
7/4/2017 1

VISION SDK
Software Architecture

 Oct 2016

Agenda

• Vision SDK Overview

– Vision SDK Goals and Features

– Example ADAS data flows

• Components in Vision SDK

• Vision SDK – Architecture Overview

• Vision SDK – Architecture Details

– Link API

– Inter processor communication

– Algorithm link

2

Vision SDK Overview

3

What is Vision SDK ?

• VISION SDK is multi processor software development platform for TI

family of ADAS SoCs.

• The software framework allows users to create different ADAS

application data flows involving video capture, video pre-processing,

video analytics algorithms, and video display.

• The SDK has sample ADAS data flows which exercises different CPUs

and HW accelerators in the ADAS SoC and shows customers how to

effectively use different SoC sub-systems.

• VISION SDK is based on a framework named as the “Links and

Chains” framework and user API to this framework is called “Link API”

• The SDK installer package includes all tools and components

necessary to build applications, including code gen tools, BIOS, IPC,

starterware, BSP drivers, networking stacks, codecs, algorithm kernels

4

Vision SDK - Goals

• Allows rapid prototyping of algorithms on DSP/EVE and creation of

data flows in full system context.

• Provides consistent APIs for creating new and customizable system

data flows

• Enables optimization and instrumentation for power, latency,

performance, load

• Enables use of the software framework and components in customer

systems

5

Vision SDK – Features

6

• Provides a framework and middleware which allows customer to run

multiple algorithms on DSP/EVE/A15
• Ex, 1CH VIP capture + DSP/EVE based Pedestrian detection + 4CH VIP/AVB

capture + 2D Surround view using multiple DSP/EVE + Display – all running

concurrently

• Intent is to deliver a framework which runs multiple concurrent ADAS algorithms

optimally (ex, least possible overheads from framework, low latency)

• Provides a framework and middleware which can be used by customers

in their systems

– high quality code (eg. consistent coding rules, etc.), best coding

practices (ex, no dynamic memory allocation during run time, static analysis,

MISRA C compliance), and structured development process (ex, DOORS for

requirements, etc.)

– Note: TI provides reference algorithms only.

Vision SDK – Features

7

• Provides buffer, DMA, data-flow and control flow management across

different CPUs in the system
– TI understands working with multiple CPUs and sharing resources across

different CPUs is a challenge

– The framework intends to give a view to individual algorithm developers as if

they are working on a single processor and framework will take care of data-

flow and control-flow across different processors

• Enables easy integration and benchmarking of custom algorithms

– An algorithm plugin framework will allow customer to quickly integrate their

own algorithms in context of full system

– Instrumentation infrastructure from underlying components like BIOS is

exported in a consistent way to allow easy analysis of algorithm/system

execution

– Customers can implement algorithms using VLIB on DSP, EVE LIB on EVE

and then using the framework “connect” the algorithms so that
• One algorithm executes as multiple stages with each stage running on different CPUs like DSP or EVE

• Or multiple algorithms can run concurrently on different CPUs like DSP and EVE

• Or a combination of above

Vision SDK – Features

8

• Provides a well defined, consistent API between different sub-systems
– The intent is to allow clean separation of different sub-systems so as to

allow changes in one sub-system to not affect other
• Ex, change capture resolution without changing other stages in the pipeline i.e.

display, VPE scaling, algorithms

– Allow application to scale to different use-cases using existing sub-systems
• Ex, change from AVB capture to VIP capture without changing rest of system

– Allow customers to separate their custom code from TI delivered code (ex,

board specific code, algorithm specific code) so as to allow easy integration

of customer sub-systems within TI framework

• Allows flexibility in changing system level parameters without having to

make changes all over the codebase

– Examples,

• Configure how many and what type of CPUs to use

• Configure how to distribute an algorithm across different CPUs core

• Configure how to increase or decrease system memory requirements

Vision SDK – Features

9

• Customer can have code/algorithms outside the SDK and only interface

to the SDK modules which are useful and relevant for them

• Framework will NOT result in any API change in the components (BSP

drivers, BIOS, IPC, DSP/EVE libs) that are available today on TDAxxx.

• Vision SDK scales to current and future ADAS SoCs from TI

– Currently supported on TDA2xx, TDA3xx, TDA2Ex SoC’s

• Vision SDK scales to different EVM/Boards

– TDA2xx EVM with optional Multi-Deserializer board

– TDA3xx EVM with optional Multi-Deserializer board

– TDA2xx MonsterCam – Multi Sensor Fusion board

– TDA2Ex EVM with optional Multi-Deserializer board

• Vision SDK supports Linux as OS on A15

– Framework to connect Linux user-space application with DSP/EVE/M4 is

included

Vision SDK – Features

10

• Utility tools are provided

– to generate code for use-cases in order to ease development

– to save and load test data via TCP/IP from PC side

– to control application for calibration and tuning via TCP/IP (ISS DCC Image

tuning, Stereo Calibration)

– To flash and boot application from SD card, QSPI

• The framework has been previously used by many TI customers in

production systems like DVR (Digital Video Recorder), NVR (Network

Video Recorder) IPNetCam (IP Network Camera), Car Black Box

(CBB), VC (Video Conferencing)

What is not covered by Vision SDK ?

