
TI Confidential – NDA Restrictions

TI Confidential – NDA Restrictions

Introduction to EVE/DSP
(Features, Partitioning of
Algorithms)

1

TI Confidential – NDA Restrictions

Agenda

• Introduction of VLIW & SIMD

• Introduction of EVE & DSP

• Vision Processing Blocks Mapping

• Use Case Study of TI-PD Algorithm

• Few Concept for Algorithm Development

2

TI Confidential – NDA Restrictions

Introduction

• Lets look at the block diagram of ADAS

SOC TDA2x (Vayu)

• It has multiple heterogeneous

programmable cores

– EVE, DSP, A-9, GPU

– Each of them have further details to be

known such as cache, DMA, internal

memories, L1, L2…

• To make use of the device optimally, it

requires good knowledge and thought

process during design stage of the

software and certain methodologies and

guidelines

• This material tries to introduce high level

compute capability of C66xDSP & EVE,

and introduces some guideline for

partitioning a given algorithm on EVE &

DSP.

3

TI Confidential – NDA Restrictions 4

Valuable Architecture Elements: VLIW

• VLIW – Very Long Instruction Word

• Pipelined parallel processing

Task: zi = aixi + bi (i = 1,2, … , n)

z2=y2+b2 z1=y1+b1 zn=yn+bn zn-1=yn-1+bn-1

y3=a3x3 y2=a2x2 y1=a1x1 yn=anxn M

A

…

…

Loop Prologue Loop Main Body Loop Epilogue

t
Instructions (parallel processed)

TI-C66x, C67x DSP

TI Confidential – NDA Restrictions 5

Valuable Architecture Elements: SIMD

• SIMD – Single Instruction Multiple Data

• Array processing

+25 +25 +25 +25 +25 +25 +25 +25

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

Task: y = x + 25 (x, y are arrays)

TI- VCOP

TI Confidential – NDA Restrictions

TDA2x Compute Processors

• At a first stage, you need to understand the TDA2x key compute processors

– EVE

• Vector Engine (SIMD) with 8-way dual operation issue slot

• Operations on 8 bit, 16 bit and 32 bits with intermediate results in 40bit precision

(multiply operands limited to 16 bit)

• 16 16x16 bit multipliers, with add/subtract at 500 MHZ within 8 GMAC/sec throughput

• Fixed point processor (no Floating Point support)

• Program Cache, No Data Cache

• Special hardware for Look up Table, Histogram

• Very efficient for low level (full image based) vision function – filters, feature detectors,

Dense processing - feature compute

– DSP

• Advanced VLIW CPU with 8 Functional Units

• 8/16/32/64/128 -bit data support

• Eight 32-bit / Eight 16-bit / Sixteen 8-bit Multiply per cycle

• Floating point processor

• Program Cache, Data Cache

• Can be used as low, mid and high level vision processing

6

TI Confidential – NDA Restrictions

 EVE – Elements and Topology

7

Statistics Counter
& Timer Module

Software Messaging
& Event Tracing

Inter Processor
Communication

Static Mux Controls
Mastership of Buffers

Concurrent Scalar
Execution

768 bit/cycle of
Load- and Store-

Bandwidth

Background Data
Transfers

32 KB local IBUF for I/O
32 KB WBUF for scratch and constant

16 ways 32-bits SIMD vector processor

TI Confidential – NDA Restrictions

DSP Subsystem

8

8

• Available internal Memories

– L1D : 32 KB (Configurable as SRAM/CACHE)

– L2: 256 KB(Configurable as SRAM/CACHE) + 32 KB

SRAM

– L1P$: 32 KB Program Cache

• CPU

– VLIW (Very Large Instruction Word) architecture:

• Two (almost independent) sides, A and B

• 8 functional units: M, L, S, D

• Up to 8 instructions sustained dispatch rate

– Very extensive instruction set:

• Fixed-point and floating-point instructions

• More than 300 instructions

• 8-/16-/32-/64-/128-bit data support

• Eight 32-bit / Eight 16-bit / Sixteen 8-bit

Multiply per cycle

• EDMA with 2 transfer controllers

Memory

A0

A31

. .

.S1

.D1

.L1

.S2

.M1 .M2

.D2

.L2

B0

B31

. .

Controller/Decoder

MACs

TI Confidential – NDA Restrictions

Vision Processing Mapping

9

ARM/DSP for Control &

High-level vision stages

ARM Cortex Axx:

Scalable RISC

Data Fusion

Memory Coherency

DSP:

VLIW SIMD+MIMD

Data Fusion

EVE Vector Coprocessor:

High Bandwidth Pixel

Operations

SIMD Parallelism

Energy Efficiency

Hardware Acceleration:

High Bandwidth Pixel

Operations

Configurable HW

Acceleration

TI Confidential – NDA Restrictions

TI PD – Case Study for Dev Approach

11

Refer below Links for more details on HOG and Pedestrian detection algorithms

http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

http://iica.de/pd/slides/hog.ppt

• Base resolution is assumed to be 1280x720

• The ratio chosen between successive scales is 1.12

• This implies that it takes 6 scales to reach the next octave

• Pedestrian model (Sliding window) used 36x68

• Sliding window step size used 4x4

• Cell overlap is 4x4

• Re-size will be done till width >= 36 and height >= 68 (total
23 scales)

