
EDMA3LLD Overview
(Enhanced DMA Gen 3

Low Level Driver)

1

ADAS Driver Team
7th Jan 2015
Version 1.1

Agenda

• EDMA3 IP Overview

• EDMA3 S/W Architecture

– Directory Structure and Code walkthrough

– Build & Run Examples

EDMA Module Overview

• Performs high-performance data transfers between two

slave points, memories and peripheral devices

• EDMA controller is based on two major principal blocks

– EDMA third-party channel controller (EDMA_TPCC)

– EDMA third-party transfer controller (EDMA_TPTC)

• TPCC serves as an user interface and an event interface

and submits transfer requests to TPTC

• TPTC performs read and write transfers by EDMA ports to

the slave peripherals

EDMA Controller Block Diagram

Components of TPCC

• Parameter RAM (PaRAM)

– Contains data transfer parameter sets for DMA channels or for
reload

• EDMA event and interrupt processing registers

– Mapping of events to parameter sets, enable/disable events,
enable/disable interrupt conditions, and clearing interrupts.

• Completion detection

– Detects completion of transfers, can be used optionally to chain
trigger new transfers or to assert interrupts

• Event queues

– Interface between the event detection logic and the transfer
request submission logic

TPCC Block Diagram

Types of EDMA controller Transfers

• An EDMA transfer is always defined in terms of

three dimensions

– 1st Dimension or Array (A) in a transfer consists of

ACNT contiguous bytes

– 2nd Dimension or Frame (B) in a transfer consists of

BCNT arrays of ACNT bytes each

– 3rd Dimension or Block (C) in a transfer consists of

CCNT frames of BCNT arrays of ACNT bytes

• Difference between start of each array in a frame

or each frame in a block for Source and

Destination is separately programmable

A- Sync Transfer

• Each trigger will transfer ACNT Bytes.

• Totally BCNT * CCNT triggers required for complete
transfer

Evt Evt Evt Evt

Evt Evt Evt Evt

Evt Evt Evt Evt

AB- Sync Transfer

• Each trigger will transfer ACNT * BCNT Bytes.

• Totally CCNT triggers required for complete transfer

Evt

Evt

Evt

PaRAM Set

• There are 512 PaRAMs that contain

configuration information about a transfer

PaRAM Set – OPT Fields

• SAM/DAM – Source/Destination Addressing Mode

• SYNCDIM – A or AB Sync

• FWID – FIFO Width (used if SAM/DAM is set)

• TCC – Transfer Completion Code

• TCINTEN – TC Interrupt Enable

• TCCHEN – TC Chaining Enable

Example – Viewing the transfer

• Lets take an example to transfer 12 bytes from

one location to other.

• What is ACNT, BCNT and CCNT?

• You can “view” the transfer several ways:

Note: these are contiguous
memory locations

EDMA Example : Simple (Horizontal Line)

Goal:

Transfer 4 elements

from loc_8 to myDest

• DMA always increments across ACNT fields

• B and C counts must be 1 (or more) for any actions to occur

Is there another way
to set this up?

EDMA Example : Simple (Horizontal Line)

Goal:

Transfer 4 elements

from loc_8 to myDest

• Here, ACNT was defined as element size : 1 byte

• Therefore, BCNT will now be framesize : 4 bytes

• B indexing must now be specified as well

Note: Less efficient
version

EDMA Example : Indexing (Vertical Line)

Goal:

Transfer 4 vertical elements

from loc_8 to myDest

• Here, ACNT was defined as element size : 1 byte

• Therefore, BCNT will now be framesize : 4 bytes

• B indexing must now be specified as well

EDMA Example : Block Transfer

Goal:

Transfer a 5x4 subset

from loc_8 to myDest

• ACNT is defined here as ‘short’ element size : 2 bytes

• BCNT is again framesize : 4 elements

• CCNT now will be 5 – as there are 5 frames

• SRCCIDX skips to the next frame

Note: Less efficient
version

EDMA Example : Block Transfer

Goal:

Transfer a 5x4 subset

from loc_8 to myDest

• ACNT is defined here as the entire frame : 4 * 2 bytes

• BCNT is the number of frames : 5

• CCNT now will be 1

• SRCBIDX skips to the next frame

Initiating a DMA Transfer

• Event-triggered transfer request

– A peripheral, system, or externally-generated event

triggers a transfer request (typical use case)

• Manually-triggered transfer request

– CPU manually triggers a transfer on a particular by

writing a 1 to the event set registers

• Chain-triggered transfer request

– A transfer is triggered on the completion of another

transfer or sub-transfer.

EDMA Channel Controller Regions

• Address space of TPCC is divided into eight

regions

• Individual channel resources are assigned to a

specific region

• Each region is typically assigned to a specific

device or CPU.

