
System Tuning & BW
monitoring/control on TDA2xx

Agenda
• Introduction

– System Level Memory Architecture

• System Instrumentation and Measurement Strategies
– GP Timers & L3 Statistic Collectors

– CPU Timers/Counters

• MPU/EVE/DSP

• Bandwidth Knobs at the IP level.

– MFLAG

– Control Module: L3 Pressure

• Bandwidth Knobs at the interconnect level.

– Bandwidth Regulator

– Bandwidth Limiter

• Bandwidth Knobs at the DMM/EMIF level

– DMM Peg Priority

– DMM Emergency

– EMIF CoS and other QoS knobs

Refer TDA2xx TRM for exact register programming details

Overview : Basic Terminology

• Master IP – Initiates bus requests

• Slave IP – Responds to bus requests

• L3 Interconnect – Routes/arbitrates bus requests between Masters and Slaves

• Dynamic Memory Manager (DMM)
– Provides interleaved view of two EMIF’s in single address space

– Provides non-interleaved view of single EMIF in single address space

• External Memory Interface (EMIF) - Queues/schedules requests to DDR

• BW (Bandwidth)/Throughput –

– These two terms are used interchangeably to indicate the number of bytes

transferred between initiators and slaves every second.

– Represented in MB/s or GB/s.

Overview: TDA2xx Memory Subsystem

4

64-bit IPU EDMA

128-Bit 64-Bit

Overview : Concept of theoretical BW

• Ideal Throughput = Frequency of Limiting Port * Data Bus Width in

Bytes

• Utilization or Efficiency = (Measured Throughput/ Ideal Throughput) *

100

• When the source and destination memories are the same (eg. OCMC0

to OCMC0 EDMA transfer.), then the measured bandwidth is multiplied

with 2.

Theoretical Max Bandwidth Examples –
OCMC RAM
• For different memories in the system the theoretical bandwidth can be

calculated as below:

– OCMC operating @ 266 MHz

• OCMC bus width = 128 bits = 16 bytes

• OCMC Frequency = 266 MHz

• Theoretical Max bandwidth = 266 * 16 = 4256 MBps

6

128-Bit

266 MHz
266 MHz

128-Bit

Theoretical Max Bandwidth Examples –
DDR
• For different memories in the system the theoretical bandwidth can be

calculated as below:

– DDR3 Operating @ 400 MHz

• DDR3 bus width = 32 bits = 4 bytes

• DDR3 Frequency of operation = 400 MHz

• Theoretical Max Bandwidth = 400 * 4 * 2 = 3200 MBps

• (The extra 2 is because data can be sent on the rising edge and falling edge of the

clock)

7

128-Bit

128-Bit

32-Bit

266 MHz

400 MHz

Overview: Quality of Service Mechanisms

How to measure system performance?

• Different methods to measure system performance.

• Broadly define system performance along the following vectors:

– Frames/second achieved by real time IPs, multimedia and vision IPs.

– Average and Peak DDR bandwidth and utilization.

– Latency of access from master to slave memories.

– Average and peak throughput of peripheral IPs.

• Different measurement techniques available in TDA2xx:

– General Purpose Timers/CPU Timers

– L3 Statistic collectors

– EMIF counters

– SCTM/Processor Trace/Watch Points etc.

9

GP Timers/CPU Timers

• Provides a quick way to measure throughput.

• Provides a coarse measurement of initiator bandwidth and FPS for real

time traffic IPs (VIP/DSS), multimedia IPs (IVAHD/VPE) and vision IPs

(EVE/DSP).

• Can’t measure latency. Can’t know instantaneous traffic peaks.

• Typical flow:

10

Cortex A15 CPU Timer Configuration

• 64 bit Generic Timer

• Counts at sys_clk Frequency
(external crystal frequency) = 20
MHz.

• Setting up the timer:

11

DSP CPU Timer Configuration

• 64 bit Generic Timer

• Counts at CPU Clock Frequency.

• Initialization: The counter is

cleared to 0 after reset, and

counting is disabled.

• Enabling Counting: The counter

is enabled by writing to TSCL.

The value written is ignored.

12

MVC B0,TSCL ; Start TSC

MVC TSCL,B0 ; B0 = 0

MVC TSCL,B1 ; B1 = 1

• Disabling Counting: Once

enabled, counting cannot be

disabled under program control.

Counting is disabled in the

following cases:

– After exiting the reset state.

– When the CPU is fully powered

down.

 • Reading the counter:

BNOP TSC_Read_Done, 3

MVC TSCL,B0 ; Read the low half first

; high half copied to TSCH

MVC TSCH,B1 ; Read the snapshot of

;the high half

TSC_Read_Done:

EVE SCTM

• 8 32-bit counters, out of which 2 can be configured as timers.