• Framework does not provide automatic scheduling and execution of vision kernels to

form an algorithm

– i.e users have to write code to call the vision kernel APIs in the appropriate sequence

to form the algorithm or algorithm stage on the given DSP and/or EVE

– Any change needed in the sequence of kernels on the same core would need code

change on that CPU core

– Framework provides means to “connect” multiple algorithms stages across CPU

cores with system elements like capture / scaling / display

• Framework does not provide a means of auto load balancing of DSP and EVEs

– Framework provides instrumentation to find load and utilization of DSP/EVE/EDMA

but user need to manually setup the distribution of algorithms so that CPUs are

loaded in balanced way and performance requirements are met

• TI Algorithms included in Vision SDK like LDW, PD, TSR are reference only and would

not be tested for all corner cases

11

What is not covered by Vision SDK ?

• Auto-SAR integration

– Vision SDK will be implemented so as to have a M4 core free for Auto-SAR

stack if needed, but Vision SDK itself will not include any Auto-SAR

components

• OS independency – framework is based on BIOS for

DSP/EVE/M4/A15. Linux is supported on A15

• Inter processor communication external to TDA2xx, ex, between

TDA2xx and external uC

12

Example ADAS data flow – LVDS surround
view – Logical system diagram

13

LVDS Cam 1

LVDS Cam 2

LVDS Cam 3

LVDS Cam 4

VIP1-1A

VIP1-1B

VIP1-2A

VIP1-2B

VPE

2D SV Stage – 2

DSP or EVE or A15

?

2D SV Stage – 1

DSP or EVE or A15

?

2D SV Stage – 3

DSP or EVE or A15

?

DSS LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

5fps1A

Stitching Matrix @

30fps1A

Boundary info @

5fps1A

4CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC

Logical design, not yet sure where to run different algorithm stages

Example ADAS data flow – LVDS surround
view in Vision SDK

14

First cut implementation, based on DSP and EVE

14 14 14 14 14

LVDS Cam 1

LVDS Cam 2

LVDS Cam 3

LVDS Cam 4

VPE Link

2D SV Stage – 2

DSP1

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

4CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

Capture

Time synced 4CH

VGA @ 30fps1A

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

Example ADAS data flow – AVB Camera
surround view in Vision SDK

15

Assume camera type changed from LVDS cameras to AVB

camera’s

15 15 15 15

AVB Cam 1

AVB Cam 2

AVB Cam 3

AVB Cam 4

AVB RX VPE Link

2D SV Stage – 2

DSP1

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

4CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

MJPEG Decode

Time synced 4CH

VGA @ 30fps1A

IPC Link

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

Example ADAS data flow – AVB Camera
surround view in Vision SDK

16

Assume design flaw where we need to sync 4Ch channels based

on timestamp

16 16 16

AVB Cam 1

AVB Cam 2

AVB Cam 3

AVB Cam 4

AVB RX VPE Link

2D SV Stage – 2

DSP1

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

4CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

MJPEG Decode

Sync

Link

Time synced 4CH

VGA @ 30fps1A

IPC Link

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

Example ADAS data flow – AVB Camera
surround view in Vision SDK with “sync”
link

17

Assume we want more FPS performance on Stage – 1 and want to

move Stage 2 to another DSP

17 17

AVB Cam 1

AVB Cam 2

AVB Cam 3

AVB Cam 4

AVB RX VPE Link

2D SV Stage – 2

DSP2

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

4CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

MJPEG Decode

Sync

Link

Time synced 4CH

VGA @ 30fps1A

IPC Link

IPC Link

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

Example ADAS data flow – AVB Camera
surround view in Vision SDK with “sync”
link

18

Assume we want to extend to 6 camera’s

18

AVB Cam 1

AVB Cam 2

AVB Cam 3

AVB Cam 4

AVB RX VPE Link

2D SV Stage – 2

DSP2

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

6CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

6CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

MJPEG Decode

Sync

Link

Time synced 6CH

VGA @ 30fps1A

IPC Link

IPC Link

AVB Cam 5

AVB Cam 6

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

1MP @ 30fps1A

1MP @ 30fps1A

Example data flow – AVB Camera surround view
with multiple algorithms in Vision SDK

19

AVB Cam 1

AVB Cam 2

AVB Cam 3

AVB Cam 4

AVB RX VPE Link

2D SV Stage – 2

DSP2

2D SV Stage – 1

DSP1

2D SV Stage – 3

A15

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

6CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

6CH VGA @

30fps1A

800x480 @ 60fps1A

TDAxx SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

MJPEG Decode

Sync

Link

Time synced 6CH

VGA @ 30fps1A

IPC Link

IPC Link

AVB Cam 5

AVB Cam 6

Select

Link 1CH 1MP @

30fps1A

IPC Link IPC Link

LDW EVE1 TSR EVE2

User APP
2D GRPX

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

1MP @ 30fps1A

1MP @ 30fps1A

Components in Vision SDK

20

VISION SDK: SYS-BIOS SW Stack

21

ADAS SOC

C66x (1 or more) EVE (1 or more)

