
1

VISION SDK
Links Framework - Deep Dive

16 Mar 2015

Agenda

• Link Basics

– Link State Diagram

– Buffer exchange between links

– Common Properties of a link

• Properties of each supported link

• More details

– VIP Capture Link

– VPE Link

– Display Link

– ISS Links Overview

2

Steps in working with Vision SDK

3

• Assuming a user wants to integrate an algorithm on DSP and/or EVE with

whole system, they need to follow below steps

1. Implement and test algorithm APIs in standalone manner on DSP/EVE, typically

using CCS

2. Design the whole use-case (on paper) involving the algorithm, input source/pre-

processing, results drawing/visualization

3. Identify additional links and/or algorithm plugins that need to be implemented to

complete the use-case.

1. In most cases only algorithm plugin’s for the new algorithm would need to be written

2. Other links can be re-used from what is already available in Vision SDK

4. Implement a Algorithm plugin for this algorithm API using Algorithm Plugin interface

5. (Optional) Modify use-case generation tool to add support for the newly written

algorithm plugin

6. Write use-case description text file and generate use-case .c/.h files using the use-

case generation tool

7. Write the missing parts of the use-case

8. Compile the use-case, algorithm plugin and run on target SoC

“Links and Chains” framework

4

Capture

VPE Scale and

color convert

2D surround view

(On DSP)

Display

4CH 720x480

YUV422I 60fps

4CH 720x240

YUV420SP 60fps

1CH 1920x1080

YUV420SP 60fps

(1080p60)

Since each link runs as a separate thread, links can run in

parallel to each other.

MBX

MBX

MBX

MBX

The message box associated with a link allows user

application as well as other links to talk to that link.

A link is the basic processing step in a video data flow. A link

consists of a OS thread coupled with a message box

(implemented using OS semaphores).

The link implements a specific interface which allows other links

to directly exchange video frames and/or bit streams with the

link. i.e intervention of the user application is not needed on a

frame to frame basis

Link API allows user to create, control and connect the links. This

control code is written on a single processor. Internally Link API

uses IPC to actually control the links on different processors.

User of Link API need not worry about the lower level inter

processor communication details

User App MBX

IPC

IPC

IPC

A connection of links is called a chain. A chain is created on a

processor designated as HOST CPU (IPU1-M4-0 in case of

TDA2xx family of ADAS SoCs)

• VISION SDK is based on the “Links and Chains” framework.

Typical State Diagram of a Link

5

INIT

CREATE

RUN

STOP DELETE

SYSTEM_CMD_CREATE

SYSTEM_GET_INFO

SYSTEM_NEW_DATA

SYSTEM_CMD_PRINT_STATISTICS

Any other command

SYSTEM_CMD_STOP

SYSTEM_CMD_DELETE

SYSTEM_CMD_START

Auto-transition

System init

(Entry)
System de-init

Buffer Exchange Between Links

Empty

Output

Buffer

Queue

Full

Output

Buffer

Queue

Current Link

Next Link

Driver / Algorithm

4

Prev Link

Empty

Output

Buffer

Queue

Full

Output

Buffer

Queue

getFullBuffers()

1 NEW_DATA_CMD

2A

2B

3

Input

data and

free

output

buffer

available

?

Successful

Process

Completion

putEmptyBuffers

()

5C
5B

5A

NEW_DATA_CMD

Properties of a “Link”

7

• It has One or more input “connections” or Q’s

• It has One or more output “connections” or Q’s

• Each connection (input or output) holds one or more logical CHs of
buffers

– If a link has multiple input or output Q’s, each connection can have different
number of CHs

• Ex, a link can have one input and two output Q’s, it can have
– 4 CHs in the input Q, 3CHs in output Q0, 1CH in output Q1

– Channel number in a input or output Q always starts from 0, 1, … N-1

• Each CH is associated with a buffer of data. The buffer can be of
different types as shown below

1. Video Frame – holds YUV422I or YUV420SP or RAW or RGB data

2. Bitstream – holds MJPEG or H264 compressed data

3. Meta Data – holds any user defined data like histogram, disparity map etc

4. Composite Video Buffer – holds pointers to a “group” of Video Frame or
Meta data buffers

Connecting a “Link” to another “Link”

