
1

CCS Debug and Trace

Debug Tools Value Chain

 Deployment

 JTAG Debug for Cortex,
DSP, & Accelerators (IVA)

Boot Mode Debug Support

Debug Across Core &
System Resets

Debug Across Power
Transitions

Global Execution Control

Kernel & MMU Aware
Debug

Symmetrical Multi
Processing (SMP) Debug

GDB based OS App Debug
Linux & TI RTOS Aware

Cross Triggering for
Debug & Real-Time Trace

Program Execution &
Data Trace

Trace Based Function
Profiling & Code Coverage

Cache & Cycles Profiling

Time-Correlated Multicore
Instrumentation

Non-Intrusive Throughput,
Bus Bandwidth, & Traffic
Profiling

Non-Intrusive Power &
Clock Management
Optimization

Embedded Debug &
Analysis APIs

Standalone Trace Import
& Analysis

Debug Probes & Trace Receivers Debuggers & Development
Environments

Embedded & Hosted
APIs

 Application &
 System Optimization

 Kernel &
 Application Development

Board Bring-Up &
Drivers Development

http://www.arium.com/images/ECM-XDP3_front.jpg

Tools Capabilities

Run Mode Debug

Stop Mode Debug

SoC Instrumentation
and Analysis

JTAG Probes
and Trace Receivers

Processor Trace
and Profiling

XDS100v2/v3 XDS200 XDS560v2 STM XDS560v2 Pro Trace

•JTAG (1149.1) support
•C66x, Cortex A15, Cortex M4, EVE(ARP32), IVA(ARM9), and PRU
debug
•C66x, CortexA15, Cortex M4, ARM9, ARP32 supports HW
breakpoints, Watchpoints, and performance counters
•Debug code from reset vector

•GDB based
•Linux and Android support
•Process level execution control
•Process level breakpoints

•Linux eclipse plug-in add-on to CCS for simultaneous
kernel and app debug

•DSP Trace – PC, cycles, data, & events (PG 1.0 not
working)
•Cortex A15 – PC and cycles
•Embedded trace buffer (ETB)
•Off-chip trace via Pro Trace (Aug 2013)

•DSP cache and pipeline stalls profiling (PG 1.0 not working))
•PC based function level profiling
•CToolsLib embedded trace instrumentation
•Trace based code coverage (CCS v5.5 - 4Q 2013)
•CToolsProf: GNU style CLI for trace and profiling (1H 2014)
•Trace over USB3 (2Q 2014)

•Chip level system SW instrumentation view
•System Trace Linux drivers for HW assisted printf
•Embedded Trace Buffer (ETB) & off-chip collection
•Cache performance measurement for IPU, and EVE (CTSET)
•Bus bandwidth and latency profiling (Stats Collect.)

•Bus interconnect traffic profiling (OCPWP)
•Power and clock management profiling
•IVAHD accelerators execution profiling
•CToolsLib for embedded debug and trace
•CToolsProf: GNU style CLI for trace and profiling (1H 2014)

•CPU and system reset debug
•Symmetrical multi processing (SMP) debug
•Global run and halt across processors
•Debug across low power transitions
•Linux/Android kernel aware debug
• Hypervisor (VM and Guest OS) Debug (2Q 2014)

XDS510

3

XDS JTAG and Trace Receivers

XDS100 v2
• Entry level JTAG for hobbyist and universities
•CCS Cortex A download speed ~30 KB/sec
• USB 2.0
• TI 14 and CTI 20 native
• Open HW reference design

XDS200
•Performance JTAG at low cost for serious users
•CCS Cortex A download speed ~300 KB/sec
• ARM SWD and SWO support
• USB 2.0 and optional ENET
•Bi-direction GPIOs for instrumentation
• TI, MIPI, and ARM connector option
• 3P EPK licensed

XDS510
•Performance JTAG for serious users
•CCS Cortex A download speed ~250 KB/sec
•USB 2.0
• TI 14 and CTI 20 native
• 3P EPK licensed

XDS560 v2 STM
•High performance JTAG & cJTAG for professional users
•CCS Cortex A download speed ~600 KB/sec
•Low bandwidth trace receiver (STM & Cortex M)
•USB 2.0 and ENET
•4 pin @ 100 MHz with auto skew & jitter calibration
•128 MB storage
• MIPI 60 native with add-on adapters
• 3P EPK licensed