VLIB

A15

EVE Library

EVE Starterware SBL

Boot

utils BAM

SysBIOS SysBIOS

IPC 3.0

IPC 3.0 IPC 3.0

SysBIOS
S

ta
rt

e
rw

a
re

S
ta

rt
e
rw

a
re

LINKS

ALG,

IPC IN,

IPC OUT

…

Demo Algorithms

Low level Components

Links and Chains Framework

Demo Algorithms

LINKS

ALG,

IPC IN,

IPC OUT

…

LINKS

ALG,

IPC IN,

IPC OUT

…

Demo Algorithms

21

IPU1_C0 (M4)

BIOS

Drivers

(BSP)

FC

IPC 3.0

Codecs

(MJPEG

Decode)
NDK

S
ta

rt
e
rw

a
re

NSP

AVB -

1722

SysBIOS SysBIOS

IPC 3.0

IPU1_C1 (M4)

S
ta

rt
e
rw

a
re

LINKS

AVB RX,

IPC IN,

 IPC OUT

…

LINK API
LINKS

Capture, Display,

VPE, Decode, ISS,

IPC IN, IPC OUT

SDK

Use Cases

Register Layer

Only on TDA2xx

NDK NSP

OpenCL Host

OpenCV

OpenCL Compute

Device

VISION SDK: Linux + SYS-BIOS SW Stack

22

ADAS SOC

C66x (1 or more) EVE (1 or more)

VLIB

A15

EVE Library

EVE Starterware

BAM

SysBIOS

IPC 3.0 IPC 3.0

SysBIOS
S

ta
rt

e
rw

a
re

Demo Algorithms

Low level Components

Links and Chains Framework

Demo Algorithms

LINKS

ALG,

IPC IN,

IPC OUT

…

LINKS

ALG,

IPC IN,

IPC OUT

…

Demo Algorithms

IPC 3.x

Linux

Kernel

Linux

Drivers

LINKS

Algorithm,

3D SV

Open GL

SGX

Linux components

SDK Use-case

3D Surround View

UBoot

22

IPU1_C0 (M4)

BIOS

Drivers

(BSP)

FC

IPC 3.0

Codecs

(MJPEG

Enc,

Dec)
NDK

S
ta

rt
e
rw

a
re

NSP

AVB -

1722

SysBIOS

LINK API
LINKS

Capture, Display, VPE,

Decode, IPC IN, IPC OUT

Register Layer

Open CV

OpenCL

Host

OpenCL Compute

Device

Components included Vision SDK (1/3)

“TI Proprietary Information - Strictly Private” 23

SW Layer Processor
Applicable

Description TI SW Package
Name

Need XDC

BIOS IPU1 M4-0

IPU1 M4-1

DSP

EVE

A15

BIOS RTOS is used as OS.

Provides features like threads,

semaphores, interrupts.

Queues and message passing

between links is implemented using

BIOS semaphores.

BIOS is used in non-SMP mode on

all processors.

BIOS

XDC (used for BIOS and

other configuration)

Yes

IPC IPU1 M4-0

IPU1 M4-1

DSP

EVE

A15

Software APIs used for

communicating between

processors.

Provides features, multiprocessor

heaps, multiprocessor linked list

(ListMP), message queues, notify

etc

IPC Yes

Starterware /

BSP Drivers
IPU1 M4-0

Video drivers like VIP capture, DSS

display, ISS Capture, ISS

processing, VPE scaling based on

FVID2 interface to control and

configure the VIP/VPE/DSS/ISS

HW

Serial drivers like I2C, SPI, UART

Board specific drivers like sensor

drivers

BSP

Starterware

Yes (for serial

drivers)

24

SW Layer Processor
Applicable

Description TI SW Package
Name

Need XDC

EDMA Driver IPU1 M4-0

IPU1 M4-1

DSP

EVE

A15

EDMA drivers EDMA3 LLD No

IVAHD Codecs IPU1 M4-0

Video encode / decode APIs based

on XDM / XDIAS interface. Uses

framework components for resource

allocation.

XDIAS

Framework components

IVAHD HDVICP2 API

MJPEG, H264 decode

MPJEG, H264 Encode

Yes (for

framework

components)

Networking

Stack
IPU1 M4-0 or

IPU1 M4-1 or

A15

EMAC driver, TCP/IP stack, AVB

stack for camera control and

MJPEG bitstream receive over

ethernet

NSP

NDK

AVB (only on IPU1-1)

Yes

Vision LIB DSP Vision algorithm kernels optimized

for DSP.
VLIB No

EVE LIB EVE Vision algorithm kernels optimized

for EVE.

Including framework for EVE

algorithm execution

EVE Starterware

EVE LIB

EVE BAM framework

No

Components included Vision SDK (2/3)

25

SW Layer Processor
Applicable

Description TI SW Package
Name

Need XDC

Links IPU1 M4-0

IPU1 M4-1

DSP

EVE

A15

Implementation of individual links.

Some links are specific to a

processor while some links are

common across processors

VISION SDK No

Link API IPU1 M4-0

The link API allows users to create,

connect, and control links on M4,

DSP, EVE, A15.