• The SCTM module operates at half the clock rate (EVEx_GFCLK),

CLK2 = 0.5 × CLK1.

• For full list of SCTM events refer TDA2xx TRM and EVE Programming

Guide.

13

IP Source Name Type

SCTM Mode Nativ

e

Clock

Freq

SCTM

Event?

ARP32_Pcache cache_miss_count Pulse Duration CLK2 1

ARP32_Pcache cache_hit_count pulse Duration CLK2 2

ARP32_Pcache cache_miss_stall duration Duration or Event CLK2 3

ARP32_Pcache prefetch_compulsory_count pulse Duration CLK2 4

ARP32_Pcache Prefetch_lookahead_count pulse Duration CLK2 5

ARP32_Pcache prefetch_hit_count pulse Duration CLK2 6

…..

L3 StatColl Overview

• Provides ability to probe OCP (Open Core Bus Protocol) or NTTP

(Arteris L3 Interconnect Packet Protocol) links.

• Transmitting results to a debug unit through a dedicated NTTP link.

• Software controlled at run time through the service network.

• Non intrusive monitoring

• Up to 8 probes for monitoring NTTP or OCP links.

• Programmable filters and counters.

• Collect results at programmable time interval

• Provides metrics such as throughput and latency on some data flows.

• Additional filtering capabilities to focus on certain initiators or targets.

14

L3 Statistic Collectors (StatColl)

• 10 statcoll instances available on TDA2xx to
measure traffic statistics of different
subsystems.

• Static Mapping from subsystems to statistic
collector.

15

L3

INSTR

32b

L3

CLK1

32b

Stat Coll

LAT9

Async

bridge

DEBUGSS

N N N

L3

CLK2

Stat Coll

LAT1-8

Stat Coll 0

EMIF1

DMM

128b

128b

EMIF2

128b

128b

64b

MPU

e
m

if
2

_
p

ro
b

e
e

m
if
1

_
p

ro
b

e

128b 128b

m
a

_
m

p
u

_
p

1
_

p
ro

b
e

m
a

_
m

p
u
_

p
2

_
p

ro
b

e

Probe

Sync

Probe

Sync

StatColl_0

Probe # Description Link Port #

0
EMIF1_SYS

OCP REQ 0

OCP RSP 1

1
EMIF2_SYS

OCP REQ 2

OCP RSP 3

2
MA_MPU_P1

OCP REQ 4

OCP RSP 5

3
MA_MPU_P2

OCP REQ 6

OCP RSP 7

Refer the TDA2xx TRM (Section 30.10.7.1

L3 Target Load Monitoring) to know the

complete Initiator to statcoll mapping.

Statcoll Probe to Initiator/Slave Mapping

16

StatColl_0

Probe # Description Link Port #

OCP REQ 0

OCP RSP 1

OCP REQ 2

OCP RSP 3

OCP REQ 4

OCP RSP 5

OCP REQ 6

OCP RSP 7

StatColl_1

Probe # Description Link Port #

NTTP REQ 0

NTTP RSP 1

NTTP REQ 2

NTTP RSP 3

NTTP REQ 4

NTTP RSP 5

NTTP REQ 6

NTTP RSP 7

NTTP REQ 8

NTTP RSP 9

NTTP REQ 10

NTTP RSP 11

4
EDMA_TC1_RD

0
EMIF1_SYS

1
EMIF2_SYS

5
EDMA_TC1_WR

3
EDMA_TC0_WR

2
EDMA_TC0_RD

2
MA_MPU_P1

3
MA_MPU_P2

0
MPU

1
MMU1

StatColl_5

NTTP REQ 6

NTTP RSP 73
IPU1

StatColl_9

Probe # Description Link Port #

NTTP REQ 0

NTTP RSP 1

NTTP REQ 2

NTTP RSP 3

NTTP REQ 4

NTTP RSP 5

0
OCMC RAM1

1
OCMC RAM2

2
OCMC RAM3

StatColl_7

Probe # Description Link Port #

NTTP REQ 0

NTTP RSP 10
GMAC SW

L3 Statcoll - A Small Caveat

• If CPU has cache enabled, the data read from the L3 Statcoll and

actual bytes transferred may differ.

• This is because the L3 statcoll reads bytes at the L3/EMIF interface and

lot of data may be cached already.

• ARM performs speculative reads. Not all reads are used by the CPU.

17

L3 Statistic Collectors from Software

• In a production board where DEBUG connectivity is difficult to achieve, a spare

CPU core and spare timer can be used to read the StatColl registers at regular

intervals.

• Eg. To capture the BW profile of a given initiator use the following steps:

– Set up the StatColl for the initiator to capture number of bytes transferred.

