
Video Drivers

1

4th July 2017
V1.1

Agenda

• FVID2: Introduction

• DSS Video Driver

• VIP Video Driver

• VPE Video Driver

2

FVID2 Interface

3

FVID2: Introduction

• What is FVID2?
– Next version of FVID and it addresses the different limitations of

FVID

– Provides interface to streaming operations like queuing of buffers to
driver and getting back a buffer from the driver

– Abstracts the underlying hardware for the video application with a
standard set of interface

– Gives a same look and feel for video applications across different
SOC

– Interface is independent of OS/Hardware/Driver

– FVID2 is currently supported on SYSBIOS OS

• What is not FVID2?
– Not the actual driver

– Does not define hardware specific APIs and structures

4

5

Understanding FVID2 - Interfaces

• FVID2_init
– Initializes the drivers and the hardware. Should be called before calling any of the FVID2 functions

• FVID2_deInit
– Un-initializes the drivers and the hardware

• FVID2_create
– Opens a instance/channel video driver

• FVID2_delete
– Closes a instance/channel of a video driver

• FVID2_control
– To send standard (set/get format, alloc/free buffers etc..) or device/driver specific control commands to video

driver

• FVID2_queue
– Submit a video buffer to video driver. Used in display/capture drivers

• FVID2_dequeue
– Get back a video buffer from the video driver. Used in display/capture drivers

• FVID2_processFrames
– Submit video buffers to video driver for processing. Used only in M2M drivers

• FVID2_getProcessedFrames
– Get back the processed video buffers from video driver. Used only in M2M drivers

• FVID2_start
– Start video capture or display operation. Not used in M2M drivers

• FVID2_stop
– Stop video capture or display operation. Not used in M2M drivers

6

Understanding FVID2 - Interfaces

• FVID2_Frame

– Represents the video frame buffer along with other meta data

– This is the entity which is exchanged between driver and application and not

the buffer address pointers

– Meta data include timestamp, field ID, per frame configuration, application

data etc…

– Since video buffers can have up to 3 planes and two fields (in the case of

YUV planar interlaced), buffer addresses are represented using a two

dimensional array of pointers of size 2 (field) x 3 (planes)

7

Understanding FVID2 - Interfaces

• FVID2_Frame – How address pointers are used?

Field 0

Field 1

Y0

U0

V0

Y1

U1

V1

YUV 422/420 Planar Buffer

Format (Interlaced)

Field 0

Field 1

YUV 422 Interleaved Buffer

Format (Interlaced)

YUYV

YUYV

Field 0

Field 1

YUV 422 Interleaved Buffer

Format (Progressive)

YUYV
Field 0

Field 1

RGB888

RGB 888 Packed Buffer

Format (Progressive)

8

Understanding FVID2 - Interfaces

• FVID2_FrameList

– Represents N FVID2_Frame

– N Frames could represent

• Different capture channels in multiplexed capture

• Buffer address for each of the window in multi window mode

– N is fixed at 64 in the current implementation

Frame List

Channel 0 Frame

Channel 1 Frame

Channel 2 Frame

Frame List

Window 0 Frame

Window 1 Frame

Window 2 Frame

9

Understanding FVID2 - Interfaces

• FVID2_ProcessList

– Represents M FVID2_FrameList for input and output frames

– Each frame list represents a N frame buffers for each of the inputs
and outputs in M2M drivers

– Used only in M2M drivers

Process List

Input 0 Frame List

Input 1 Frame List

Input 2 Frame List

Output 1 Frame List

Output 0 Frame List

Understanding FVID2 – Application Flow 1

FVID2 Create

FVID2 Queue –

Prime buffers

Get Callback

FVID2 Queue

Steady

State

Open

Sequence

FVID2 Delete

Close

Sequence

Wait for Callback

Signal Task

Task Context

ISR Context

FVID2 Dequeue

Dequeue is non-

blocking!!