XDS Pro Trace Receiver
• High performance JTAG & cJTAG for professional users
•CCS Cortex A download speed ~600 KB/sec
•High bandwidth dual-channel trace receiver (DSP, Cortex, & STM)
• USB 2.0 and ENET
• 32 pin @ 250 MHz DDR with auto skew & jitter calibration
• 2 GB trace storage buffer
•MIPI 60 native with add-on adapters
• 3P EPK licensed

4

Embedded Debug and Analysis APIs

• CtoolsLib – Enabling embedded debug, trace setup, and analysis usage

• Easy access to debug capabilities via simple C APIs

• Very low latency and small footprint (order of few KBs)

• Easy OS integration

• Easy import and data visualization via CCS

Field Deployed Debug and Trace

http://processors.wiki.ti.com/index.php/CToolsLib

5

API Jacinto6

ETBLib - Programmatic access to program and read trace data from an Embedded Trace Buffer √

ETMLib - Programmatic access to setup Cortex A15 trace export √

STMLib – Printf like instrumentation APIs with HW acceleration √

STM Linux driver – Enables C printf output redirection to STM port (HW acceleration with SoC Timestamping) √

SCLib - Programmatic access to setup Statistics Collectors for SoC visibility √

PMCMLib - Programmatic access to setup power and clock management profiling visibility √

Code

Composer

Studio/

Trace Analyzer

Data Import/Analysis:

Code Composer Studio

Standalone Trace decoder (TD)

User developed custom tools

Data Transport:

Ethernet, JTAG, or user defined

Standalone

Trace Decode

“TD”

Triggering/Collection:

CToolsLib APIs

User Developed

/ Custom Tools

Host Computer

Target

Embedded Debug and Analysis APIs – Usage Flow

TDA2/3 Debug and Trace HW

Linux Kernel drivers

with cToolsLib APIs

Debug App with

cToolsLib APIs

OR
Application Linux

Application

6

Technology Overview

7

TDAx Debug and Trace – Key Goals

• Reuse ARM IP with TI differentiation additions

Efficiency

• Across all TDAx family devices

Consistency

• Development and deployment

Product Life Cycle

• 3P framework and low cost tools

Eco System Enablement

8

TDA2x Debug and Trace View

Cortex M3

CTools
Debug SS

JTAG

STM Port

TBR

C66x DSP

D
S

P
 S

S
 x

 2

DP AET

EMIF / Peripherals…

Switch Fabric

M
P

U
 S

S

DP

Trace

BP/WP

ICEpick

Statistics

Collector/Performance

Probes

OCPWP Traffic

Monitoring Unit

PMU

Cortex M4
I
P

U
 S

S

DP SCTM
ARM9

I
V

A
-H

D
 S

S

DP
SMSET (SW Msg

& Events) Unit

ARM9

HW ACC

HW ACC

Power and Clock

Profile Unit

TPIU

Cortex

A15 Cortex

A15

ICEmelter

STM SW

Message Units

STM SW

Message Unit STM SW

Message Units

CTI

USB3

9

Trace

ARP32

E
V

E
 S

S
 x

 4

DP

VCOP

SMSET (SW Msg

& Events) Unit

SCTM

PRU

DP

P
R

U
 S

S
 x

 2

Funnel

BP

BP

BP/WP
BP/WP

X Triggering

TDA2x Debug and Trace – Capabilities (i)

•Debug Interface

• JTAG 1149.1 : 5 pin JATG debug interface for stop mode debug

• cJTAG 1149.7: 2 pin compact JATG (cJTAG) debug interface for stop mode debug.

• IcePick: Dynamic scan chain, power, clock, and reset management

• ICEMelter: For controlling power and wakeup of DebugSS

•Debug Ports (DP), Breakpoints, and Counters

• Cortex-A15: ARM CoreSight on-chip debug breakpoint, watchpoint, and performance
measurement units (PMU), Debug access port (DAP)

• C66x DSP: TI ICEMaker on-chip debug, Advanced event triggering (AET) for SW/HW
breakpoints, watchpoints, and profile counters

• IVAHD (ARM9): ARM debug with TI ICECrusher extensions for HW breakpoints and
watchpoints

• EVE: TI debug IP with SW/HW breakpoints on ARP32; macro level stepping for VCOP

•PRU: TI debug IP with SW breakpoints

•Cross Triggering

•MPU SS: Arm CoreSight Cross triggering

•Debug SS level : TI X triggering to propagate debug (trigger) events from one processor
subsystem/module to another.