8

• Links are connected to each other by connecting the output

Q of a “previous” link to the input Q of “next” link

• This connection is allowed under the below conditions
1. The input Q of next link can accept the number of CHs output by the

previous link
• Ex, if next link can accept max 1 CH but previous link outputs 4CHs then the links cannot be

connected to each other

2. The buffer type for a given CH matches between input Q of next link and

output Q of previous link
• Ex, if Algorithm link outputs CH0 having buffer type as Meta data, it cannot be connected to

display link which needs CHs with buffer type as Video frame

3. The “previous” link and “next” link MUST be on the same CPU.
• Only exception being IPU OUT and IPC IN link, which MUST be present on different

CPUs

Information in a “Buffer” (1/2)

9

• The “buffer” which exchanges information between two

links holds the below information

– Information common to all buffer types (System_Buffer)
• Buffer type – used to identify type of buffer “payload”

• CH ID

• Source Timestamp – timestamp value set at a “source” link like “Capture” or

“IssCapture” or “NullSource” or “AvbRx” link.
– Other links copy the “Source timestamp” from input buffer to output buffer

• Payload – pointer to additional buffer information depending on buffer type

– Information in Video Frame buffer (System_VideoFrameBuffer)
• Buffer Address – address of pixel data associated with this video frame

• Meta buffer address – optional meta data associated with this video frame

• CH info – information like width, height, pitch, pixel format etc

– Information in Meta data buffer (System_MetaDataBuffer)
• Meta buffer address – address of memory holding actual meta data like histogram,

disparity map, flow vectors etc

Information in a “Buffer” (2/2)

10

– Information in Bitstream buffer (System_BitstreamBuffer)
• Buffer Address – address of compressed data associated with this bitstream frame

• Meta buffer address – optional meta data associated with this bitstream frame

• CH info – information like width, height, pitch, compression format etc

– Information in Video composite buffer

(System_VideoFrameCompositeBuffer)
• Number of “grouped” Channels (CH0..CHn-1)

• Buffer Address [N] – address of pixel data associated with this video frame

– One address for every CH which is grouped

• Meta buffer address [N] – optional meta data associated with this video frame

– One address for every CH which is grouped

• CH info – information like width, height, pitch, pixel format etc – only for CH0

Link Properties - Details

11

VIP Capture link properties

12

Name VIP Capture (captureLink.h)

Description • Used to capture video frames from HW VIP port and write

to memory

• Same link instance can be used to capture from multiple

HW VIP ports

• Optional scaling, CHR_DS, CSC can be done before

writing to memory

• Sets “Source Timestamp”

of Input Q’s 0

of Output Q’s 1

Buffer Type IN Qx: NA

OUT Q0: Video Frame (YUV422I, YUV420SP, RGB888, Bayer

RAW)

CHs (Max) 12 (One CH from each HW VIP port)

Runs on IPU1-0

Instances 1

Display link properties

13

Name Display (displayLink.h)

Description • Used to display video frames from memory via HW PIPE in

DSS

• One link instance is used per HW PIPE

• Optional scaling (YUV data formats), positioning can be

done

of Input Q’s 1

of Output Q’s 0

Buffer Type IN Q0: Video Frame (YUV422I, YUV420SP, RGB888,

RGB565, ARGB4444)

OUT Qx: NA

CHs (Max) 16 (However only one CH, CH0 by default, is used for display,

rest of the channels are ignored)

Runs on IPU1-0

Instances 4 (in TDA2x, limited by # of DSS HW PIPEs)

3 (in TDA3x, limited by # of DSS HW PIPEs)

VPE link properties

14

Name VPE (vpeLink.h)

Description • Used to scale (up/down) frames from memory to memory

via HW VPE in TDA2x and ISS Resizer in TDA3x

• Optional CHR_DS (YUV422I to YUV420), CSC (TDA2x

ONLY) can be done

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: Video Frame (YUV422I, YUV420SP)

OUT Q0: Video Frame (YUV422I, YUV420SP, RGB888)

CHs (Max) 8

Runs on IPU1-0

Instances 4

ISS Capture link properties

15

Name ISS Capture (issCaptureLink.h) – ONLY in TDA3x

Description • Used to capture video frames (Bayer RAW) from ISS CAL

HW (CSI2/Parallel) to memory

• Sets “Source Timestamp”

of Input Q’s 0

of Output Q’s 1

Buffer Type IN Qx: NA

OUT Q0: Video Frame (Bayer RAW)

CHs (Max) 1 (Vision SDK v2.6)