– Configure a timer to maintain ‘x’ us time gap.

– Read the number of bytes transferred every ‘x’ us at the initiator ports (read + write)

or the destination memory from the StatColl register.

– The number of bytes obtained is divided by ‘x’ us to get the average BW within the ‘x’

us.

– The process is repeated multiple times to generate a bandwidth profile.

• x=100 us is found to give good granularity for analyzing the traffic.

18

0

50

100

150

200

2
8

.1
2
8

.5
2
8

.9
2
9

.3
2
9

.7
3
0

.1
3
0

.5
3
0

.9
3
1

.3
3
1

.7
3
2

.1
3
2

.5
3
2

.9
3
3

.3
3
3

.7
3
4

.1
3
4

.5
3
4

.9
3
5

.3
3
5

.7
3
6

.1
3
6

.5
3
6

.9
3
7

.3
3
7

.7
3
8

.1
3
8

.5
3
8

.9
3
9

.3
3
9

.7
4
0

.1
4
0

.5
4
0

.9
4
1

.3
4
1

.7
4
2

.1
4
2

.5
4
2

.9
4
3

.3
4
3

.7
4
4

.1
4
4

.5
4
4

.9
4
5

.3
4
5

.7
4
6

.1
4
6

.5
4
6

.9
4
7

.3
4
7

.7
4
8

.1
4
8

.5
4
8

.9
4
9

.3
4
9

.7
5
0

.1
5
0

.5
5
0

.9
5
1

.3
5
1

.7
5
2

.1
5
2

.5
5
2

.9
5
3

.3
5
3

.7
5
4

.1
5
4

.5
5
4

.9
5
5

.3
5
5

.7
5
6

.1
5
6

.5
5
6

.9
5
7

.3
5
7

.7
5
8

.1

B
W

 (
M

B
p

s
)

Time (ms)

EMIF Counters

• The EMIF_PERFORMANCE_COUNTER_1 and EMIF_PERFORMANCE_COUNTER_2

registers are used to monitor or calculate the EMIF Controller bandwidth and efficiency.

• Controller using EMIF_PERFORMANCE_COUNTER_CONFIG

19

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field

C
N

T
R

2
_
M

C
O

N
N

ID
_
E

N

C
N

T
R

2
_
R

E
G

IO
N

_
E

N

Reserved

C
N

T
R

2
_
C

F
G

C
N

T
R

1
_
M

C
O

N
N

ID
_
E

N

C
N

T
R

1
_
R

E
G

IO
N

_
E

N

Reserved

C
N

T
R

1
_
C

F
G

Reset

Value

0 0 0 0001 0 0 0 0000

Type rw rw ro rw rw rw ro rw

cntrN_cfg cntrN_region_en cntrN_mconnid_en Description

0x0 0x0 0x0 or 0x1 Count total SDRAM accesses.

0x1 0x0 0x0 or 0x1 Count total SDRAM activates.

0x2 0x0 or 0x1 0x0 or 0x1 Count total reads.

0x3 0x0 or 0x1 0x0 or 0x1 Count total writes.

0x4 0x0 0x0 Count number of m_clk cycles OCP Command FIFO is full.

0x5 0x0 0x0 Count number of m_clk cycles OCP Write Data FIFO is full.

0x6 0x0 0x0 Count number of m_clk cycles OCP Read Data FIFO is full.

0x7 0x0 0x0 Count number of m_clk cycles OCP Return Command FIFO is full.

0x8 0x0 or 0x1 0x0 or 0x1 Count number of priority elevations.

0x9 0x0 0x0 Count number of m_clk cycles that a command was pending.

0xA 0x0 0x0
Count number of m_clk cycles for which the memory data bus was

transferring data.

0xB – 0xF 0x0 0x0 Reserved for future use.

EMIF Counter Filtered on an ID

• EMIF_PERFORMANCE_COUNTER_MASTER_REGION_SELECT:

• Details on conn ID can be seen from the Table 30-53. Statistics

Collector Master Address Mapping of the TRM.

• For details on region select look at Table 14-101. MAddrSpace

Mapping in the TDA2x TRM.

• No Debug SS support is present to capture this counter. A spare core

can be used to monitor this value every ‘x’ us.

20

Bit 31 30 2

9

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field MCONNID2 Reserved

R
E

G
IO

N
_

S
E

L
2

MCONNID1 Reserved

R
E

G
IO

N
_

S
E

L
1

Reset

Value

00000000 0 00 00000000 0 00

Type Rw ro rw rw ro rw

Bandwidth Knobs at IP Level

• Two main knobs at the IP level which can given priority to the traffic it

generates:

– IP Driven MFLAG/MReqPrio: Valid for DSS, VIP, VPE, DSP MDMA,

EDMA and EVE TC0/TC1.