• Sub-system Counter and Timers (SCTM)

•Cache performance measurement for the IPU, and EVE sub-system

Debug

10

TDA2x Debug and Trace – Capabilities (ii)

• Real-time Processor Trace

• Cortex-A15 processor trace consisting PC and timing

• C66x DSP processor trace with PC, timing, data, and events

• Real-time System Trace (STM)

• SW Messages - Hardware accelerated multi-core software instrumentation

• Statistics collectors– Non-intrusive SoC bus bandwidth and latency profiling
events

• IVAHD - Software Message & System Events (SMSET)

• Power and Clock Management (PM/CM) profiling

• OCP Watchpoint (OCP_WP) – bus traffic monitoring

• Chip level timing correlation

• Embedded Trace Buffer Router (TBR)

• On-chip trace capture buffer for real-time trace

• Routing trace to USB3 interface

• Trace Port Export Unit (TPIU)

• Off-chip Cortex, DSP, and STM trace export

• Requires external trace receiver (like XDS560v2 STM or XDS560v2 Pro Trace)

Trace

11

CCS Debug Setup

Setup and Installation Overview

• Hardware Setup

– XDS560v2 STM Trace

– TDA2x/3x EVM

• Software Installation

– Code Composer Studio

• CCS v5.5

http://processors.wiki.ti.com/index.php/Download_CCS

– Latest TI Emulator Update via Update Manager in CCS

– TDA2x/3x Chip Support Package (CSP)

13

http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Download_CCS
http://processors.wiki.ti.com/index.php/Download_CCS

TDA2x EVM Debug Setup

14

• In CCS, setup TDA2x target configuration with Spectrum Digital XDS560v2 STM USB Emulator connection

– Go to File  New  Target Configuration File

– Type file name as XDS560v2_VAYUEVM and click Finish

– Now select Connection as “Spectrum Digital XDS560V2 STM USB Emulator”

– Type ADAS-S28 in the Device field; device names will be filtered; select/check ADAS-S28

– Click on Target Configuration from Advanced Setup (RHS)

– Check Bypass for the unused CPUs to save time when launching.

– Select View->Target Configurations to see a list of all configuration files.

– Select the one you just created (as XDS560v2_VAYUEVM.ccxml) under User Defined.

– Launch the debug session by selecting the Launch Selected Configuration in the context menu.

• Connect Cortex A15 core

General Debug Features

GEL Files

• GEL (General Extension Language):

The General Extension Language (GEL) is an interpretive language similar to C that lets you create

functions to extend CCS IDE's usefulness. You create your GEL functions using the GEL grammar

and then load them into the IDE. With GEL, you can access actual/simulated target memory

locations and add options to the IDE’s GEL menu. You can also add GEL functions to the Watch

window so they execute at every breakpoint. Details can be found in CCS Help.

• GEL files included from Vayu CSP (Download via CDDS)

– GEL file default location: C:\ti\ccsv5\ccs_base\emulation\gel\DRA7xx

– DRA7xx_prcm_config.gel

• PRCM functions: DPLLs, Power & Clocks Initialization.

– DRA7xx_ddr_config.gel

• Configure EMIFs for DDR3 at 532Mhz

 or 400 Mhz.

– DRA7xx_pad_config.gel

• Initialize Padconf registers based on

 Vayu EVM.

– DRA7xx_multicore_reset.gel

• Provide options to enable/reset

 Multi-core.

16

Connection and Register View

• Download program or symbol only to target cores

– Click “CPU Reset (SW)” before loading program

• Debug execution controls (run, halt step, reset etc) are available from the debug view

• Register view (View  Registers) includes

 all the core registers including CP15.

 A rich set of peripheral register is also available

 when connecting to A15.

17

Memory view

• Memory view (View  Memory Browser) in the context of Cortex A15.