4 (Vision SDK v2.7) – CSI2 Capture using virtual CHs

Runs on IPU1-0

Instances 1

ISS M2M ISP link properties

16

Name ISS M2M ISP (issM2mIspLink.h) – ONLY in TDA3x

Description • Used to process Bayer RAW frames from memory and

output YUV frames and 2A statistics data to memory

of Input Q’s 1

of Output Q’s 3 (Q0 = Rsz A output, Q1 = H3A output, Q2 = Rsz B output)

Buffer Type IN Q0: Video Frame (Bayer RAW)

OUT Q0: Video Frame (YUV422I, YUV420SP) – Rsz A output

OUT Q1: Meta Data - H3A Statistics output

OUT Q2: Video Frame (YUV422I, YUV420SP) – Rsz B output

CHs (Max) 1 (Vision SDK v2.6)

4 (Vision SDK v2.7)

Runs on IPU1-0

Instances 1

ISS M2M SIMCOP link properties

17

Name ISS M2M SIMCOP (issM2mSimcopLink.h) – ONLY in

TDA3x

Description • Used to perform LDC (Lens distortion correction) and/or

VTNF (Video temporal noise fitler) on video frames in

memory to memory

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: Video Frame (YUV420SP)

OUT Q0: Video Frame (YUV420SP)

CHs (Max) 4

Runs on IPU1-0

Instances 1

DUP link properties

18

Name DUP (dupLink.h)

Description • Used to duplicate “buffer information” from input Q into

multiple output Q’s

• Only duplicates “information”, pixel data is not copied

• Purpose is to send same input buffer to multiple consumers

of Input Q’s 1

of Output Q’s 2 to 6

Buffer Type IN Q0: ANY

OUT Qx: ANY

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 5 (per CPU)

MERGE link properties

19

Name Merge (mergeLink.h)

Description • Used to merge CHs from multiple input Q’s into a single

output Q

• Does not “sync” or “group” multiple CHs, only “forwards” a

individual buffer after manipulating CH ID

• Purpose is to “merge” input buffers from multiple producers

and “forward” as a single “connection” or Q to next

“consumer”

of Input Q’s 6

of Output Q’s 1

Buffer Type IN Qx: ANY

OUT Q0: ANY

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 5 (per CPU)

SELECT link properties

20

Name Select (selectLink.h)

Description • Used to choose a incoming CH from input Q and forward it

to one of many output Q’s

• Does not “DUP” the channel. A input CH can goto only a

single output Q

• Purpose is to “select” and “forward” CHs onto different

output Q’s, ex, send CH0 camera output to Algorithm A and

CH1 camera output to Algorithm B

of Input Q’s 1

of Output Q’s 4

Buffer Type IN Q0: ANY

OUT Qx: ANY

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 2 (per CPU)

IPC OUT link properties

21

Name IPC Out (ipcLink.h)

Description • Used to send buffers from one CPU to IPC IN link on

another CPU

• “next” link ID MUST always be a IPC IN link on a different

CPU

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: ANY

OUT Q0: ANY

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 8 (per CPU)

IPC IN link properties

22

Name IPC IN (ipcLink.h)

Description • Used to receive buffers from IPC OUT link present on

different CPU

• “previous” link ID MUST be a IPC OUT link on a different

CPU

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: ANY

OUT Q0: ANY

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 8 (per CPU)

SYNC link properties

23

Name Sync (syncLink.h)

Description • Used to “group” buffers from multiple CHs into a single buffer (Video

Composite buffer)

• CHs are grouped based on below conditions to make a Video Composite

buffer, which is sent to “next” link

1. One frame from each CH is available

2. “Source” timestamp of each CH is within a user specified threshold

(syncDelta)

• If above conditions are not satisfied then the incoming frame is not sent

ahead and released back to “previous” link

• Purpose is to group frames from multiple sources into a single “logical”

buffer based on their capture timestamps

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: Video Frame or Meta Data

OUT Q0: Video Composite Buffer

CHs (Max) 8

Runs on IPU, DSP, A15, EVE

Instances 4 (per CPU)

NULL link properties

24

Name Null (nullLink.h)

Description • Used to get buffers from “previous” link and do one of the

below

• Simply release them (Null operation)

• Write to file (Bitstream buffer)

• Copy to memory (Video frame or Bitstream)

• Send to PC over ethernet (Video frame or bitstream or

Meta Data)

of Input Q’s 4

of Output Q’s 0

Buffer Type IN Qx: ANY

OUT Qx: NA

CHs (Max) 16

Runs on IPU, DSP, A15, EVE

Instances 2 (per CPU)

NULL SOURCE link properties

25

Name Null Source (nullSourceLink.h)

Description • Uses to send buffers to “next” link.