• The algorithm uses 10 feature planes

• Y,U,V  Summation over 8x8

• Gradient magnitude  Summation over 8x8

• HOG for 6 bins between 0 -180 degree

– Cell size = 8x8

• 8*16*10 1280 features per position

• 1 position every 4x4 block in each scale

• Uses Adaboost classifier with 2 Level trees

0
1

2
4

5

3

4
3

1
5

2

0

Sliding window (36x68)

6 scales

ADA-Boost

Tree Structure

http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://iica.de/pd/slides/hog.ppt

TI Confidential – NDA Restrictions

Pedestrian Detection - Kernels

12

Gradient

computation
Bin

identification
Bin based

plane creation
Cell sum

Luma Cb/Cr

Gradient Mag

Gradient X, Y
Bin Plane

Gradient Mag

(plane 0)

HOG (plane 0)

Cell Sum

(plane 0)

Y
Cb

Cr
Grad Mag

F
e

a
tu

re
 P

la
n

e
s

Classify (Ada-boost)

Multiple Decision

Grouping
Tracking

For Each Scale
Ped Position List

Ped Position List

Control flow
Data flow

TI Confidential – NDA Restrictions

Processing blocks Properties

• Gradient computation, Bin identification, plane creation, Cell sum

– Pixel based dense processing

– No Floating point usage

• Scale Creation (Resizing)

– Pixel based dense processing

– No Floating point usage

• Ad boost

– Pixel based dense processing

• Soft cascade - early exit makes it non-dense, few points are processing

more trees and few are less

– No Floating point usage

• Window Grouping, Tracking

– Control Code

– Floating point

13

TI Confidential – NDA Restrictions

Processing blocks Properties -- Mapping

• Gradient computation, Bin identification, plane creation, Cell sum

– Pixel based dense processing

– No Floating point usage

• Scale Creation (Resizing)

– Pixel based dense processing

– No Floating point usage

• Ad boost

– Pixel based dense processing

• Soft cascade - early exit makes it non-dense, few points are

processing more trees and few are less

– No Floating point usage

• Window Grouping, Tracking

– Control Code

– Floating point

14

E
V

E

D
S

P

E
V

E
 /

V
P

E

TI Confidential – NDA Restrictions

Data Access Approach
• Cache Approach (Frame based)

– Processing unit “sees” the entire

image in DDR through cache.

– Programming model is easier but

inefficient in term of power and

performance, because 2-D access

patterns generates frequent cache

misses.

• DMA Approach (Block based)

– Core processes data from on-chip

memory

– DMA used to read/write small blocks

of image in DDR from/to on-chip

– Control core coordinates DMA and

processor for maximum parallelism

– DMA approach is often preferred for

low level image processing

– In case of EVE, it is the only choice in

absence of data cache and VCOP’s

ability to see DDR .

15

TI Confidential – NDA Restrictions

FEW CONCETPS

• HOST Emulation

• Data Flow Design Decision

16

TI Confidential – NDA Restrictions

Host Emulation
• EVE and C66x both have a C compiler, one can write a C Code and directly port to these

targets

• But utilization of processor capabilities might not be best as it demands specific

optimizations

• C66x optimization involves
– Form the loops for key processing blocks

– Usage of specific instructions to accelerate the processing

• EVE optimization involves
– Form the loops for key processing blocks

– Use of “VCOP Kernel C (subset of C++)” language for loops

• In both cases the second step makes the code non-familiar for any other C compiler to

use during PC development

• Facilitated with Host Emulation (Instruction Set emulation)

– In DSP – Intrinsic can be implemented as function calls, host emulation package (details)

– In EVE – “VCOP Kernel C” is facilitated by compiler by providing “vcop.h” to emulate “VCOP

Kernel C” as a C++ program on PC

• DMA

– DMA software functions can be created which emulates the hardware behavior, we have created

such functions use them during software development

So entire algorithm can be executed on PC

17

http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere

TI Confidential – NDA Restrictions

Data Flow Design Decisions
• Lets say Function2 is successor of Function1

• While connecting them, we have 2 choices

A. Operate Function1 on complete frame – send output data to DDR* – Call

Function2 with the data in DDR

B. Call function 1 on small block in the frame – keep data in internal memory

– Call function 2 with the data in internal memory

• Efficiency (power, performance) point of view choice B is always best

• But it also depends on the algorithm property

– Possible to break?

– Data Dependency from successor to predecessor?

18

*Assuming that frame data is huge and can not fit in device internal memory

TI Confidential – NDA Restrictions

Possible to break
• A function is possible to operate on smaller data blocks if there is no

global dependency. In this case, it can be called multiple times with

smaller data blocks to complete entire frame processing

• Example : sorting (sorting is not a candidate to break into smaller parts)

• Example: Gradient of a frame can be computed by computing gradient on

smaller blocks

• Some times even the algorithm is possible to break but the data overlap

is very high in successive blocks, which makes lot of data re-fetch and

re-compute (example filters with very high number of taps)

– Under such situations, it is also good to consider not to operate on small

blocks

19

TI Confidential – NDA Restrictions

Dependency
• Some times Function2 and Function1 might be good candidate to

break, even though algorithm property might not allow them to operate

at smaller data granularity

• These are the situations where Function2 depends on Function1

processing on complete frame?