Link API is used to create a chain of

links which forms a user defined

use-case or data flow.

VISION SDK No

User Application IPU1 M4-0

A15 (Linux)

User application will use the link API

and create its own custom chains.

External device control like camera

sensor, LCDs will be done by user

application using serial IO drivers

like I2C SPI

User application can optionally also

talk with IPU1-M4-1 (possibility doing

car communication using AUTO-

SAR stack)

Customer specific Yes (for final

linking only)

Components included Vision SDK (3/3)

Vision SDK Architecture Overview

26

“Links and Chains” framework

27

Capture

VPE Scale and

color convert

2D surround view

(On DSP)

Display

4CH 720x480

YUV422I 60fps

4CH 720x240

YUV420SP 60fps

1CH 1920x1080

YUV420SP 60fps

(1080p60)

Since each link runs as a separate thread, links can run in

parallel to each other.

MBX

MBX

MBX

MBX

The message box associated with a link allows user

application as well as other links to talk to that link.

A link is the basic processing step in a video data flow. A link

consists of a OS thread coupled with a message box

(implemented using OS semaphores).

The link implements a specific interface which allows other links

to directly exchange video frames and/or bit streams with the

link. i.e intervention of the user application is not needed on a

frame to frame basis

Link API allows user to create, control and connect the links. This

control code is written on a single processor. Internally Link API

uses IPC to actually control the links on different processors.

User of Link API need not worry about the lower level inter

processor communication details

User App MBX

IPC

IPC

IPC

A connection of links is called a chain. A chain is created on a

processor designated as HOST CPU (IPU1-M4-0 in case of

TDA2xx family of ADAS SoCs)

• VISION SDK is based on the “Links and Chains” framework.

Advantages of link’s (1/2)
• Once a link is implemented it can interface to any other supporting link

including a link on another processor

– Ex, once a algorithm is implemented as link, the input data to it can come

from VIP capture link or VPE link (after scaling) or decode link (after MJPEG

decode)

– The algorithm link need not change

• Once a link is implemented it can be instantiated multiple times and on

different processors (of same type)

– Ex, once a algorithm is implemented on EVE, it can be instantiated on

multiple EVEs to operate on multiple channels or on same channel but

operate on different sub-frames/portions of the same input frame

• Once a link is implemented it can be instantiated multiple times and on

different processors of different type provided the underlying link

implementation uses same function API

– Ex, if a algorithm writer provides same API to a algorithm on DSP as well as

EVE, then the same algorithm link can be instantiated on DSP and/or EVE

depending on user requirement

28

Advantages of link’s (2/2)

• Each link needs to be written assuming it will exchange frames with a

link on the same processor.

– The IPC frames exchange is taken by special IPC links and is hidden form

the link writer

• Once a chain is setup and started, frames “flow” through the whole

system without user application intervention on a frame by frame basis.

– User can intervene in between if required to control some aspect of the

chain. Example, enable/disable a algorithm or dynamically modify algorithm

“thresholds” etc

NOTE: Vision SDK provides a tool to generate source code for chains

based on user description of the use-case. Refer

“VisionSDK_UsecaseGen_Overview.pdf” for more details.

29

Summary of links implemented by TI (1/3)

30

Link Name CPU

applicable
Purpose

Video processing links
VIP Capture Link IPU1-M4-0 Capture video frames from VIP ports and output data

to DDR memory
ISS Capture Link
(TDA3x & TDA2Ex)

IPU1-M4-0 Capture frames from CSI2/Parallel sensors using ISS

ISS M2M ISP (TDA3x
ONLY)

IPU1-M4-0 Process raw data from memory and convert to YUV

ISS M2M SIMCOP
(TDA3x ONLY)

IPU1-M4-0 Process video data from memory and perform LDC,
Temporal Noise filter

Display Link IPU1-M4-0 Read video frames from DDR memory and display on
configured display device

Display Controller
Link

IPU1-M4-0 Configure display VENC and overlay manager related
portion of the DSS

VPE Link IPU1-M4-0 Read video frames from DDR memory, deinterlaced,
scale, color convert and write to DDR memory

SW Mosaic Link IPU1-M4-0

DSP

Read video frames from DDR for multiple channels
and arrange them in memory in a user specified
mosaic configuration using EDMA

Video Encode IPU1-M4-0 Read video frames from DDR and encode them using
different user specified compression schemes like
H264, MJPEG

Video Decode IPU1-M4-0 Read bitstreams from DDR and decode them using
different user specified decompression schemes like
H264, MJPEG

Summary of links implemented by TI (2/3)

31

Link Name CPU applicable Purpose
IPC Links
IPC OUT ALL Get buffer information from previous link and sent to IPC IN link on

another processor
IPC IN ALL Get buffer information from IPC OUT on another processor and sent to

next link on same processor
Connector Links
DUP ALL Get frame information from previous link and duplicate the information

for ‘N’ next link’s. DPU link keeps track of reference count before
releasing the frames to previous link

Merge ALL Get frame information from ‘N’ previous link and make it appear like one
input queue having multiple CHs to the next link.

