Using 2 libraries
simultaneously)

The TI C674X DSP is a merger of C64x+ (fixed point) and C67x+ (floating point) DSP architectures and DSPlib offers two different flavors of
library for each of these DSP architectures. An application on C674X may need functions from both architectures. Normally this would be a
straight-forward exercise like integrating other TI components/libraries. However there is a problem during integration of the two DSPLib
libraries in the same application since the top level library API header has the same name and same relative path from the dsplib.h
packages/ directory as seen below in the installation:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib.h
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib.h

Typically when integrating TI components, the build paths are specified up to directory and headers are referred as below:packages\

#include <ti/dsplib/dsplib.h>

However this will create an ambiguity when both libraries are to be integrated because the above path is same for both. There are a couple
of ways to resolve this:

6. 11. 1. Integrating individual functions from each library

In this case, the headers individual functions are included in the application source file and the build infrastructure (makefiles for example)
refers to the paths to the individual functions. This style of integration is illustrated in the mmw demo code as seen in the following code
snippets: (Note: the mmw demo only uses one (C64P) dsplib so it could have been integrated in the straight-forward way but it is deliberately
done this way to illustrate the method in question here and allows for future integration with C674x dsplib).

Sample DSPLib integration using individual functions
In file dss_mmw.mak:

dss_mmw.mak
dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 /* include path for DSP_fft16x16 *
/ \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft16x16
/c64P \
 /* include path for DSP_fft32x32 */ \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages/ti/dsplib/src/DSP_fft32x32
/c64 \
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

In dss_data_path.c:

dss_data_path.c
#include "DSP_fft32x32.h"
#include "DSP_fft16x16.h"

The C674P library can be integrated in the above code similar to the how the C64P has been done, this will not create any
conflict.

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

61

A variant (not illustrated in mmw demo) of the above could be as follows where the paths are now in the .c and .mak only refers
to the installation:

dss_mmw.mak
dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages \
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

dss_data_path.c
#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft32x32.h>
#include <ti/dsplib/src/DSP_fft16x16/c64P/DSP_fft16x16.h>

6. 11. 2. Patching the installation

The previous method can get cumbersome if there are many functions to be integrated from both libraries. Patching the installation to rename
/duplicate the top level API header allows a straight-forward integration. This prevents the name conflict of the two headers. So dsplib.h
the installation after patching would look like below for example:

C:\ti\dsplib_c64Px_3_4_0_0\packages\ti\dsplib\dsplib_c64P.h [one can retain the older dsplib.h if one
wants to]
C:\ti\dsplib_c674x_3_4_0_0\packages\ti\dsplib\dsplib_c674x.h [one can retain the older dsplib.h if one
wants to]

And the .mak and code will look like below:

Sample DSPLib integration after renaming header files
In file dss_mmw.mak:

dss_mmw.mak
dssDemo: C674_CFLAGS += --cmd_file=$(BUILD_CONFIGPKG)/compiler.opt \
 -i$(C64Px_DSPLIB_INSTALL_PATH)/packages \ <-- C64P dsplib
 -i$(C674x_DSPLIB_INSTALL_PATH)/packages \ <-- C674x dsplib
 -i$(C674x_MATHLIB_INSTALL_PATH)/packages \

In dss_data_path.c:

dss_data_path.c
#include <ti/dsplib/dsplib_c64P.h>
#include <ti/dsplib/dsplib_c674x.h>

The present dsplibs do not have name conflicts among their functions so they can both be integrated in the above manner.

6. 12. SDK Demos: miscellaneous information

A detailed explanation of the mmW demo is available in the demo's docs folder: mmwave_sdk_<ver>\packages\ti\demo\<platform>\mmw\doc
Some miscellaneous details are captured here:s\doxygen\html\index.html.

In xWR14xx, when elevation is enabled during run-time via configuration file, the number of detected objects are limited by the
amount of HWA memory that is available for post processing.
Demo's rov.xs file is provided in the SDK package to facilitate the CCS debugging of pre-built binaries when demo is directly flashed
onto the device (instead of loading via CCS).

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

62

When using non-interleaved mode for ADCBuf, the ADCBuf offsets for every RX antenna/channel enabled need to be multiple of 16
bytes.
Output packet of mmW demo data over UART is in TLV format and its length is a multiple of 32 bytes. This enables post processing
elements on the remote side (PC, etc) to process TLV format with header efficiently.

6. 13. Data size restriction for a given session when sending data over LVDS

For the current implementation of the CBUFF/LVDS driver and its intended usage, the CBUFF data size for a given session needs to be
multiple of 8.

User should take care of this restriction when writing their custom application using the SDK LVDS driver. This alignment is taken care by the
HSI header library if the application uses the headers for LVDS streaming. If no header are used while streaming data over LVDS lanes, user
should calculate the total data size in bytes for the hardware triggered session (i.e. per chirp) and make sure it follows the rules mentioned
above. Similar rules apply for the user data sent during the software triggered session.

6. 14. CCS Debugging of real time application

6. 14. 1. Using non-real time chain test code

See section on details about the non-real time chain that is provided with the mmWave SDK. "Data Path tests using Test vector method"
Users can use these tests to step through the OOB processing chain in non-real time mode and debug or learn the components of the OOB
processing chain.

6. 14. 2. Using printfs in real time

This applies to SYSBIOS and debugging using CCS. Once the application starts real-time processing (i.e. once sensor start is issued), there
should ideally be no prints on the console because CCS will halt the processor (unless CIO is disabled) on which such prints are issued for
as long as it takes it to transfer the print string data from target to PC over JTAG and print the string on the PC (which can be of the order of
seconds). This is true for any real-time application that uses SYSBIOS on any SoC (not just mmWave SDK/devices). For logging in real-time,
SYSBIOS offers other options like LOG module, etc - although these will incur some memory overheads. For example, see "Enable DebugP

" section. It is also possible in cfg file of SYSBIOS based application to direct System_printfs to an internal log buffer (circular or saturate) logs
which will also prevent the hiccup by CCS (See ' ' in SYSBIOS/XDC).xdc.runtime. SysMin

6. 14. 3. Viewing expressions/memory in real time

When debugging real time application (for example: mmw demo) in CCS, if the continuous refresh of variables in the Expression or Memory
browser window is enabled without enabling the silicon real-time mode as shown in the picture, the code may crash at a random time
showing the message in the console window. To avoid this crash, please put CCS in to “Silicone Real-time” mode after selecting the target
core.

Continuous refresh:

Crash in Console window:

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

63

Enable “Silicone Real-time” mode:

Copyright (C) 2018, Texas Instruments Incorporated
http://www.ti.com

MMWAVE SDK User Guide

64

	MMWAVE SDK User Guide