– Control Module: L3 Pressure: Valid for MPU, DSP1, DSP2, IPU1,

PRUSS1, GPU P1, GPU P2

21

IP Controlled MFLAG

• DSP EDMA + MDMA

– EVTOUT[31] and EVTOUT[30] are used for generation of MFLAGs dedicated to
the DSP MDMA and EDMA ports, respectively.

– EVTOUT[31/30] = 1  Corresponding MFLAG is high.

• EVE TC0/TC1

– For EVE port 1 and port 2 (EVE TC0 & TC1) MFlag is driven by evex_gpout[63]
and evex_gpout[62] respectively.

– evex_gpout[63] is connected to DMM_P1 and EMIF.

– evex_gpout[62] is connected to DMM_P2 and EMIF.

• VIP/VPE

– In the VIP/VPE Data Packet Descriptor Word 3, can set the priority in [11:9] bits.

– This value is mapped to OCP Reqinfo bits.

– 0x0 – Highest Priority, 0x7 – Lowest Priority.

– VIP Has Dynamic Mflag specific scheme based on internal FIFO status
– Based on HW set margins to overflow/underflow
– Enable by default, no MMR control

22

IP Controlled MFLAG

• DSS

– DSS has 4 display read pipes (Graphics , Vid1 , Vid2 , Vid3) and 1 write

pipe (WB) .

– DSS will drive MFlag if any of read pipes are made high priority and FIFO

levels are below low threshold for high priority display pipe.

– VIDx have 32 KB FIFO & GFX has 16 KB FIFO.

– FIFO threshold is measured in terms of 16 byte word.

– Recommended settings for high and low threshold are 75% and 50 %

respectively.

23

DSS MFLAG Programming Model

• Enable MFlag Generation DISPC_GLOBAL_MFLAG_ATTRIBUTE
– DISPC_GLOBAL_MFLAG_ATTRIBUTE = 0x2;

• Set Video Pipe as High Priority DISPC_VIDx_ATTRIBUTES[23]
– DISPC_VID1_ATTRIBUTES | = (1<<23);

– DISPC_VID2_ATTRIBUTES | = (1<<23);

– DISPC_VID3_ATTRIBUTES | = (1<<23);

• Set Graphics Pipe as High Priority DISPC_GFX_ATTRIBUTES[14]
– DISPC_GFX_ATTRIBUTES | = (1<<14);

• GFX threshold 75 % HT , 50 % LT
– DISPC_GFX_MFLAG_THRESHOLD = 0x03000200;

• VIDx threshold 75 % HT , 50 % LT
– DISPC_VID1_MFLAG_THRESHOLD = 0x06000400;

– DISPC_VID2_MFLAG_THRESHOLD = 0x06000400;

– DISPC_VID3_MFLAG_THRESHOLD = 0x06000400;

24

Example – DSS MFLAG

25

0

500

1000

1500

2000

2500

3000

3500

0
1
.1

2
.2

3
.3

4
.4

5
.5

6
.6

7
.7

8
.8

9
.9 1
1

1
2

.1
1
3

.2
1
4

.3
1
5

.4
1
6

.5
1
7

.6
1
8

.7
1
9

.8
2
0

.9 2
2

2
3

.1
2
4

.2
2
5

.3
2
6

.4
2
7

.5
2
8

.6
2
9

.7
3
0

.8
3
1

.9 3
3

3
4

.1
3
5

.2
3
6

.3
3
7

.4
3
8

.5
3
9

.6
4
0

.7
4
1

.8
4
2

.9 4
4

4
5

.1
4
6

.2
4
7

.3
4
8

.4
4
9

.5

B
W

 (
M

B
p

s
)

Time (ms)

DSS Underflows with VID 2 1280x720 60 fps + BB2D 1280x720 3
frame overlay

BB2D_P1

BB2D_P2

DSS

0

500

1000

1500

2000

2500

3000

3500

0
1
.1

2
.2

3
.3

4
.4

5
.5

6
.6

7
.7

8
.8

9
.9 1
1

1
2

.1
1
3

.2
1
4

.3
1
5

.4
1
6

.5

1
7

.6
1
8

.7
1
9

.8

2
0

.9 2
2

2
3

.1

2
4

.2
2
5

.3
2
6

.4

2
7

.5
2
8

.6
2
9

.7

3
0

.8
3
1

.9 3
3

3
4

.1
3
5

.2
3
6

.3
3
7

.4
3
8

.5
3
9

.6
4
0

.7
4
1

.8

4
2

.9 4
4

4
5

.1

4
6

.2
4
7

.3
4
8

.4

4
9

.5

B
W

 (
M

b
p

s
)

Time (ms)

No DSS Underflow with VID 2 High priority and Mflag set

BB2D_P1

BB2D_P2

DSS

Control Module Initiator Pressure

• The CTRL_CORE_L3_INITIATOR_PRESSURE_1 to

CTRL_CORE_L3_INITIATOR_PRESSURE_4 registers are used for

controlling the priority of certain initiators on the L3_MAIN.