This allows multiple source to feed frames to the same consumer link
Select ALL Get frame information from previous link and segregate and route the

information based on CH ID to ‘N’ next link’s as specified by user.
Sync ALL Get multiple channels of input and synchronize them based on

timestamp. This is required when running algorithms like 2D surround
view

Null ALL Get frame information from previous link and do one of below

- Do nothing – i.e NULL operation

- Save to file

- Transfer over network to PC using TCP/IP
NullSrc ALL Send frame to next link using one of below as content source

- A PreDetermined frame in memory

- Read from file

- Receive frames from PC over network using TCP/IP

Summary of links implemented by TI (3/3)

32

Link Name CPU applicable Purpose
Networking Link
AVB RX IPU1-M4-1 Receive AVB packets from Ethernet interface, reassemble them

into bitstream frames and output the bitstream frames to next
link

Algorithm Link
Alg Link ALL

Get video frames from DDR and perform algorithm and output
the results to the next link as meta data encapsulated in a
system buffer.

Algorithm are integrated into Vision SDK by implementing a
“Algorithm Plugin” which is associated with a Algorithm Link

Use-case examples in Vision SDK

33

Usecases TDA2xx TDA3xx

1CH VIP capture + Display with optional Alg Frame Copy (DSP1

or EVE1 or A15)
√ √

1CH VIP capture + Dense Optical Flow (EVE) + HDMI Display
√ √

1CH VIP capture + Alg Subframe Copy (EVE) + Display
√ √

1Ch VIP capture + FrontCam Analytics PD+TSR+LD+SOF (DSP,

EVE) + Display
√ √

5CH LVDS VIP Capture + Surround View (DSP) + PD+TSR (DSP,

EVE) + HDMI Display √ X

5CH AVB Capture + Decode + Surround View (DSP) + Edge

Detect (EVE) + HDMI Display √ X

1CH ISS capture + ISS ISP + ISS LDC+VTNF + Display
X √

2CH VIP capture + Edge Detect (EVE1) + Dual Display √ X

2Ch VIP capture + Stereo Disparity + HDMI Display √ X

NOTE: Refer to VisionSDK_DataSheet.pdf for exact use-cases in a given release

Resource allocation – DDR Memory

• VISION SDK supports multiple memory map configurations (128MB/256MB/1GB),

– It is possible to modify the memory map to use lesser or more memory as required.

– It is possible to increase or reduce memory segment size as required via build time

configuration

• Single EMIF 32-bit DDR is assumed.

– It is possible to modify the memory map / DDR configuration to use dual 32-bit DDR

or single 16-bit DDR

• DDR Memory allocation for buffers

– All buffer memory for frame buffers/bitstream buffer/vision analytics algorithm buffers

is allocated by the links at “create” time.

– Once a link is in run phase no dynamic memory allocation is done.

– Each link will allocate the buffer it needs for its processing output. A link will receive it

input buffers from its previous link.

– A Shared region in IPC, SR1, is used as a buffer heap. This heap will be a multi

processor heap. i.e different processors can allocate memory from this heap using

IPC APIs. IPC will take care of inter-processor mutual exclusion during memory

allocation.
34

Resource allocation – EDMA

• TDAxx has multiple EDMA controllers

• System EDMA controller

– The System EDMA controller is accessible to IPU1-M4-0, IPU1-M4-1, A15, DSP’s via

EDMA3 LLD APIs

– A convenient means of configuring the channel allocation for each core is provided by

the Vision SDK

– EDMA3 LLD APIs will be used for System EDMA resource management

– Utility APIs to copy / fill buffer will be provided by Vision SDK for system EDMA

controller. Both interrupt / polling method will be supported

• DSP/EVE local EDMA controller

– Each DSP and EVE has its own EDMA controller. This is dedicated for use of the

respective DSP and EVE

– EDAM3LLD can be used to access local EDMA controller

– Algorithms typically have very specific needs from EDMA, customers are free to use

this EDAM3LLD APIs or directly use the EDMA controller as they require

– Vision SDK will give utility APIs to do resource management of the EDMA

channels/PaRAMs

35

Resource allocation – Internal memory

• DSP and EVE both have internal memory which can be used by algorithms to store

algorithm data

• In additional there is additional On-Chip OCMC memory which can be used by any of the

CPU cores

• Vision SDK framework will provide utility APIs for algorithms to allocate memory from

these internal memories

• Allocation from DSP/EVE local internal memory can be done only by the respective CPU

• Allocation from OCMC internal memory can be done by any core DSP/EVE/A15/M4

• OCMC Internal memory can be allocated in “persistent mode”, i.e data in memory block

needs to preserved across algorithm buffer processing invocations and therefore the

memory block must be dedicated for this algorithm

• DSP/EVE local internal memory is always allocated in “scratch” mode, i.e memory is

shared between algorithms and data can be overwritten by another alogrithm across

processing invocation.

36

Debug and instrumentation – Remote Log

• TI provides lots of debug and instrumentation support

– via CCS tools for device related debug and instrumentation and

– Via ROV tools for BIOS related debug and instrumentation

• Vision SDK will complement these tools by providing following debug

logging via the UART port.