• The buffers are sent using one of the following as data

source

1. Read from memory (pre-filled data) (Video Frame)

2. Read from file (Video Frame, Bitstream)

3. Receive from network (Video Frame, Bitstream)

• Sets “Source Timestamp”

of Input Q’s 0

of Output Q’s 1

Buffer Type IN Qx: NA

OUT Q0: Video Frame or Bitstream

CHs (Max) 16

Runs on IPU, A15

Instances 1 (per CPU)

Video Encode link properties

26

Name Encode (encLink.h)

Description • Used to encode Video Frames into Bitstream using MJPEG

or H264 compression

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: Video Frame (YUV420SP)

OUT Q0: Bistream (MJPEG or H264)

CHs (Max) 8

Runs on IPU1-0

Instances 1

Video Decode link properties

27

Name Decode (decLink.h)

Description • Used to decompress Bitstream buffers into Video Frame

buffers

of Input Q’s 1

of Output Q’s 1

Buffer Type IN Q0: Bitstream (MJPEG or H264)

OUT Q0: Video Frame (YUV420SP)

CHs (Max) 8

Runs on IPU1-0

Instances 1

AVB RX link properties

28

Name AVB Receive (avbRxLink.h)

Description • Used to receive Bitstream (MJPEG) over ethernet using

AVB and send it to “next” link

• Sets “Source Timestamp”

of Input Q’s 0

of Output Q’s 1

Buffer Type IN Qx: NA

OUT Q0: Bitstream (MJPEG)

CHs (Max) 5

Runs on IPU1-1

Instances 1

Display Controller link properties

29

Name Display Controller (displayCtrlLink.h)

Description • This is a control link which does not have any input or

output Q’s

• Used to control DSS properties like, VENC config, HW pipe

ordering on display panel, HW pipe to VENC mapping,

background color etc

of Input Q’s 0

of Output Q’s 0

Buffer Type IN Qx: NA

OUT Qx: NA

CHs (Max) NA

Runs on IPU1-0

Instances 1

“Processor” link properties

30

Name System Link (systemLink_<CPU>.h)

Description • This is a control link which does not have any input or

output Q’s

• Used for general purpose or miscellaneous control of

different CPUs from application, Ex, CPU load statistics,

memory heap usage statistics

of Input Q’s 0

of Output Q’s 0

Buffer Type IN Qx: NA

OUT Qx: NA

CHs (Max) NA

Runs on IPU, DSP, A15, EVE

Instances 1 (per CPU)

Algorithm link properties

31

Name Algorithm link (algorithmLink.h)

Description • Connects to 1 or more input Q’s, process buffers from input

Q’s and output’s results over one or more output Q’s

• A “AlgorithmPlugin” is associated with a Algorithm link.

“Algorithm” plugin run the actual algorithm

• Algorithm link is the common code/implementation.

“Algorithm plugin” is the algorithm specific implementation

to complete the Algorithm link

of Input Q’s Specified by algorithm plugin associated with the Algorithm

link

of Output Q’s Specified by algorithm plugin associated with the Algorithm

link

Buffer Type Specified by algorithm plugin associated with the Algorithm

link

CHs (Max) Specified by algorithm plugin associated with the Algorithm

link

Runs on IPU, DSP, A15, EVE

Instances 8 (per CPU)

AlgPlugin: ISS AEWB properties

32

Name ISS AEWB (algorithmLink_issAewb.h)

Description • Used to take H3A statistics Meta Data buffer from ISS M2M

ISP as input

• Send results as control commands to

1. ISS M2M ISP for Auto-expsure, Auto-white balance

(AE/AWB)

2. External Sensor for Auto-exposure (AE)

of Input Q’s 1

of Output Q’s 0

Buffer Type IN Q0: Meta Data (H3A Statistics from ISS M2M ISP)

OUT Qx: NA

CHs (Max) 4

Runs on IPU1-0

Instances NA (equals # of Algorithm link instances)

Internal Implementation Details

33

VIP Capture Link

34

VIP Capture Link

Capture link operation can be divided into following states

• Initialization.