Driver Specific

Configuration

FVID2 Start

FVID2 Stop

FVID2 Dequeue –

Flush Driver Q

Typical Display/Capture

Application Flow

Frame Processing

Display – Get a displayed

buffer and fill the buffer with

next frame data

Capture – Get a captured

buffer and give the buffer for

processing

Dequeue returns

FVID2_EAGIAN if

no buffers are

available to

dequeue

10

Understanding FVID2 – M2M Application
Flow 1

FVID2 Create

FVID2 Process

Frames

Get CallbackSteady

State

Open

Sequence

FVID2 Delete
Close

Sequence

Wait for Callback

Signal Task

Task Context

ISR Context

FVID2 Get

Processed Frames

Dequeue is non-

blocking!!

Driver Specific

Configuration

Typical M2M Application

Flow

App Process

Frames

Note:

1. Start/stop not needed as the

operation starts as soon as a buffer

is queued for processing and is

returned as soon as a buffer is

processed

2. Priming of buffers is not a must

in a typical M2M driver as most

M2M driver can start processing

with one buffer

11

12

Understanding FVID2 – Multiple Frames
Per Request Feature
• This feature supports

– Multi-window display (Multiple buffers belonging to one stream)

– Multiplexed capture (Multiple buffers belonging to multiple streams)

– Multiple M2M request per call (Multiple request belonging to multiple
streams/channels)

• FVID2 Frame -> one buffer/request

• FVID2 FrameList -> Multiple buffers/requests

• FVID2_FrameList contains an array of FVID2_Frame pointers whose
size if fixed at 64 in the current implementation

typedef struct FVID2_Frame_t

{

Ptr addr[2][3];

UInt32 channelNum;

/* Other members not shown */

} FVID2_Frame;

typedef struct FVID2_FrameList_t

{

FVID2_Frame *frames[64];

UInt32 numFrames;

/* Other members not shown */

} FVID2_FrameList;

Ptr 1

Ptr 2

Ptr 3

Ptr 4

FVID2 Frame 1

FVID2 Frame 3

FVID2 Frame 2

FVID2 Frame 6

4

Unused

Unused

Understanding FVID2 – One Q, Multiple DQ

• Used in multiplexed capture

– While priming, application submits buffers for all the channels using Queue
call

– Since multiplexed inputs could be asynchronous, capture could complete at
different time for each of the inputs

– Application wants to process the buffers as soon as they are captured

– Hence they are de-queued immediately without waiting for other channels to
complete

– This will result in multiple dequeue for a single queue

Queue buffers for N

channels Capture completes

for channels 1, 3, 6

Callback
DeQueue buffers for

3 channels (1, 3, 6) Capture completes

for channels 2, 4
Callback

DeQueue buffers for

2 channels (2, 4)

Application Driver

13

14

Understanding FVID2 – One Q, Multiple DQ
Contd…

• How is this achieved?
– Only frames are queued/dequeued in/from the driver

– Frame list is not queued/dequeued

– Frame list acts like a container to submit the frames to the driver in Queue call and
take back the frames from the driver in dequeue call

– For queue call, application is free to re-use the same frame list again without
dequeuing

– For dequeue call, the application has to provide the frame list to the driver and the
driver copies the captured frame to the frame list

FVID2 Queue

Frame List - Filled

Frames

Frame List - Empty

Driver InQ

Frames Pend Frames

Driver OutQ

Done Frames

Completion

Callback

FVID2 Dequeue

Frame List - Empty

Done Frames

Frame List - Completed

DSS Overview
(Display Sub system)

15

What is DSS?