– Using UART port allows debug information to be retrieved even when

system is not connected to CCS via JTAG

• A remote logging feature will be provided which allows prints from all

CPUs to be collected at the “host” CPU and then host CPU can print all

the logs via UART. Each log will have a global timestamp to identify the

time sequence of logs across processors

• A non-locking shared memory segment will be used so that exception

logs can be made available even when normal IPC mechanisms like

Notify, MessageQ have failed
37

Debug and instrumentation – Software
Statistics

• Each link will additionally provide the following logs which will be useful

to debug system issues like frame loss, FPS drop, buffer pipeline

hangs, latency issues

– Input / Output processing FPS

– Input / Output dropped frame FPS

– Driver Callback / interrupt count

– Min/Max/Avg Source to current link Latency

• System level information like below will also be available

– Per thread CPU load, HWI, SWI, total CPU load for each core

– Memory heap usage of shared memory heaps, local heaps, internal

memory heaps

• All this information will be available at host CPU via remote log feature

38

Working with custom HW board and
custom applications

• The software is written such that board specific details are separate

from framework related code

– Example,

• Capture link will provide parameters to user configure sensor specific parameters

like Hsync/Vsync polarity

• Sensor related I2C config will be kept outside of the framework code

– This will allow examples to be ported to custom HW quickly

• Customer can write their own links and these links can reside outside of

TI codebase. APIs are provided to register these links to the main

framework

– This allows customer to customize and write their own links without touching

TI provided code and thus allow easier merging to bug fixes and updates

from TI in the main framework codebase

39

Working with custom algorithms

• Customer can write their own algorithms and these algorithms can

reside outside of Vision SDK codebase. APIs are provided to register

these algorithms as “plugins” to the Algorithm link framework

• This allows customer to write their own algorithms without touching TI provided code

and thus allow easier merging to bug fixes and updates from TI in the main framework

codebase

40

Vision SDK Architecture Details
Link API

41

Link API (1/2)

• These API’s is used by the user to create, delete, connect, start, stop links in a chain

• Each link is identified by a system wide unique 32-bit link ID

• The link ID determines on which processor the link runs as shown below

• Each link API needs the link ID as an argument when sending a message to the link. This

allows the framework to determine which thread on a given processor should receive the

target link API command

“TI Proprietary Information - Strictly Private” 42

Bits Description
0..7 Link ID
8..11 Processor ID on which this link runs

0: IPU-1-M4-0

1: IPU-1-M4-1

2: A15

3: DSP-1

4: DSP-2

5: EVE-1

6: EVE-2

7: EVE-3

8: EVE-4

Link API (2/2)

“TI Proprietary Information - Strictly Private” 43

API Description
System_linkCreate Creates a link - allocates driver, codec, memory resources.

All link threads are created at init time. So this API will not create the link thread itself.

This is the first API to be called for MOST links though for some links this API need not be

called.
System_linkGetInfo Get output information about a link like number of channels, properties of each

channel. MUST be called after System_linkCreate() for a link.

Usually used in the succeeding link in the chain to query the queue information
of the previous link.

A link output consists of

 ‘numQue’ number of queues

 Each queue consists of ‘numCh’ number of channels

 Each channel has some properties like width, height, type etc

This information is used by the next to configure itself based on input it will
receive from the previous link or by the user to know about the link properties.

System_linkStart Start the link - starts the driver or codec.

This is optional API. Not all links would implement this API.

Internally it would be implemented using System_linkControl API
System_linkStop Stop the link - starts the driver or codec.

This is optional API. Not all links would implement this API.

Internally it would be implemented using System_linkControl API
System_linkDelete Deletes a link - free’s driver, codec, memory resources.

Note, the OS thread itself is not deleted
System_linkControl Send a link specific control command with optional arguments

Inter Link API
• These API’s is used by links to exchange buffers with another link.

– Users of a link typically need not be aware of this API.

– However customers can use this API to write custom links depending on their specific

requirements

• Each link needs to implement a few function callbacks and register the function pointers with

the system frame work along with its link ID. This registration is done once during system

init.

• Any link which wants to get buffers to/from another link will use the system API

“System_getLinksFullBuffers()” to get buffers from the previous link. This internally will index

into the system wide link information table and invoke the link specific function callback.

• Similarly when a link wants to release the buffer back to the original link after the buffers

have been consumed, it will call the API “System_putLinksEmptyBuffers()”. This internally

will index into the system wide link information table and invoke the link specific function

callback.

• This way a link need not exactly know which link it is exchanging buffers with. All it needs is

a link ID of the previous link in the data flow. This allows user to user the same link in many

different data flows without modifying the link implementation.

• This also allows to hide inter processor buffer exchange

44

Inter Link API – System Buffer

• The unit of exchange across link is a “system buffer”.

– A system buffer itself can be different types like video frame, video bitstream, meta

data etc.

– The mechanism of exchange is same for all types of buffer.

– More Buffer types can be added as required.

– Internally a driver or a codec may use a different structure to represent a say a video

frame.

– The specific link implementation will take care of translating the System Buffer to

driver or codec specific buffer information structure.

