
1

VISION SDK
Use-Case Auto-Generation Tool

Overview
July 2016

Agenda

• Introduction

• Motivation

• Use-case Generation process

• Error Handling cases

• Extending the tool - Ease for Developer

What is Vision SDK ?

• VISION SDK is multi processor software development platform for TI family

of ADAS SoCs.

• The software framework allows users to create different ADAS application

data flows involving video capture, video pre-processing, video analytics

algorithms, and video display.

• The SDK has sample ADAS data flows which exercises different CPUs and

HW accelerators in the ADAS SoC and shows customers how to effectively

use different SoC sub-systems.

• VISION SDK will be based on a framework named as the “Links and

Chains” framework and user API to this framework is called “Link API”

• The SDK installer package includes all tools and components necessary to

build such applications, including code gen tools, BIOS, IPC, starterware,

BSP drivers, networking stacks, codecs, algorithm kernels

Example ADAS data flow – LVDS surround
view – system diagram

LVDS Cam 1

LVDS Cam 2

LVDS Cam 3

LVDS Cam 4

VIP1-1A

VIP1-1B

VIP1-2A

VIP1-2B

VPE

2D SV Stage – 2

DSP or EVE or A15

?

2D SV Stage – 1

DSP or EVE or A15

?

2D SV Stage – 3

DSP or EVE or A15

?

DSS LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

4CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

5fps1A

Stitching Matrix @

30fps1A

Boundary info @

5fps1A

4CH VGA @

30fps1A

800x480 @ 60fps1A

VSS28 SoC1A

Logical design, not yet sure where to run different algorithm stages

Example ADAS data flow – LVDS surround
view in Vision SDK

First cut implementation, based on DSP and EVE

5 5 5 5 5

LVDS Cam 1

LVDS Cam 2

LVDS Cam 3

LVDS Cam 4

VPE Link

2D SV Stage – 2

DSP1

2D SV Stage – 1

DSP1

2D SV Stage – 3

EVE1

Display Link

LCD

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

1MP @ 30fps1A

6CH 1MP @

30fps1A

“Stitched” 1MP @

30fps1A

Alignment info @

30fps
Stitching Matrix @

30fps1A

Boundary info @

30fps

6CH VGA @

30fps1A

800x480 @ 60fps1A

VSS28 SoC1A

IPC Link

IPC Link

IPC Link

IPC Link

IPC Link

Capture

Time synced 6CH

VGA @ 30fps1A

IPC Link

IPU1 Core1 IPU1 Core0 DSP1 DSP2 EVE1 EVE2 A15

Normal Use-Case Generation Process

• User has to determine the flow of connections

• C code has to be written for the use-case which

– Set LinkID and Parameters

– Insert IPC links when buffers are exchanged across CPUs

– Connect Links

– Create links in sequence of source to sink

– Write functions for use-case Create, Start, Stop, Delete

(PrintBufferStatistics, Print Link Statistics)

Normal Use-Case Generation Process:
Drawbacks

• Typically usecase files have around 1000+ lines

• Writing a given usecase requires a lot of time

– It took 1 week to write the surround view use-case file

• This method is more error prone

– It took one week to make sure surround view use-case create, start, stop,

delete passes

– Common mistakes include – this would take 1 week to resolve on HW board

• Wrong connection of previous link ID to next link ID

• Wrong link ID setting

• Wrong insertion of IPC link

Motivation

• Help end user generate use-case in minimum time

• Give overall summary of use-case code using visual representation of

data flow via images and logs

• Help user focus to main problem, i.e. determine flow of connections

• Detect and report errors during use-case generation stage itself and

therefore reduce time required to debug on actual HW board

• Takes very less effort for changes in data flow. For e.g. change in

Algorithm, or adding a new algorithm in a existing data flow

Example Results

• Single Capture Display Use-case:

– Generated 210 lines

– Using 2 lines of configuration file

• Dense Optical Flow Use-Case

– Generated 895 lines

– Using 14 lines of configuration file

• Single Camera Frame copy to Single Camera Edge Detection

– Required change of algorithm name in configuration file

– Changing algorithm parameters in C code, which in this case 4 lines

Use-Case Coding Process using the tool

• Process :

– Write Configuration file

– Code generation using the tool

– Fill in missing code

• Link parameters

• Main control loop

• Ready for use

• Write Configuration file

Step 1
Configuration

File

• Generate .h and .c files

• Generate .jpg and log files
Step 2

Code generation

• Link Parameters

• Main control loop

Step 3
Fill in missing

code

Use-Case Coding Process: Config
File
• A Link is named as [Link name] or [Link name]_[user readable suffix].