• 0x3 – Highest Priority/Pressure

• 0x0 – Lowest Priority/Pressure

• For MPU, DSP1, DSP2, IPU1, PRUSS1, GPU P1, GPU P2

26

L3 Interconnect

Bandwidth knobs at the Interconnect

• Bandwidth Regulators (BR) – Used to regulate the BW from an initiator

with in a range.

• Bandwidth Limiters (BL) – Used to limit the BW from an Initiator to the

given BW cap.

• These are placed at the Initiator Write ports.

• Some initiators may have both BL followed by BR. This is because in

the low pressure region of BR only a best case effort of maintaining the

BW is done.

27

Module

Async

Bridge

Async

Bridge

BL BR

Write Path

Read Path

Bandwidth Regulator

• For a given initiator.

• Increases pressure when the actual consumed bandwidth is lower than expected

bandwidth

• Decreases pressure once the expected bandwidth is reached.

• Mechanism

– A counter is incremented by number of bytes transferred (read + write)

– A Watermark/threshold value for the counter is programmed.

– When counter value is less than Watermark high pressure (as define by

PressHigh) is applied for the given packet.

– Else low pressure (as defined by PressLow) is applied for the given packet.

C
o

u
n

te
r

V
a

lu
e

Watermark (in Bytes)

time

Pressure = PressLow

Pressure = PressHigh

* Traffic pattern is for illustration only

Transfers

Bandwidth Regulator Programming Model

• Program the BR register with desired bandwidth divided by the
resolution.

• Resolution = L3 Frequency/ 2^5 = 266MHz/ 32 = 8.3125.
– L3_BW_REGULATOR_BANDWIDTH =

(int)(ceil(Required Bandwidth/8.3125));

• Set the watermark register by multiplying the required bandwidth in
MBps with the time window size in micro seconds:

– L3_BW_REGULATOR_WATERMARK =

 (Window size in us * Required Bandwidth);

• The pressure that is applied to the initiator packets when the counter
value is lower than watermark (High_pres) and higher than watermark
(Low_press) can be read from L3_BW_REGULATOR_PRESS.

– By default : 0x3 – High Level, 0x0 – Low level.

• Write to the clear history to take in the new values.
– L3_BW_REGULATOR_CLEARHISTORY = 0x1;

29

Example 1 : BR on IVAHD (Impact on BW)

30

0

500

1000

1500

2000

2500

0

3
.4

4
4

6
.8

8
8

1
0

.3
3

2

1
3

.7
7

6

1
7

.2
2

2
0

.6
6

4

2
4

.1
0

8

2
7

.5
5

2

3
0

.9
9

6

3
4

.4
4

3
7

.8
8

4

4
1

.3
2

8

4
4

.7
7

2

4
8

.2
1

6

5
1

.6
6

5
5

.1
0

4

5
8

.5
4

8

6
1

.9
9

2

6
5

.4
3

6

6
8

.8
8

7
2

.3
2

4

7
5

.7
6

8

7
9

.2
1

2

8
2

.6
5

6

8
6

.1

8
9

.5
4

4

9
2

.9
8

8

9
6

.4
3

2

9
9

.8
7

6

1
0

3
.3

2

1
0

6
.7

6
4

1
1

0
.2

0
8

1
1

3
.6

5
2

1
1

7
.0

9
6

1
2

0
.5

4

B
W

 (
M

B
p

s
)

Time (ms)

IVAHD 1080p30 Decode with Synthetic Competing Traffic :
B Frame not able to meet 30 fps

IVAHD with Competing Traffic

DSP EDMA

System EDMA RD Only

0

500

1000

1500

2000

2500

0

3
.1

9
8

6
.3

9
6

9
.5

9
4

1
2

.7
9

2

1
5

.9
9

1
9

.1
8

8

2
2

.3
8

6

2
5

.5
8

4

2
8

.7
8

2

3
1

.9
8

3
5

.1
7

8

3
8

.3
7

6

4
1

.5
7

4

4
4

.7
7

2

4
7

.9
7

5
1

.1
6

8

5
4

.3
6

6

5
7

.5
6

4

6
0

.7
6

2

6
3

.9
6

6
7

.1
5

8

7
0

.3
5

6

7
3

.5
5

4

7
6

.7
5

2

7
9

.9
5

8
3

.1
4

8

8
6

.3
4

6

8
9

.5
4

4

9
2

.7
4

2

9
5

.9
4

9
9

.1
3

8

1
0

2
.3

3
6

1
0

5
.5

3
4

1
0

8
.7

3
2

B
W

 (
M

B
p

s
)