• Among other fields a System Buffer will have the below fields

– Buf type – Video frame or Video bitstream or Composite video frame etc

– Channel number – to identify a video/processing channel among multiple channels in

the system

– Timestamp

– Sequence Number

– Payload Size – size would be different for different buffer types

– Payload pointer – pointer to specific buffer information

45

Inter Link API – Link callbacks

46

API Description
System_GetLinkInfoCb Function to return information about a link like number of channels, properties

of each channel
System_LinkGetOutputBuffersCb Function to return captured or generated or output buffer to the

caller (another link)

ONLY valid for links which output buffers
System_LinkPutEmptyBuffersCb Function to release consumed buffers back to the original link for

reuse

ONLY valid for links which output buffers
System_getLinksFullBuffers Function call by a link to get input buffers from previous link for

processing.

Internally the framework calls the link specific callback.

ONLY links which takes buffers as input call this function
System_putLinksEmptyBuffers Function called by a link to release consumed buffers to the previous

link.

Internally the framework calls the link specific callback.

ONLY links which takes buffers as input call this function

• When implementing a link the below callbacks needs to be implemented by the link writer

Inter Link API – Link output queues (1/2)

• A link will have one or more output queues into which it will put the captured or generated

buffers. A link owns it output queue and takes care of memory allocation for the buffers

that will go into its output queue.

• Most links have only one output queue, but some links have multiple output queue’s.

These multiple output queue’s allow that link to be used in different data flows without

changing the link implementation.

• Example, Capture link can be configured to output its channel frames over two output

queues, such that 4CH of 8CH goto one output queue and other 8CH go to other output

queue. This allows Capture to feed to two different Display links in some data flows.

• An output queue can hold buffers from multiple channels of multiples sizes and different

data formats. i.e it’s a heterogeneous queue.

• The information of the content in the queue can be known by using the

System_linkGetInfo() API. This internally will call the link specific

System_GetLinkInfoCb() function callback.

• The data structure System_Buffer, is used for exchanging buffer information between

links. This allows buffer information to flow between links without any additional

translation. Among other information it has a “channelNum” field which allows a link to

identify the channel with the buffer data.

47

Inter Link API – Link output queues (2/2)

• A link will typically call the System_getLinksFullBuffers() with the link ID and queue ID of

the previous link when it wants to process the input buffers.

• A link when it has generated output buffers for consumption by the next link will send a

message “SYSTEM_CMD_NEW_DATA” to the next link.

• When a link receives “SYSTEM_CMD_NEW_DATA” it will call

System_getLinksFullBuffers(). After processing the input buffers it will release the input

buffers using System_putLinksEmptyBuffers()

• Thus a link needs to know

• Previous link ID and Previous Link Queue ID to get input buffers

• And Next Link ID, in order to inform the next link when new buffers are generated.

• This information of previous link ID and next link ID is passed to a link using the

System_linkCreate() API.

• Thus previous link ID and next link ID is what “connects” one link to another link.

48

Vision SDK Architecture Details
Inter processor Communication

49

Inter processor communication (IPC)

• VISION SDK uses IPC package for inter processor communication.

• IPC needs one Shared region 0 to store meta data for IPC objects like

MessageQ, ListMP etc. Shared region can also be used to create multi

processor heaps.

• VISION SDK will configure shared region as below

50

Shared

region
Rough

size
Location Cache policy Purpose

SR0 ~ 16MB DDR NON CACHED at all

processors

(M4/DSP/A15/EVE)

IPC queue elements, MessageQ buffers,

IPC internal multi processor data structures

SR1 ~ 151MB DDR CACHED at all processors

(M4/A15/DSP/EVE)
Frame/Bitstream/VideoAnalysis data heap

IPC - Sending control commands across
processors

• Message queue will be used to send control commands to the individual links.

• This will be used for low frequency (once per 1sec kind of rate) control

commands.

• This mechanism will NOT be used for frame to frame exchange (ex, at 30fps)

between two processors.

• MessageQ in general does some parameter copies (user parameter pointer to

shared memory buffer) and has higher overheads when passing message’s

across processor, so it is not used for frame to frame exchange.

• MessageQ however is easier to use and allows generic parameter passing,

hiding many low level details from the user.

• Hence it is used for control messages and not for per frame level exchange

51

IPC - Exchanging buffers across
processors (1/2)
 • Each link itself is implemented thinking that it is exchanging buffers with another link on

same processor.

– This approach simplifies the implementation of the processing link since it need not

worry about inter processor communication. Also it allows the same processing link to

be used to talk to links on different processors and/or same processor without any

changes

• A pair of special links are used when buffers need to go across different processor’s

• The special links are

– IPC OUT

– IPC IN

• The IPC links always operate as pair as shown below

52

Noise Filter

Algorithm

Link

DSP

IPC-In

Link

IPC-Out

Link

Display

Link

M4

IPC-In

Link

Capture

Link

M4

IPC-Out

Link

• Here Capture link on M4 will send its buffers to IPC OUT link running on the same CPU.

So from Capture link point of view it is talking to a local link

IPC - Exchanging buffers across
processors (2/2)

• The IPC OUT link will take buffer information translate it in a format which can be shared

using IPC shared memory and send it the IPC IN link the CPU2.