– Example

• Contrast enhancement:

– Compute histogram and find min, max intensity (Function 1)

– Map min to 0, max to 255 and all intermediate values appropriately

(Function 2)

• In this case Function2 can only start after Function1 does the processing

on complete frame

– Example

• Gradient computation  Bin identification  plane creation  Cell sum

• There is no global dependency from previous function – so can be

connected at smaller blocks retaining the intermediate outputs in internal

memory

20

TI Confidential – NDA Restrictions

Easy to Integrate
• Resource Sharing

– Algorithm use system resources, these are shared with other component in

system

• Processor

• Memory

• DMA

– So it is important to have a centralized resource manager in system outside the

algorithm (part of system software) to manage these resources

– Algorithm should have mechanisms to request its resource needs to system

software

• Abstracted Standardized interface

– Standard set of API across multiple set of algorithm helps system integrator to

save time in understanding the interface of an algorithm

– Consists of set of rules & guidelines to ensure seamless integration and

resource sharing of several algorithms with minimal/no overhead

– Standard handshake mechanism for resource management (int. memory, DMA)

across algorithm instances, controlled by centralized application (not by algo)

21

TI Confidential – NDA Restrictions

Memory (Resource)

• Memory can be internal, external

– Internal memories are mostly used as scratch, if algorithm is using it as

persistent – should provide some functions to store/re-store so other

algorithm in system can re-use it

• External memories used in algorithms can be categorized in 2 parts

– Input and Output

• Input and Output are known by the system and algorithm just consume it

– Internal memories required by algorithm for its private data

• Internal memory property are not known by system and should be

explicitly requested by algorithm to system

22

TI Confidential – NDA Restrictions

DMA (Resource)

• DMA is also shared resource for multiple algorithms on the sub system

• It can also be managed by system same as memory

• TI devices have local EDMA for most of its compute sub-system and

other system component might not require to use these subsystem

DMAs at system level DMA also exist

• Under this situation, a solution might decide that sub system DMAs are

owned by algorithm executing on that subsystem and can be assumed

to be solely available

– So for this kind of design algorithm might not request DMA to system

– But such design decisions should be aligned at system level before making

this assumption

23

TI Confidential – NDA Restrictions

Abstracted Standardized interface (xDAIS)

24

algNumAlloc

algAlloc algInit control

Process

control

Query the algorithm to
understand resource property

Initialize the algorithm with creation
time parameters

Query the algorithm for
memory buffers

Query the algorithm for input
and output buffer sizes

algActivate

Activate the Algorithm
Instance

Call the process call on a frame by
frame basis (repeatedly)– run time
parameters can be changed using the
InArgs element, output information
conveyed via OutArgs

Control API can be called at any
instance of time to query for status,
get the input, output buffer sizes, to
reset the algorithm, to initialize to
default parameters

algDeactivate algFree

De Activate the Algorithm
Instance

Query back the resources
granted to algorithm to free

TI Confidential – NDA Restrictions

Development Guidelines
• Read TI’s tools, processor and training material on DSP, EVE and SOC

• Get the first C code ported – use DSP or A15

• Have performance measurement of the different critical blocks. Record it in a table

• Prepare an algorithm document – it should mention about key processing blocks (operations

per pixel, dependency of information) and operating data width(8-bit, 16-bit, 32-bit) of these

blocks clearly

• Based upon understand of EVE and DSP put a design (data flow and core partitioning) with

performance estimates (use resources such as VLIB Data sheet, EVE SW Data sheet)

– Start with DSP– to keep things simple in case EVE learning curve is higher

• Setup a meeting with TI experts – present algorithm details, get the design reviewed and

seek feedback such as

– What is already available and can be reused

– Design changes for optimal SOC use

– Comments on performance estimates {Align on timeline for this meeting 2-3 weeks ahead}.

– Meeting should be led by Key responsible technical person from 3rd party for this algorithm and that

person should have good working experience of signal processing algorithm on embedded

processors.

• Based upon the feedback – redesign and put a plan of activities

• Meet once again to get the plan and new design reviewed

• Seek help via E2E/FAE as appropriate

29

TI Confidential – NDA Restrictions

References

• Specifications

– TMS320C6000 Programmer’s Guide (spru198k)

– http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere

– ADAS Superset 28 Technical Reference Manual(SPRUHK5G)

– EVE Programmer’s Guide (SPRUHC1B)

• Software

– Vision SDK Release (02.05.00.00 onwards)

– EVE SW Release (01.07.00.00 onwards)

– DSP VLIB (3.1.0 onwards)

30

http://www.ti.com/lit/ug/spru198k/spru198k.pdf
http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere
http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere
http://software-dl.ti.com/libs/vlib/latest/index_FDS.html