 Ability to simultaneously view physical memory

 and the memory as visible to the CPU.

• Cortex DAP memory view

– Right click on the connection in the debug view and click on Show All Cores

– Select debug context for CS_DAP_DebugSS

– Memory view (system view) shows system view of the memory (same as what you saw from the Cortex A15

context in the memory view)

– View can be changed to APB view

 from the memory windows

18

Breakpoints

• Breakpoint view (View  Breakpoints) has SW Breakpoints,

 HW Breakpoints, Watchpoints,

 and PMU counters (count events).

• A breakpoint or Watchpoint can be added from the breakpoint view (or right click source view context).

– Once a breakpoint is set, it is populated in the breakpoint view.

– Run the target and the breakpoint will be hit on a15SlaveAppTask.

19

• In menu select Tools -> Hardware Trace Analyzer -> PC Trace to start PC Trace

• Click on Start to setup the trace and open Trace Viewer.

Trace Use Cases

20

Function execution graph can be launched by clicking Analyze -> Function Execution Graph

Execution flow graph

21

Function
Name

Cycle count

Running
Function

Sort
Functions

Expand &
Collapse

Enable/Disable
Grouping

Measurement
Marker

View EMIF bandwidth utilization

22

• Select Memory Throughput – CSSTM_0 tab to see EMIF throughput over a period of time
the trace was captured

• The tabular view and graphs are correlated for easy navigation
• Capabilities like zooming, measurement market, grouping, find, and filtering etc are

available from the tabular and graphical views

CCS Debug Support for SYS/BIOS

• Object Viewer (ROV) provides higher-level view of internal state of objects like
Task, Swi, and Semaphore

– “Smart” Watch Window – much more than a raw C struct view

– Example: stack and heap usage computed and displayed

• Instrumentation (System Analyzer & UIA)
– Interesting events are efficiently logged from SYS/BIOS and application code

– Host tools decode and display: context-switch graph, CPU load, status messages

• Exceptions
– Hardware-generated exceptions are caught and registers state is saved (device specific)

• Stack checking at runtime

• Debug kernel
– Parameter checking via asserts

– Internal state asserts

– Optional via configuration – no API differences

• Source code

Object Viewer (ROV)

• ROV provides four different views

– Module: module-wide (global) state

– Basic: simpler view of state for each object (instance)

– Detailed: advanced view of state for each object

– Raw: all the state in an unfiltered view (much like a C struct view)

• Runs in the same Debug perspective as C source debugger

ROV Setup

• Connect target and load symbols

• Go to Window->preferences->Code Composer Studio->RTSC

• Pick device family as “ARM”,

• Remove all unnecessary paths and the click Add

• Ensure you add package path till packages folder e.g. <my_path>\bios_6_37_01_24\packages – This is under

ti_components

• Add all packages that you need typically (ipc, bios and xdc)

• Click Apply then ok

• Copy the “*.rov.xs” file from \vision_sdk\binaries\obj\vision_sdk\tda2xx-

evm\ipu1_0\release\vision_sdk_configuro\package\cfg to \vision_sdk\binaries\vision_sdk\bin\tda2xx-evm (where you

have the binaries).

– For IPU1_0 – copy MAIN_APP_ipu1_0_pem4.rov.xs

– For DSP1 – Copy MAIN_APP_c6xdsp1_pe66.rov.xs

• This is a very important step, without this ROV will not work

• Close and re-open CCS

• Launch/Re-Launch the ROV through Tools-> RTOS object View (ROV)

• Navigate through “Viewable Modules” to debug/analysis

25

CCS Trace Debug

• L3 Statistic Collectors

• OCP Watch Point

• EVE SMSET Trace

• DSP Processor Trace

26

L3 StatColl Overview

• Provides ability to probe OCP (Open Core Bus Protocol) or NTTP

(Arteris L3 Interconnect Packet Protocol) links.

• Transmitting results to a debug unit through a dedicated NTTP link.

• Software controlled at run time through the service network.

• Non intrusive monitoring

• Up to 8 probes for monitoring NTTP or OCP links.

• Programmable filters and counters.

• Collect results at programmable time interval

• Provides metrics such as throughput and latency on some data flows.