Time (ms)

IVAHD 1080p30 Bandwidth Regulated @ 1500 MBps

IVAHD BW Regulated

DSP EDMA

System EDMA RD Only

L3 Frequency = 266 MHz, Resolution = 266/2^5 = 266/32 = 8.3125

L3_BW_REGULATOR_BANDWIDTH[15:0] BANDWIDTH = ceil(1500 MBps / 8.3125) = 181d = 0xB5

L3_BW_REGULATOR_WATERMARK[11:0] WATERMARK = 1500MBps * 1us = 1500d = 0x5DC.

Example 2: DSP MDMA BR (Impact on Latency)

• Optimized memcopy is executed on DSP : average BW of 2.5 GBps standalone traffic.

• Add a 2 TC edma transfer running from the DSP EDMA

• Observed the DSP1 MDMA bandwidth drops to 981 MBps.

• Setting the BW regulator to 1.5 GBps (with a window of 1 us) leads the latency of the

DSP1 MDMA port to improve from ~180 cycles/transaction to ~110 cycles/transaction.

0

50

100

150

200

250

L
a
te

n
c
y
 (

L
3
 C

y
c
le

s
/T

ra
n

s
a
c
ti

o
n

)

Impact of Bandwidth Regulator on DSP MDMA Latency

DSP1 MDMA Latency with Competing
EDMA Traffic

DSP1 MDMA Cycles/Transaction with
Competing EDMA traffic with BR

DSP1 MDMA Stanalone

IPs supporting Bandwidth Regulator

• Bandwidth regulator available for below IPs

– MMU2

– EVE1, EVE2, EVE3, EVE4 – both TC0 TC1

– DSP1, DSP2 MDMA (CPU access port)

– DSP1, DSP2 EDMA

– IVA

– GPU

– GMAC

– PCIe

• Note, Bandwidth regulator will override any Mflag setting done via

Control module for the IP

• Refer to TRM for exact bandwidth regulator base addresses

Bandwidth Limiter

• Bandwidth Limiter mechanism limits a particular initiator from

consuming excessive bandwidth.

• This mechanism is implemented for

– MMU1

– SYSTEM_EDMA

– VPE

– GPU

• The bandwidth limiter regulates the packet flow in the L3_MAIN

interconnect by applying flow control when a user-defined bandwidth

limit is reached.

• The next packet is served only after an internal timer expires, thus

ensuring that traffic does not exceed the allocated bandwidth.

• Bandwidth limiter can be used with a watermark mechanism that allows

traffic to temporarily exceed the peak bandwidth.

Bandwidth Limiter Programming Model

• Calculate the Bandwidth integer and fractional numbers with respect to

2^5 = 32.

– bandwidth = int(Required Limit bandwidth / 8.3125);

– bandwidth_int = (bandwidth & 0xFFFFFFE0) >> 5;

– bandwidth_frac = (bandwidth & 0x1F);

• Program the integer and fractional values in the registers.

– L3_BW_LIMITER_BANDWIDTH_FRACTIONAL = bandwidth_frac;

– L3_BW_LIMITER_BANDWIDTH_INTEGER = bandwidth_int;

• Program the watermark to have 0x0 to not allow additional traffic than

the required.

– L3_BW_LIMITER_WATERMARK = 0x0;

• Clear the history to fill the newly populated values:

– L3_BW_LIMITER_CLEARHISTORY = 0x1;

34

Bandwidth Limiter: Example

35

0

200

400

600

800

4
.8

5
.4 6

6
.6

7
.2

7
.8

8
.4 9

9
.6

1
0

.2

1
0

.8

1
1

.4 1
2

1
2

.6

1
3

.2

1
3

.8

1
4

.4 1
5

1
5

.6

1
6

.2

1
6

.8

1
7

.4 1
8

1
8

.6

1
9

.2

1
9

.8

2
0

.4 2
1

2
1

.6

2
2

.2

2
2

.8

2
3

.4 2
4

2
4

.6

2
5

.2

2
5

.8

2
6

.4 2
7

2
7

.6

2
8

.2

2
8

.8

2
9

.4 3
0

3
0

.6

3
1

.2

3
1

.8

3
2

.4

B
W

 (
M

B
p

s
)

Time (ms)

BB2D BW profile with Limiter Enabled for 700 MBps

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

B
W

 (
M

B
p

s
)

Time (ms)

No DSS Underflow with BW limiter on BB2D

BB2D_P1 BB2D_P2 DSS

Bandwidth Knobs at DMM

• The DMM has the following BW knobs:

• DMM PEG : Priority Extention Generator

– Forwards the packet from the initiator to the EMIF with an

updated MReqPrio (OCP MReqInfo)

• DMM Emergency

– Gives higher priority than rest of the initiators to real time

traffic of VIP and DSS based on whether MFLAG is high.