• In a typical use case each region is associated to

a core(M4, DSP, etc) the required DMA channels

are assigned to the region and programmed for

doing transfer.

EDMA Interrupts

• There are two kinds of interrupts, Completion

Interrupt and Error Interrupt.

• From Each of the region there is one completion

interrupt and few error interrupts(not region

specific)

• These interrupts are inputs to IRQ Crossbar and

can be routed to any of the CPUs.

Transfer Complete Code (TCC)

• TCC is generated when a transfer completes. This is referred to as the
“Final TCC”.

• TCC can be used to trigger an EDMA interrupt and/or another transfer
(chaining)

• Each TR below is a “transfer request” which can be either ACNT bytes
(A-sync) or ACNT * BCNT bytes (AB-sync). Final TCC only occurs
after the LAST TR.

Generate EDMA Interrupt

• When Final TR is finished and options register is set up to generate
interrupt, interrupt is generated.

• TCC Field in Options register of PaRAM is used to set corresponding
bit in IPR Register, which triggers interrupt to CPU.

Linking and Chaining Transfer

• Linking is a mechanism which allows the entire

PaRAM set (Associated with DMA or QDMA

Channel) to be reloaded from a location within the

PaRAM memory map.

– useful for maintaining ping-pong buffers, circular

buffering, and repetitive/continuous transfers

• Chaining is a mechanism by which the completion

of one transfer automatically sets the event for

another channel.

Example – Simple Chaining

Channel #7

• Triggered by chaining from Ch #5

• Interrupts the CPU when finished
(sets TCC = 6)

• ISR checks IPR (TCC=6) to determine which
channel generated the interrupt

Channel #5

• Triggered manually by ESR

• Chains to Ch #7 (Ch #5’s TCC = 7)

Notes:
• Any Ch can chain to any other Ch by enabling
OPT.TCCHEN and specifying the next TCC

• Any Ch can interrupt the CPU by enabling its
OPT.TCINTEN option (and specifying the TCC)

• IPR bit set depends on previous Ch’s TCC setting

Mapping events to DMA Channels

• DMA Crossbar module (Part of Control module) is

used to map the Events from peripherals to DMA

Channels.

• DMA Events from peripherals are connected to

the input of DMA Crossbar, and output of DMA

Crossbar is connected to EDMA Events.

• DMA Crossbar can be programmed to connect

any of its inputs to any of its outputs.

Agenda

• EDMA3 IP Overview

• EDMA3 S/W Architecture

– Directory Structure and Code walkthrough

– Build & Run Examples

EDMA3LLD Architecture

EDMA3LLD Overview

• The EDMA3LLD (Low Level Driver) is designed to

be OS agnostic

• The LLD is divided mainly in to Driver (Drv) and

Resource Manager (RM) and OS abstraction

layers

• RM is used mainly for allocating and managing

the resources like DMA Channels, PaRAM, TCC

etc. and Interrupt handling

• Driver is used for providing uniform interface for

application for all types of transfers and error

checking

EDMA3LLD Overview Contd.

• DRV is dependent on RM for managing EDMA

resources

• DRV/RM exposes few APIs for registering

interrupts and Semaphores for protecting global

data structures and expects the proper

implementation from application.

• Each of Drv and RM have a sample OS

abstraction library which has the implementation

for Interrupt and semaphores using TI RTOS

(SYSBIOS)

EDMA3LLD Directory Structure

EDMA3 Driver Initialization

• EDMA3 Driver should be initialized first before it

can be used by the peripheral drivers or

application

• Call EDMA3_DRV_create() to create EDMA3

driver object and provide global configuration

parameters

• Call EDMA3_DRV_open() to open a region

specific EDMA3 driver instance. This returns the

handle which should be used for further APIs

API Flow Driver Creation

API Flow Open Driver Instance

API Flow Request Channel

API Flow DMA Transfer

API Flow Driver Close

Building EDMA3 Libs and Examples

• Updated makerules\env.mk with tool chain paths

• Set Env Variable “ROOTDIR” with edma3lld install

path

• Set Env Variable “PATH” with xdc tools which has

the make binary

• To build libs issue following command

– gmake libs FORMAT=ELF

• To build examples issue following command

– gmake examples FORMAT=ELF

Building EDMA3 Libs and Examples

• optionally PLATFORM=<platform name> can be

provided in the build command to build only for a

specific platform.

– gmake examples PLATFORM=tda2xx-evm

• Examples provided in the package performs

memory to memory (DDR) transfers with features

provided by EDMA3 like linking, chaining etc.

• Connect to CCS load program on to the core and

run the sample examples. This prints test status

on the CCS Console.

Questions?
Thank You