• DSS – Display Sub System for TDA2xx/TDA3xx

• Displays video frames from memory to LCD1 or TV (HDMI)

• Composition of graphics and video sources

• Scaling, Color Space Conversion, Blending, Color Keying

16

DSS Hardware Overview

17

DSS Hardware for TDA2xx

18

DSS Hardware for TDA3xx

19

DSS Hardware TDA2xx

• Display Controller

• 4 Pipelines (3 Video and 1 Graphics)

• 4 Overlay managers

• Write Back pipeline

• Direct Memory Access

• 4 Interfaces (3 DPI, 1 HDMI)

20

DSS Hardware TDA3xx

• Display Controller

• 3 Pipelines (2 Video and 1 Graphics)

• 2 Overlay managers

• Write Back pipeline with region based WB support

• Direct Memory Access

• 2 Interfaces (1 DPI, 1 SD-DAC)

21

Display Controller
• Processes on-the-fly video streams and graphics

• No extra memory needed for processing

• Fetches pipeline data through DMA transfers

• 4 Overlay managers

– 3 LCD & 1 TV output

• Can process maximum at 192Mpix/sec

– 1920x1200 @60fps OR 2048x1536 @59fps

22

Video Pipeline

• Three Video Pipelines, all are identical

• Fetch data from frame buffers using DMA

• VID – RGB, YUV422, YUV420 NV12 up to 1920x2048

• Each pipeline has a scalar ,color space converter, VC1

Range mapping

23

Video Pipeline

• VC-1 Range Mapping is to remap the Y, Cb and Cr components
(mainly used when the video frame picture is decoded using a VC-1
codec).

24

VC-1

range

mapping

Color space

conversion

YUV�RGB

Scalar

polyphase filter

Replication

logic

Line
buffer

Shadow

registers

Bypass Bypass Bypass

Video pipeline

From

DMA buffer

To

overlay

manager

ARGB32

ARGB32

ARGB40

YUV

10

CSC Unit: YUV to RGB
• CSC Unit will convert Video encoded pixels from YUV4:4:4 format

into RGB24 or RGB30 format.

• In case of YUV4:2:0 or YUV4:2:2 formats chrominance resampling is
required before converting to RGB format.

25

Scalar Unit

• Works on RGB and YUV data formats

• Filter used is FIR filter

• Filter can be used for
– Upscaling, Downscaling

– Antiflicker Reduction

– Spatial De-Interlacing using BOB algorithm

– Chrominance resampling for YUV formats

• Max Upscaling ratio is 8x

• Downscaling Using 3-tap configuration is x0.5 and using

5-tap its x0.25

26

Graphics pipeline

• The replication logic is used to convert the RGB pixel formats into an ARGB40-based

format

• The antiflicker filter processes the graphics data in RGB format to remove some of the

vertical flicker

• The 256-entry palette is used to convert bitmap formats into RGB

• There is no scalar block in Graphics pipeline

• Supports only RGB and BITMAP Formats

27

From

MA buffer

To
Primary LCD

To

Overlay

manager
Replication

Logic

Antiflicker

filter

Index

RGB[23:0]

Palette

ARGB

EXPANSION

32�40

B-color
Component

CLUT
Index B[7:0]

G-color
Component

CLUT
Index G[7:0]

R-color
Component

CLUT
Index R[7:0]

Bypass Bypass Bypass

ARGB40

Graphics pipeline

Write Back Pipeline
• Used to store in the system memory the capture of Overlay output or

the output of one of the pipeline

• Supports WB memory-to-memory Mode and WB capture Mode.

• Truncation Logic is used to convert ARGB32 bit formats into lower
color depth : 12 bit or 16 bit formats.

• CSC used to convert RGB to YUV formats.