• Additional filtering capabilities to focus on certain initiators or targets.

27

L3 Statistic Collectors (StatColl)

• 10 statcoll instances available on Vayu to
measure traffic statistics of different
subsystems.

• Static Mapping from subsystems to statistic
collector.

28

L3

INSTR

32b

L3

CLK1

32b

Stat Coll

LAT9

Async

bridge

DEBUGSS

N N N

L3

CLK2

Stat Coll

LAT1-8

Stat Coll 0

EMIF1

DMM

128b

128b

EMIF2

128b

128b

64b

MPU

e
m

if
2

_
p

ro
b

e
e

m
if
1

_
p

ro
b

e

128b 128b

m
a

_
m

p
u

_
p

1
_

p
ro

b
e

m
a

_
m

p
u
_

p
2

_
p

ro
b

e

Probe

Sync

Probe

Sync

StatColl_0

Probe # Description Link Port #

0
EMIF1_SYS

OCP REQ 0

OCP RSP 1

1
EMIF2_SYS

OCP REQ 2

OCP RSP 3

2
MA_MPU_P1

OCP REQ 4

OCP RSP 5

3
MA_MPU_P2

OCP REQ 6

OCP RSP 7

Refer the Vayu TRM to know the complete

Initiator to statcoll mapping.

L3 Statcoll - A Small Caveat

• If CPU has cache enabled, the data read from the L3 Statcoll and

actual bytes transferred may differ.

• This is because the L3 statcoll reads bytes at the L3/EMIF interface and

lot of data may be cached already.

• ARM performs speculative reads. Not all reads are used by the CPU.

29

L3 Statistic Collectors from Software

• In a production board where DEBUG connectivity is difficult to achieve, a spare

CPU core and spare timer can be used to read the StatColl registers at regular

intervals.

• Eg. To capture the BW profile of a given initiator use the following steps:

– Set up the StatColl for the initiator to capture number of bytes transferred.

– Configure a timer to maintain ‘x’ us time gap.

– Read the number of bytes transferred every ‘x’ us at the initiator ports (read + write)

or the destination memory from the StatColl register.

– The number of bytes obtained is divided by ‘x’ us to get the average BW within the ‘x’

us.

– The process is repeated multiple times to generate a bandwidth profile.

• x=100 us is found to give good granularity for analyzing the traffic.

30

0

50

100

150

200

2
8

.1
2
8

.5
2
8

.9
2
9

.3
2
9

.7
3
0

.1
3
0

.5
3
0

.9
3
1

.3
3
1

.7
3
2

.1
3
2

.5
3
2

.9
3
3

.3
3
3

.7
3
4

.1
3
4

.5
3
4

.9
3
5

.3
3
5

.7
3
6

.1
3
6

.5
3
6

.9
3
7

.3
3
7

.7
3
8

.1
3
8

.5
3
8

.9
3
9

.3
3
9

.7
4
0

.1
4
0

.5
4
0

.9
4
1

.3
4
1

.7
4
2

.1
4
2

.5
4
2

.9
4
3

.3
4
3

.7
4
4

.1
4
4

.5
4
4

.9
4
5

.3
4
5

.7
4
6

.1
4
6

.5
4
6

.9
4
7

.3
4
7

.7
4
8

.1
4
8

.5
4
8

.9
4
9

.3
4
9

.7
5
0

.1
5
0

.5
5
0

.9
5
1

.3
5
1

.7
5
2

.1
5
2

.5
5
2

.9
5
3

.3
5
3

.7
5
4

.1
5
4

.5
5
4

.9
5
5

.3
5
5

.7
5
6

.1
5
6

.5
5
6

.9
5
7

.3
5
7

.7
5
8

.1

B
W

 (
M

B
p

s
)

Time (ms)

OCP Watch Point Profiling

• Functional debug capability.

• Internal probes embedded for DMM_P1-2, L4_CFG, L4_PER_P0-1-2-

3, GPMC and OCMC_RAM

• Capture time stamped Address, Burst Length Trace filtered on a Single

Initiator/All Initiators/Group of Initiators.

• Trace sent directly to the Debug SS.