– OS thread gets created and it’s waiting for the commands from application

– Link registers itself to the system link which is part and parent of the links and chains

infrastructure.

• Create

– This should be the first command for the link. Along with command link creation parameters are

passed. Please refer to the API guide for the specific link create parameters.

– As part of create command capture link creates the VIP capture driver and configures it based on

the link create parameters.

– Empty buffers are also primed to driver as a part of create command.

• Start/Run

– As part of this, link is ready to receive data generated by hardware for capture (VIP)

– Capture driver is started as a part of this command and link starts receiving the buffers.

– Once the capture link is started it enters the steady running state.

– Link is pending on a semaphore and is waiting for the message. This message is about waiting for

new buffers available to link from the driver.

35

VIP Capture Link (Cont.)
– Captured buffers are queued to the output queue of the link and next link is informed using the

notify command.

– Buffers consumed by the next link are returned back to capture link and these buffers queued

back to driver for filling it up with new data.

– Data flow in running state is explained in next section

– Link also handles few run time commands during running state like printing of instrumentation and

debug information. Please refer to API guide for more details lists of commands supported during

running phase.

• Stop

– Capture links stop receiving data after this command.

– There is no data flow either from driver or between links once the link is stopped.

– Capture driver is also stopped as a part of this command.

– All the buffers queued to capture driver gets flushed as a part of this command.

• Delete

– Capture link gets deleted as part of this command.

– Driver also gets deleted.

• De-Initialization

– Links gets de-initalized.

– Task gets deleted and links de-registers itself from the system link.

36

VIP Capture Link (Cont.)

37

Dataflow Diagram: This shows buffer exchange between capture link and the

capture driver and buffer exchange with next link.

Capture Link (Cont.)

• Following are the important steps for the data flow diagram.

1. Free frames get queued to the driver as a part of priming process. This is done as a create

phase of the link.

2. Once the link is started buffers get filled. Capture link callback function is called by the driver.

Call back functions sends SYSTEM_CMD_NEW_DATA to the capture link. Capture link waiting

on the semaphore wakes up and de-queue the FVID2 frames from the driver

3. FVID2_Frames gets mapped onto system_buffer. System buffer is the entity which gets

exchanged between the links.

4. System buffers are queued to the capture output queue. After which notify command about the

new data available in output queue is sent to next link connected to capture link.

5. Next link consumes the filled system_buffers. Once next link is done with the capture buffer it

calls the “linkPutEmptyBuffers” to give the consumed buffers back to the capture link.

6. Capture link maps the system_buffer to FVID2_Frame to queue the consumed buffer back to

capture driver for capturing the fresh data.

7. Steps 2 to 6 gets repeated until the capture link is stopped.

38

VPE Link

39

VPE Link

VPE link operation can be divided into following states

• Initialization.

– Link thread gets created and it’s waiting for the commands from

– Links registers itself to the system link which is part and parent of the links and chains

infrastructure.

• Create

– This should be the first command for the link. Along with this command link creation parameters

are also be passed. Please refer to the API guide for the specific and detailed link create

parameters.

– As part of create command VPE link creates the VPE driver and configures it based on the link

create parameters.

– VPE link allocates memory for output buffers. Output buffers are allocated per channel vise.

– A link call back function is getting registered with the VPE driver during the driver creation

40

VPE Link (Cont.)
• Start/Run

– On successful completion of “create” state, link is moved to the run state, where it is ready to

receive and process the input video frames

– Link also handles a few run time commands during running state like output resolution change,

printing of instrumentation and debug information etc. Please refer to API guide for more detail list

of commands supported during run state

• Stop

– VPE links stop processing of video frames on this command.

– There is no data flow either from driver or between links once the link is stopped.

– VPE driver is also stopped as a part of this command.

– All the buffers queued to driver gets flushed as a part of this command.

• Delete

– VPE link gets deleted as part of this phase.

– Driver also gets deleted.

• De-Initialization

– Links gets de-initialized.

– Task gets deleted and links de-registers itself from the system link.

41

VPE Link (Cont.)