28

Color space

conversion

RGB->YUV

Scalar

polyphase filter

RGB

truncation

Line

buffer

Shadow

registers

Bypass Bypass Bypass

Write-back

pipeline

From

Pipelines

or Overlay

To

DMA

BufferARGB32

OR

YUV

ARGB32

OR

YUV

Overlay Manager

29

DISPC_LCD_DATA[23:0]

DISPC_LCD_VSYNC

DISPC_LCD_HYSNC

DISPC_LCD_FID

DISPC_LCD_DE

LCD output

Overlay
Manager

Color Key
And

Alpha
blending

Gamma
Color

Phase
rotation

Active
Matrix

dithering
TD
M

Timing

Generator

Sync
buffer

CLUT

From GFX pipeline

From VID1 pipeline

From VID2 pipeline

From VID3 pipeline

To WB pipeline

Overlay Manger Capabilities
• Z-Order: App can set the Ordering of layers

• Transparency color keys: Source and destination (can only be used
with RGB and BITMAP formats)

• Alpha Blending: Global alpha blending and pixel level alpha blending

• Gamma Correction, temporal dithering and phase rotation

• Configurable output size and position of pipeline

30

Overlay Manager Capabilities Cont..

• Color Phase rotation unit is used to correct the LCD output colorimetry
in case of non pure white backlight, it can also be used to convert RGB
to YUV.

31

Z-Order Example

32

VIP Overview
(Video Input Port)

33

VIP Sub-sytem Block

CPU Host
Port

OCP
Slave
Port

Config
Regs

L4 Clock Domain

Slice 0 Slice 1

System Clock
Domain

L3 Clock Domain

OCP
Master
Port 0

VPDMA

A B

8/16/24 8 8/16/24 8

A B

Interrupts

Repacker

8/16/24

Repacker

8/16/24

OCP
Master
Port 1

34

VIP Slice Block

VIP Parser

Port A and B

CSC

SC

CHR_DS0 CHR_DS1

Output 0 Output 1

35

VIP Block

• TDA2xx Supports 3 VIP Block with two ports Port A and

Port B per slice

– VIP1/ VIP2 parser can operate as one 8/16/24 bit input port (Port
A) or two 8-bit ports (Port A, Port B).

– VIP3 parser can operate as 16 bit input port (Port A)

• Separate pixel clock and framing signals for each port

• Each VIP block has two slices : VIPx S0, VIPx S1

• VIP Block is used to capture video data from external

video sources like video decoders or sensors

• Typical TDAxx system can be used for capture from four

Mpixel imagers (1280x800) resolution at 30 FPS

36

VIP Features

• Format conversion
– Inputs: YUV422I, YUV444, RGB888

– Outputs: YUV422I, YUV420SP (Uses CHR_DS), YUV422SP,
RGB888 (Uses CSC)

• Supports optional scaling from 1/8x to 2048 pixels, only
down scaling supported

• Supports optional color space conversion
– YUV to RGB color space conversion using CSC block

• Supports optional chroma downsampler
– YUV422I to YUV420SP conversion using CHR_DS

• Supports up to 165 MHz clock (includes blanking)

• Video Interface width
– 8/16/24 bit mode

– Combination: PortA 8-bit and PortB 8-bit or PortA 16 or 24-bit37

Contd..

• Supports Embedded (BT.656/BT.1120 16/24b, BT.656
8b) or discrete (BT.601 style) sync

• Video Interface Mode
– Discrete Sync

• Single Channel non multiplexed mode with HSYNC and VBLK as
control signals

• Single Channel non multiplexed mode with HSYNC and VSYNC as
control signals

• Single Channel non multiplexed mode with AVID and VBLK as control
signals

• Single Channel non multiplexed mode with AVID and VSYNC as
control signals

– Embedded Sync
• Single Channel non multiplexed mode

• Multi-Channel pixel or line multiplexed mode

38

VIP Interface modes

DS : Single Channel non multiplexed mode with HSYNC and VBLK as control signals

hsync

vblank

G
ro

u
p

 1

G
ro

u
p

 2

DS :Single Channel non multiplexed mode with HSYNC and VSYNC as control signals

hsync

vsync

G
ro

u
p

 1

G
ro

u
p

 2

•Active lines captured

•All pixels in line captured

•Frame Start: VBLK high to low

•Line start: HSYNC low to high

•All lines captured

•All pixels in line captured

•Frame Start: VSYNC low to
high

•Line start: HSYNC low to high

39

Contd..