– The low level IPC mechanism used will be a non-locking queue implemented using

IPC Notify + IPC SharedRegion

• The IPC OUT will signal the IPC IN on availability of new data via IPC Notify mechanism.

– Here the 32-bit link ID of the IPC IN link is passed as the payload

– This allows us to use a single Notify for a given processor and that processor could

be running multiple instances of IPC IN each talking to a different IPC OUT

• The IPC IN link on receiving the Notify will get information from the IPC queue and

translate this information in a format the Processing Link 2 on the same CPU can

understand. This way processing link 2 can be written assuming it talking to a link on the

same processor

• The IPC IN/OUT takes care of cache operation on the buffer information, address

translation (since each CPU could be running on different address spaces)

• When the IPC OUT/IN pair operate on pair of CPUs which have uni-cache then it would

directly send the buffer information pointer to the other CPU without any translation

 53

IPC – Performance

• Frame exchange done using IPC incurs low CPU overhead and latency due to

– links talk to each directly without any host CPU intervention,

– non-locking queue implementation ensures get/put from the queue incur minimum

overheads

– Interrupt to the next CPU is done using the lowest level IPC API (Notify), this in turn

uses the HW mailbox to trigger the interrupt

• The table shows the measured latency for a frame of exchange via IPC (Refer datasheet

for details)

54

(*) Latency measured in micro-seconds

Vision SDK Architecture Details
Algorithm Link

55

Algorithm link for DSP/EVE/A15 (1/2)

• Algorithm link is a link like any other link in the system chain.

• While the capture or display link encapsulate the corresponding drivers

in them, Algorithm link encapsulates an algorithm in it.

• Algorithm links can be connected with other links in the system to form

a chain.

• An example of a noise filtering algorithm link on DSP, connected in the

system chain, looks like below

56

Noise Filter

Algorithm

Link

DSP

IPC-In

Link
IPC-Out

Link

Display

Link

M4

IPC-In

Link

Capture

Link

M4

IPC-Out

Link

Algorithm link for DSP/EVE/A15 (2/2)
• Algorithm encapsulated within the algorithm link can be a complete application or a stage

of an application (For Ex Pedestrian detection, Median filtering etc..).

• Several stages of an application spread across several cores can be connected by

forming a chain between multiple algorithm links as follows:

• A two stage application spread across two cores is as shown below

• If several stages of an application execute on a same core in a sequential manner, they

can be encapsulated within a single Algorithm link, by calling the stages in a sequential

manner.

 57

Algorithm

Link for

stage 1

DSP

IPC-In

Link
IPC-Out

Link

Algorithm

Link for

stage 2

EVE

IPC-In

Link
IPC-Out

Link

Display

Link

M4

IPC-

In

Link

Capture

Link

M4

IPC-Out

Link

Algorithm link Design (1/2)
• To enable easy and fast development of algorithm links, the link is designed to

consist of two portions - Skeletal and plug-in functions

• Skeletal part of algorithm link:

– Comprises of portions of algorithm link implementation, which are common across

algorithms

– Takes care of generic aspects of link implementation like link creation, link state

machine, communication with other links etc.

– Provided by TI

• Plug-In Functions:

– Comprises of functions which cater to algorithm dependent functionality

– Needs to be written, specific to the algorithm being integrated

58

Skeletal

Code

DSP

IPC-In

Link

IPC-Out

Link

Display

Link

M4

IPC-In

Link

Capture

Link

M4

IPC-Out

Link

Plug In

Functions

Algorithm link Design (2/2)
• Skeletal portion of the code and plug in functions communicate with each other via a

predefined API (Refer - \vision_sdk\include\link_api\algorithmLink_algPluginSupport.h).

• Skeletal code implementation and the communication API is kept same, independent of

the processing core (EVE/DSP/A15/M4)

• Skeletal code shall call the Plug-In functions based on the state of the algorithm link.

• Plug in functions have the implementation to create and use the actual algorithm

functions (Provided by the algorithm provider)

• Plug-In functions can interact with algorithm functions via iVision or any other custom

interface.

• List of Plug in functions are as follows:

59

AlgorithmLink_AlgPluginCreate Plug in function which will perform algorithm instance creation

AlgorithmLink_AlgPluginProcess Plug in function which will process new data. Internally it will call the process function of the

algorithm

AlgorithmLink_AlgPluginControl Plug in function which will perform Control (Configuration) of the algorithm. Internally it will call the

control function of the algorithm.

AlgorithmLink_AlgPluginStop Plug in function which will perform all functionality which needs to be done at the end of algorithm.

Example: If any buffers are locked inside the algorithm, they can be flushed in this function.

AlgorithmLink_AlgPluginDelete Plug in function which will perform algorithm instance deletion

Integrating Algorithm into Vision SDK

• To integrate an algorithm into Vision SDK, the corresponding algorithm link

needs to be developed

• Developing an algorithm link means development of the plug-in functions for

that algorithm

• These plug-in functions need to be registered via register API

• Each algorithm will have an unique Alg Id.

• Once the plug-in functions for an algorithm are registered, the use case can

create an algorithm link with the corresponding Alg Id and this link can be used

like any link in the system

60