DMM PEG Priority

– Reads the required priority from the PEG LUT programmed

by the software.

– Each initiator has a 3 bit field (0 ... 7) PEG Priority , 0 is

highest priority, 7 is lowest

– Priority determines prioritization of data transfers in EMIF

37

Configuring DMM PEG

DMM_PEG_PRIO0 : 0x620

31 30…28 27 26…24 23 22…20 19 18…16 15 14…12 11 10…8 7 6…4 3 2…0

PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0

W7 P7 W6 P6 W5 P5 W4 P4 W3 P3 W2 P2 W1 P1 W0 P0

DMM_PEG_PRIO7 : 0x63C

31 30…28 27 26…24 23 22…20 19 18…16 15 14…12 11 10…8 7 6…4 3 2…0

PRIO63 PRIO62 PRIO61 PRIO60 PRIO59 PRIO58 PRIO57 PRIO56

W7 P7 W6 P6 W5 P5 W4 P4 W3 P3 W2 P2 W1 P1 W0 P0

the 3-bit priority coded on the 3 least significant bits (0 is the higher priority)

A “W” field-specific active-high local write enable bit, always read as 0

The role of the W bit is to allow the modification of a single entry without

requiring a read-modify-write sequence.

Refer to TRM Section to “PEG Description” under DMM to know the mapping

from 6 bit MConnId to field of DMM_PEG_PRIO Registers.

DMM Peg Priority : Example

• Concurrent traffic from 4 x EDMA TC channels.

• 1 TC doing write to DDR and 3 TC doing read from DDR.

• Avg. Write Latency Increased to ~850 L3 cycles/Transaction.

• Setting DMM PEG to 0x0 for EVE TC helps decrease latency to ~350

L3 Cycles/Transaction.

39

0

100

200

300

400

500

600

700

800

900

1000

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

3
9

1

4
0

4

4
1

7

4
3

0

4
4

3

4
5

6

4
6

9

4
8

2

4
9

5

EVE TC Write with Concurrent EVE EDMA traffic

PEG Default Priority 0x4

PEG High Priority 0x0

DMM Emergency Field

• The initiators with MFLAG set will

be classified as higher priority.

• Weighted round robin algorithm is

used for arbitration between high

priority and other initiators.

• Set DMM_EMERGENCY[0] to run

this arbitration scheme.

• Weight is set in the field

DMM_EMERGENCY[20:16]

WEIGHT
DMM

MFLAG[63:0]

MFLAG[63:0]

P0

P1

Bandwidth Knobs at EMIF

• The bandwidth knobs at EMIF are as follows:

• EMIF_OCP_CONFIG: Helps balance the traffic between the MPU and

the system traffic.

• EMIF Class of Service: Helps prioritize the traffic from an initiator.

Filtering is done on the Initiator Conn ID.

• EMIF Read vs Write Threshold: Can prioritize read commands over

writes and vice versa.

41

EMIF_OCP_CONFIG

Bit 3

1

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Reserved

S
Y

S
_

T
H

R
E

S
H

_

M
A

X

M
P

U
_

T
H

R
E

S
H

_

M
A

X

R
e

s
e

rv
e

d

Reserved

Reset

Value

0 0111 0111 0 0

Type ro rw rw ro ro

42

The command FIFO stores all the commands coming in on the local command

interface.

The allocation of entries in the command FIFO is programmable per local

interface using the following bit fields:

• EMIF_OCP_CONFIG[27:24] SYS_THRESH_MAX

• EMIF_OCP_CONFIG[23:20] MPU_THRESH_MAX

EMIF Class of Service (CoS)

• Two Class of Services present in EMIF.

43

E
M

IF
_
C

O
N

N
E

C
T

IO
N

_
ID

_
T

O
_
C

L
A

S
S

_

O
F

_
S

E
R

V
IC

E
_
1
/2

_
M

A
P

P
IN

G
 EMIF_PRIORITY_TO_

CLASS_OF_SERVICE

_MAPPING :

Assign a Priority to the

class of service

MConnId

EMIF_COS_CONFIG.C

OS_COUNT1/2 :

Number of EMIF cycles

after which the EMIF

momentarily raises the

priority of the class of

service 1/2 commands

in the Command FIFO.

Class of

Service

EMIF_READ_WRITE_EXECUTION_THRESHOLD

Bit 3

1

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Reserved WR_THRSH

R
e
s
e

rv
e

d

RD_THRSH

Reset

Value

0 00011 0 00101

Type ro rw ro rw

44

Usually reads are given more preference than writes:

RD_THRSH: Number of SDRAM read bursts after which the EMIF arbitration

will switch to executing write commands.