DS : Single Channel non multiplexed mode with AVID and VBLK as control signals

DS : Single Channel non multiplexed mode with AVID and VSYNC as control signals

actvid

vsync

G
ro

u
p

 1

G
ro

u
p

 2

actvid

vblank

G
ro

u
p

 1

G
ro

u
p

 2

•Active lines captured

•Active pixels in line captured

•Frame Start: VBLK high to low

•Line start: ACTVID low to high

•All lines captured which has
ACTVID high

•Active pixels in line captured

•Frame Start: VSYNC low to
high

•Line start: ACTVID low to high

40

Contd

ES : Single Channel non multiplexed mode

hsync

vblank

G
ro

u
p

 1

G
ro

u
p

 2

First

Anc

Line 0

Anc

Line 1

Last

Anc

Line

First

ActVid

Line 0

Frame

X
Frame

X-1

Last

ActVid

Line

41

SC Block

Trimmer

YCbCr

422

Peaking
Vertical

Scaler

Horizontal

Scaler

VS Ver Coef Mem
32 phase x 5tap

(Polyphase filter)

HS Coef Mem
32 phase x 7tap

Line Memory
(5 line)

FIFO

YCbCr

422

SC Features

• Vertical and horizontal up and down scaling

• Polyphase filter upscaling

• Running average vertical down scaling

• Decimation and polyphase filtering for horizontal scaling

• Non-linear scaling for stretched/compressed left and right sides

• Input image trimmer for pan/scan support

• Pre-scaling peaking filter for enhanced sharpness

• Scale field as frame

• Interlacing of scaled output

• Full 1080p input and output support

• Scaling filter Coefficient memory download

43

CSC Features

• A fully programmable color space converter. With the

programmability, input video data in any color space can

be converted to another color space.

• It could convert YCbCr to RGB and vice versa.

• This module could be put by pass as well if no conversion

is required.

44

CHR_DS Features

• It is used to downsample picture input in the format 4:2:2

to 4:2:0

• This downsampling is required because typical video

encoders expects input in 4:2:0 format before

compression

• Down sampling is performed using averaging filter.

45

VIP Slice Detailed Block Diagram

46

Example Single Channel RGB / YUV422 Capture

47

VPE Overview
(Video Processing Engine)

48

VPE Block Diagram

VPE Features

• Format conversion

– Inputs: YUV422I, YUV420SP (Uses CHR_US), YUV422SP

– Outputs: YUV422I, YUV420SP (Uses CHR_DS), YUV422SP, RGB888

(Uses CSC), YUV444I

• Deinterlacing (interlaced to progressive)

– 4 field motion based algorithm

– up to two 1080i video sources

– DEI can be bypassed in case of progressive input

• Scaling from 1/8x to 2048 pixels

• Color space conversion

– YUV to RGB color space conversion using CSC block

• VC-1 Range Mapping and Range Reduction

• Supports up to 304 MHz clock

• Tiled (2D) input/output

Motion-Adaptive Deinterlacer Block

M otion

Detection

Spatial
Interpolation

Tem poral
Interpolation

M ixtureField buffers

Film M ode
Detection

Selector

Original Line

New Line

),,()1(),,(),,(ˆ nijynijynijy tempspat αα −+=

DEI Features

• Motion-adaptive deinterlacing
– Motion detection is based on Luma only

– 4-field data is used

• Motion Detection (MDT)
– Examines 3 fields of input video data (luma only) and calculates a 4 bit motion vector

to drive the Edge Directed Interpolation Block

• Edge-Directed Interpolation (EDI)
– Edge detection using luma pixels in a 2x7 window

– Soft-switch between edge directed interpolation and vertical interpolation depending

on the confidence factor

• Film Mode Detection (FMD)
– 3-2 pull down detection (NTSC style)

– 2-2 pull down detection (PAL style)

– Bad Edit Detection (BED)

• Progressive or interlaced bypass mode

Questions?
Thank You

53