42

Dataflow Diagram: This show how data flows from VPE link to next link and

back to the VPE link after consuming the data

Input Full Q

Input Empty Q

CH1Q

CH2Q

CHNQ

DEI Tsk

Output Empty Q

DEI Link
Out Buffer pool

To out que

of Link

Driver

Driver

callBack
sem

post

sem

pend

inBuf, opBuf

Submitted to drv

Input Full Q

Input Empty Q

CH1Q

CH2Q

CHNQ

DEI Tsk

Output Empty Q

DEI Link
Out Buffer pool

To out que

of Link

Driver

Driver

callBack
sem

post

sem

pend

inBuf, opBuf

Submitted to drv

VPE Link (Cont.)

• Following are the important steps for the data flow diagram.

– Step1: On receiving the SYSTEM_CMD_NEW_DATA event from previous link, VPE link reads

the input buffers from the Input FullQ

– Step2: Read all the available frames for all channels and put them into a link internal channel

specific Q. For example all frames from channel 1 are kept in CH1Q and from channel 2 in CH2Q

etc

– Step3: As a next step, VPE link de-queue one output buffer for each and every input frame

present in the intermediate channel specific Q.

– Step4: If both input and output frames are available, link prepare the FVID2 process list (this is the

format in which the job need to be submitted to the VPE driver). Once prepared the process list, it

is submitted to the VPE driver by calling “FVID2_processFrames”

– Step5: Driver will invoke a call back once the processing is completed. VPE link reclaim the

buffers both input as well as output buffers by calling the driver function

“FVID2_getProcessedFrames”

– Step6: The input buffers are now freed by put them back to the input side emptyQ

– Step7: The output buffers which are filled by VPE link is send out to the next link by putting them

into output FullQ. VPE link also send a SYSTEM_CMD_NEW_DATA event to the next link to

inform the data availability

– Step8: Once the next link done with the VPE link output buffer, these buffers are put back to the

VPE link output emptyQ. These buffers are now free to pick for the subsequent VPE link process

– The above steps will be repeated in the RUN state
43

Display Link

44

Display Link

Display link states can be divided into following state diagrams.

• Initialization.

– OS thread gets created and it’s waiting for the commands from

– Links registers itself to the system link which is part and parent of the links and chains

infrastructure.

• Create

– This should be the first command for the link. Along with this command link creation parameters

are also be passed. Please refer to the API guide for the specific and detailed link create

parameters.

– As part of create command display link creates the DSS driver and configures it based on the

link create parameters.

– Dummy blank buffers are also primed to driver as a part of create command.

• Start/Run

– On start state link is ready to receive data generated by previous link.

– DSS driver is started as a part of this command and link starts receiving the buffers.

– Video buffers are getting queued in the input side Full queue of the display link from the previous

link. Previous link also informed this frame availability by sending the

SYSTEM_CMD_NEW_DATA notify command.

45

Display Link (Cont.)
– Once the link is started it enters the steady running state. On steady state display driver gives

periodic callbacks.

– On callback display link dequeue the buffers which are already displayed from DSS driver. Also

immediately queue the next set of full frames to the driver by queuing them into the DSS driver

– Buffers consumed by the display link are returned back to the previous link by putting them into

the input Empty queue.

– Link also handles a few run time commands during running state like printing of instrumentation

and debug information. Please refer to API guide for more details lists of commands supported

during running phase.

• Stop

– Display links stop displaying video frames after this command.

– There is no data flow either from driver or between links once the link is stopped.

– DSS driver is also stopped as a part of this command.

– All the buffers queued to DSS driver gets flushed as a part of this command.

• Delete

– Display link gets deleted as part of this phase.

– Driver also gets deleted.

• De-Initialization

– Links gets de-initialized.

– Task gets deleted and links de-registers itself from the system link.

46

Display Link (Cont.)

47

Dataflow Diagram: This show how data flows from Display link to next link

and back to the Display link after consuming the data

Input Full Q

Input Empty Q

Driver

Driver

callBack

sem

post

inBuf

Submitted to drv

FVID2_Frame Pool

FVID2_frame to

System_Buf Mapping

System_Buf to

FVID2_frame Mapping

Event Pend

DISPLAY_LINK_CMD_DO_DEQUE

Input Full Q

Input Empty Q

Driver

Driver

callBack

sem

post

inBuf

Submitted to drv

FVID2_Frame Pool

FVID2_frame to

System_Buf Mapping

System_Buf to

FVID2_frame Mapping

Event Pend

DISPLAY_LINK_CMD_DO_DEQUE

Display Link (Cont.)