– For e.g Capture, Capture_lvds, Capture_ov10640

• “-help” option displays all supported link names. All links in Vision SDK 2.3 are
supported in the tool

– Different suffix for different instances, i.e. Display_Video, Display_Grpx

– Suffix can be any sequence of char’s or number’s readable to end user.

• Example: Single camera display

• Use-case name should be mentioned

– Files are generated with the use-case name and used for struct name and prefix of other
function names

• IPC links, if required, are auto-detected and code for IPC links are autogenerated.
So, no need to mention IPC IN/OUT links explicitly in config file

• Link Instance ID is auto-generated, Ex, in example shown above Display_Video will
be Display Instance 0 and Display_Grpx will be Display Instance 1. No need to
specify explicit instance number.

Configuration file: Grammar

• Grammar:

– Connection: ID (optional CPU name) | ID (optional CPU

name) -> Connection;

– When CPU name is not mentioned IPU1_0 CPU is

assumed

• Example: Dense optical flow view

Code generation

• Demo of how to generate code:

– Options available:

• -help Show help and supported basename and processors

• -file Create .c and .h file

• -img Create in .jpg image (or out.jpg)

• -log Creates a .txt log file with debugging info

• -debug Prints file name(in source code) and line no. in error

statement

• -path takes the next argument as output path

• -v Verbose

• Examples:

– ./vsdk_win32 –file test

– ./vsdk_win32 –file –img test –path output

Generated Code and Files

• Auto-Generated code includes

– Usecase object have link ID variables and create structure for
all links used in the use case

– Assignment of link ID including instance numnber and CPU
on which it runs

– Reseting of all link create parameters to default values

– Detecting and inserting IPC OUT/IN links as required

– Setting of all parameters of DUP, MERGE, IPC links

– Setting of inQueParams and outQueParams for all links - this
defines the usecase graph connection in C code

– Calling link create for all links in source to sink order

– Calling start / stop / delete / print statistics of all links in the
use-case

• Generated Files:

– [use case name]_priv.h and [use case name]_priv.c file

– Image file (optional) showing visual representation of the use-
case graph

– log file (optional) for advanced debug

Example Generated Image

• Single Camera Capture Display

Example Generated Image: Dense Optical Flow

Manually Written Code

 Following code needs to manually written to complete the

use-case and make it run on the HW board

 Set Create Parameters of all links except inQueParams and

outQueParams.

 DUP, Merge, IPC IN, IPC OUT parameters are completely setup by

the generated code

 Algorithm Plugin baseClassCreate.size, baseClassCreate.algId are

setup by the generated code

 numOutQueue of Select, numInQueue of Null are setup by the

generated code

 Create DisplayCtrl link and configure it

 Written main loop for use case and call generated API to

create, start, stop, delete a use-case

Define custom link

• User can define a custom link which is not supported

by the tool

• It is named as DefLink_[Link name] in configuration file

• Here additionally edit DefLink_CreateParams struct

name in [use case]_priv.h file and replace with actually

parmaeter structure name of the custom link

• Set LinkID in [use case]_priv.c file and call reset create

params function in [use case]_priv.c file

Define custom Algorithm

• User can define a custom link which is not supported

by the tool

• It is named as Alg_[alg name] in configuration file

• Here additionally edit “[alg name]Link_CreateParams”

struct name in [use case]_priv.h file and replace with

actually parameter structure name of the custom link

• Set baseClassCreate.size, baseClassCreate.algId in

[use case]_priv.c file and call reset create params

function in [use case]_priv.c file

Error Handling cases

• Wrong number of input or output to a link

– Ex, previous link specified for capture link

• Invalid CPU name

• Same link instance is assigned two different CPUs

• Naming of Link does not follow the rules, i.e. Linkname,

Linkname_suffix

• Warnings for unsupported links and algorithm plugin’s

Extending the tool - Ease for developer

• In case extra link or alg plugin is added just include extra class in link.h

• Each class has it’s separate functionalities which makes easier for user

to determine where to change to include additional functionalities, etc.

– UseCase class handles overall usecase information

– Link class handles information regarding a particular link

• In debug mode (-debug option) line number and file name is also given

in case of errors

• See VisionSDK_UsecaseGen_UserGuide for step by steps details on

extending the tool to support more link types and alg plugin types

 Thank You