WR_THRSH: Number of SDRAM write bursts after which the EMIF

arbitration will switch to executing read commands.

Resources for BW optimization

• Vayu_CCS_Trace_Debug.pdf:

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4960.9266

• CCS_DEBUG_SCREEN_CAST1.7z:

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4992.43328

• CCS_DEBUG_SCREEN_CAST2.7z:

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.48672.25740

• CCS_DEBUG_SCREEN_CAST3.7z:

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.26816.14527

• A Guide to Debugging with CCS on the DRA7xx TDA2xx and TDA3xx family of

deviceshttps://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4848.9376

• https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.43616.1592 –

TDA2xx Performance Application Note

• https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.40204.59666 -

SPRABX1 Quality of Service Knobs for TDA2x Family of Devices

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4960.9266
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4992.43328
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.48672.25740
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.26816.14527
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4848.9376
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.4848.9376
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.43616.1592
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.40204.59666

THANK YOU

46

BACKUP

47

L3 Statcoll Initial Programming for BW
Measurement

• Refer Chapter on On-Chip Debug Support -> System instrumentation -> L3 NOC Statistics Collector
for mapping of the initiator/slave port to the StatColl instance.

• L3_STCOL_EN. EN = 1

• L3_STCOL_SOFTEN. SOFTEN = 1

• L3_STCOL_REQEVT. REQEVT = 0x5 -> For bandwidth (list of valid values given in the TRM)

• L3_STCOL_RSPEVT. RSPEVT = 0x5 -> For bandwidth (list of valid values given in the TRM)

• L3_STCOL_EVTMUX_SEL0/1/2/3 = Mux Select Value (Read this from initiator/slave port mapping).

• L3_STCOL_OP_i_SEL = 0x2 -> Add to counter the selected event info value (list of valid values given
in the TRM)

• L3_STCOL_OP_i_EVTINFOSEL = 0x0 -> Select len from event info list (gets the number of bytes in
each packet)

• L3_STCOL_FILTER_i_GLOBALEN. FILTER_i_GLOBALEN = 1 -> Enable filter.

• L3_STCOL_FILTER_i_EN_k. FILTER_i_EN0 = 1 -> Enable Filter stage 0.

• L3_STCOL_DUMP_MODE. DUMP_MANUAL = 1

• To read the register:
– L3_STCOL_SOFTEN. SOFTEN = 0

– Read L3_STCOL_DUMP_CNTi

– L3_STCOL_SOFTEN. SOFTEN = 1

48

L3 Statcoll Initial Programming for Latency
Measurement
• Refer Chapter on On-Chip Debug Support -> System instrumentation -> L3 NOC Statistics Collector for mapping of the

initiator/slave port to the StatColl instance.

• L3_STCOL_EN. EN = 1

• L3_STCOL_SOFTEN. SOFTEN = 1

• L3_STCOL_REQEVT. REQEVT = 0x8 -> For Latency (list of valid values given in the TRM)

• L3_STCOL_RSPEVT. RSPEVT = 0x8 -> For Latency (list of valid values given in the TRM)

• L3_STCOL_EVTMUX_SELi = Mux Select Value (Read this from initiator/slave port mapping).

• L3_STCOL_OP_i_SEL = 0x2 -> Add to counter the selected event info value (list of valid values given in the TRM)

• L3_STCOL_OP_i_EVTINFOSEL = 0x2 -> Select latency if available from event info list

• L3_STCOL_FILTER_i_GLOBALEN. FILTER_i_GLOBALEN = 1 -> Enable filter.

• L3_STCOL_FILTER_i_EN_k. FILTER_i_EN0 = 1 -> Enable Filter stage 0.

• L3_STCOL_OP_(i+1)_SEL = 0x0 -> Increment counter on each mask/match filter hit (list of valid values given in the TRM)

• L3_STCOL_OP_(i+1)_EVTINFOSEL = 0x2 -> Select latency if available from event info list

• L3_STCOL_FILTER_(i+1)_GLOBALEN. FILTER_i_GLOBALEN = 1 -> Enable filter.

• L3_STCOL_FILTER_(i+1)_EN_k. FILTER_i_EN0 = 1 -> Enable Filter stage 0.

• L3_STCOL_DUMP_MODE. DUMP_MANUAL = 1

• To read the register:
– L3_STCOL_SOFTEN. SOFTEN = 0

– Read L3_STCOL_DUMP_CNTi

– Read L3_STCOL_DUMP_CNT(i+1)

– L3_STCOL_SOFTEN. SOFTEN = 1

49