• Following are the important steps for the data flow diagram.

– Step1: BSP Display driver need to be started before the real frames arrived at the input side. The

driver can not be started without priming a few video frames. To do this Display link has a dummy

blank frame and the same is used to prime and start the display. Once it is primed and started the

DSS driver, Driver call back will be occurred. The CB interval will be same as the VENC display

interrupts interval.

– Step2: On the display driver Call Back, display link internally post a data event

“DISPLAY_LINK_CMD_DO_DEQUE” to kick start the next frame processing

– Step3: On DISPLAY_LINK_CMD_DO_DEQUE event, Display link first dequeue the Fvid2_frames

which are already displayed from the DSS driver

– Step4: These FVID frames need to be mapped to corresponding System buffer before it is placed

in the input Empty Q (this is the output Q of previous link). This mapping is required because inter

link frame exchange is done with generic API such as system buffers

– Step5: On DISPLAY_LINK_CMD_DO_DEQUE event, Display link also dequeue the full frames

(system frames) from the Input Full Q (this is the output Q of previous link)

– Step6: DSS driver accept only FVID2 frames and hence the system buffers need to be mapped to

FVID frames before it is queued to the driver

– Step7: Any input system buffers which not part of the active channel (channel which is selected for

display) are freed to the Input Empty Q immediately.

– On a steady state step2 to 7 will be repeated

48

ISS Links

49

ISS Links

• There are several data flows possible in ISS subsystem.

• A single ISS link for the entire subsystem would be very complicated

and the interface would be very huge.

• Also a given use case might not demand several of the data flow paths

to be used.

• As a tradeoff, multiple links are being developed for ISS subsystem.

• Next few slides discuss different ISS Links

50

ISS Capture Link

51

• This Link will be used for capture of RAW data or YUV data from

CSI2/Parallel sensors using ISS susbsystem

• In this link, no ISP processing will be done. Data captured from

Sensor will be written to DDR.

• Following data flows will be covered by this link

– CAL (CSI2) -> CAL (WR_DMA) -> DDR (raw)

– LVDS-RX (Parallel) -> VMUX (BYS-IN) -> CAL (BYS-IN) -> CAL

(WR_DMA) -> DDR (raw)

• Above data flows can be used for YUV sensors as well. However

output data format in this case will be YUV422

ISS M2M ISP Link

52

• This Link will be used for reading input from memory (DDR), perform

ISP processing and writing back to memory (DDR)

• Typical Single pass IPIPE processing with this link, will have below

data flow

– CAL (RD_DMA) -> CAL (VP) -> VMUX(ISP-IN) -> IPIPEIF (VPORT)

IPIPEIF(ISIF-OUT) -> NSF3v -> ISIF -> GLBCE -> IPIPE -> RSZ -> CNF

-> DDR (YUV)

• Dual pass WDR flow will be handled in this link as follows

– WDR 1st pass

• CAL (RD_DMA) -> CAL (VP) -> VMUX(ISP-IN) -> IPIPEIF (VPORT) ->

IPIPEIF(DEC+SAT+ISIF-OUT) -> NSF3v -> ISIF -> DDR

– WDR 2st pass

• Input read: CAL (RD_DMA) -> CAL (VP) -> VMUX(ISP-IN) -> IPIPEIF (VPORT)

-> IPIPEIF(DEC+SHIFT+ISIF-OUT) ->NSF3v -> ISIF (IPIPEIF-IN) -> IPIPEIF

(ISIF-IN)

• Previous frame read: IPIPEIF (RD) + IPIPEIF(ISIF-IN) -> IPIPEIF (DFS_WDR) -

> IPIPEIF(IPIPE-OUT) -> GLBCE -> IPIPE -> RSZ -> CNF -> DDR (YUV)

ISS M2M SIMCOP (LDC/VTNF) Link

53

• This Link will be used for reading input from memory (DDR), perform LDC / VTNF and writing back

to memory (DDR)

• This link will have data path as shown below –

– CAL (RD_DMA) -> LDC / VTBNF -> DDR (YUV)

VPE link for ISS M2M Resize only operation

• This will be implemented using the existing VPE link and will not be a separate link

• This Link will be used for reading input from memory (DDR), perform Resizing and writing back to

memory (DDR)

• This link will have data path as shown below –

– CAL (RD_DMA) -> RSZ -> DDR (YUV)