31

EMIF1

L3 INSTR
DMM

128b

128b

EMIF2

128b

32b

L3

CLK1

128b

32b

L3 CLK2

Stat

Colls

Async

bridge

DEBUGSS

N N N

SW Instr

N

L4_PERGPMC

N N N

ProbeProbe

WP

export

OCPWP_NOC

N

Stat

Colls

L4_CFG

ProbeID[2:0]

Firewall

Probe

Probe

Probe

MPU

128b

128b

N

OCMC

RAM

Probe

3 3 3

EVE SMSET Trace

• Example:

– 7x7 Gaussian filter of a 768x512 image divided into 128x64 blocks and

apportioned across 4 EVE cores,

– 4 EVE’s working horizontally with first EVE being allocated 1/4th of the data,

next EVE being allocated next 1/4th and so on.

– From a compute we would expect at least: 128 x 64 x 49 / 16 x 1/2 = 12544

SMSET (ARP32) cycles with 19 cycles of pipeline overhead + 6-7 cycles of

parameter decode + 6 cycles of command decode = 12544 + 32 = 12576.

– From a DMA we need to bring in a 130 x 66 and produce a 128 x 64 =

16,772 bytes which at @ 5.88 bytes per VCOP cycle should be = 16772 *

1/5.88 * 1/2 = 1445 cycles.

32

EVE SMSET Trace (cont.)

33

EVE SMSET EDMA Trace

• Write to the AETCTL the STRTEVT and the ENDINT the DMA channel

numbers being used to be able to capture the beginning of the series of

the EDMA transactions and the end of the EDMA transactions.

34

DSP Processor Trace

• Example:

– DSP Programming the DSP EDMA to start and then waiting for EDMA

completion of 8MB DDR to DDR transfer.

– Processor PC Trace/Function profiling and Write address trace enabled for

the DSP.

35

Function:string

Program

Address:uinte

ger:hex

Load

Address:uint

eger:hex

Disassem

bly:string

S

o

u

r

c

Cycle:lon

g:decimal

Delta

Cycles:ul

ong:deci

mal

Code:uinteg

er:hex

0

main() 0x801462 0x801462 <Source file not found>0 4 0x6C6E

main() 0x801464 0x801464 4 1 0x984D

main() 0x801466 0x801466 5 4 0x6C6E

main() 0x801468 0x801468 9 1 0x23FC2F6

main() 0x80146C 0x80146C <Source file not found>10 1 0x22803E2

main() 0x801470 0x801470 11 1 0x200037E

main() 0x801474 0x801474 <Source file not found>12 1 0xFE73

main() 0x801476 0x801476 13 6 0xCFCD

main() 0x801478 0x801478 13 0x1FFE8F12

edmaStart(unsigned int, unsigned int) 0x8008D8 0x8008D8 <Source file not found>19 1 0x7BF005A

edmaStart(unsigned int, unsigned int) 0x8008E0 0x8008E0 20 1 0xDC45

edmaStart(unsigned int, unsigned int) 0x8008E2 0x8008E2 21 1 0xAC45

edmaStart(unsigned int, unsigned int) 0x8008E4 0x8008E4 <Source file not found>22 6 0xAAA120

edmaStart(unsigned int, unsigned int) 0x800A34 0x800A34 28 1 0xFEF3

edmaStart(unsigned int, unsigned int) 0x800A36 0x800A36 29 1 0x86E9

edmaStart(unsigned int, unsigned int) 0x800A38 0x800A38 30 6 0x2F64A120

edmaStart(unsigned int, unsigned int) 0x8008E8 0x8008E8 <Source file not found>36 1 0x13FBDA

edmaStart(unsigned int, unsigned int) 0x8008EC 0x8008EC 37 5 0x20268120

edmaStart(unsigned int, unsigned int) 0x8008F0 0x8008F0 42 1 0x2101FDA

edmaStart(unsigned int, unsigned int) 0x8008F4 0x8008F4 <Source file not found>43 1 0x180006C

edmaStart(unsigned int, unsigned int) 0x8008F8 0x8008F8 44 1 0xAC4D

edmaStart(unsigned int, unsigned int) 0x8008FA 0x8008FA 45 1 0x26A6

edmaStart(unsigned int, unsigned int) 0x800900 0x800900 46 2 0x2000

