

Copyright © 2014 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 11

Vision SDK

(v03.xx)

ISS Sensor Framework

 Page 2 of 11

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated

 Page 3 of 11

TABLE OF CONTENTS

1 Introduction ... 4

2 Design .. 4

2.1 Internal SW Interface ... 4

2.2 External SW Interface ... 6

3 Steps for adding new sensor .. 10

4 Revision History ... 11

 Page 4 of 11

1 Introduction

Vision Software Development Kit (Vision SDK) is a multi-processor software

development package for TI’s family of ADAS SoCs. The software framework allows

users to create different ADAS application data flows involving video capture, video

pre-processing, video analytics algorithms, and video display. The framework has

sample ADAS data flows which exercises different CPUs and HW accelerators in the

ADAS SoC and shows how to effectively use different sub-systems in the SoC. Frame

work is generic enough to plug in application specific algorithms in the system.

ISS usecase on TDA3xx captures the RAW data from the external sensors using ISS

capture module, process them using ISP modules and display the processed output

using display device. ISS usecase uses sensors with the different type of interface

and different features, some sensors supports CSI2 interface whereas some supports

parallel interface. Some supports Linear output (single exposure), WDR output

(Multi-exposure merged output) where some support line interleaved WDR output

(Multi-exposure output).

The sensors used in the ISS usecases are all based on the ISS sensor framework.

This framework supports easy way to control and configure the external sensor and

also easy way to add a new sensor or to remove existing sensor. Below are main

advantages/features of the sensor framework.

1. Scalable

2. Easy to add new sensor or remove existing supported sensor

3. Easy to add new feature of the sensor

4. No sensor specific hard coding

5. No multiple sensor Ids

6. Instead of sensor Id, uses, easy to understand, sensor name

This document explains in detail ISS sensor frame.

2 Design

There are two layers in this framework, core layer and sensor layer. Core layer

implements framework API and provides application interface API to

configure/control sensor. Sensor layer is just one c file for each sensor, which

provides basic information about sensor and also configures the sensor.

This frame work provides two types of SW API interfaces, one is internal interface,

which is used by the sensors to register itself to the frame work and to provide based

features. The other SW interface is external interface, which is used by the

application to control and configure the sensors.

2.1 Internal SW Interface

This interface is used by the individual sensor files. Using this interface, sensors

register themselves to sensor frame work and provide sensor specific information.

1. Sensor Interfacing information

2. DCC information

3. The maximum number of channels supported by the sensor

4. AEWB Mode information

5. Few optional callback pointer

 Page 5 of 11

2.1.1 Register API

This API is used for registering sensors to the frame work. This API takes sensor

information structure as an argument. Sensor information structure explains how

sensor is connected to the ISS and provides other information.

Int32 IssSensorIf_RegisterSensor(IssSensorIf_Params *pSensorPrms);

Structures

Sensor information structure provides information about how sensor is connected

to the ISS. This structure is used at the time of registering sensor to the

framework.

struct IssSensorIf_Params_t {

 char name[ISS_SENSORS_MAX_NAME];

 /**< Name of the sensor, using which it is registered to this

framework */

 IssSensor_Info info;

 /**< Sensor information, which does not change */

 UInt32 dccId;

 /**< DCC Id of the sensor,

 typically sensor driver provides dcc id, but if sensor driver

 is not opened and it is required to flash dcc profile in qspi,

 this id will be used.

 Note: it should be same as the id in the driver */

 IssSensorIf_Start start;

 /**< Function to configure and start the sensor,

 If it is null, start will return error */

 IssSensorIf_Stop stop;

 /**< Function to stop streaming in sensor,

 If it is null, start will return error */

 IssSensorIf_GetExpParams getExpParams;

 /**< Function to get the sensor exposure parameters */

 IssSensorIf_SetAeParams setAeParams;

 /**< Function to set AE parameters like exposure and analog gain */

 IssSensorIf_GetDccParams getDccParams;

 /**< Function to get DCC params */

 IssSensor_InitAewbConfig initAewbConfig;

 /**< Function to initialize AEWB configuration */

 IssSensor_GetIspConfig getIspConfig;

 /**< Function to get default ISP configuration */

 IssSensor_ReadWriteRegister readWriteReg;

 Page 6 of 11

 /**< Function to read/write sensor register */

};

typedef struct

{

 UInt32 width;

 /**< output width of the sensor */

 UInt32 height;

 /**< output height of the sensor */

 System_VideoDataFormat dataFormat;

 /**< dataformat of the sensor */

 System_BitsPerPixel bpp;

 /**< Bits per pixel*/

 UInt32 features;

 /**< Bitwise list of feature supported by the sensor */

 UInt32 aewbMode;

 /**< AEWB mode */

 UInt32 ramOffset;

 /**< Offset where DCC profile for this sensor is stored,

 Currently used for specifying QSPI offset */

 UInt32 maxExp;

 /**< Max Exposure supported for WDR mode, used in #frmInfo */

 IssSensor_LineInterleavedExpFrmInfo lnIntrExpFrmInfo;

 /**< Frame Information for line interleaved output frame */

} IssSensor_Info;

2.2 External SW Interface

This interface is used by the application to control and configure the sensor. There

are mainly three APIs supported in this external interface

2.2.1 Create API

This API is used for creating a new sensor driver. It uses pointer to the

IssSensor_CreateParams as an argument.

Ptr IssSensor_Create(IssSensor_CreateParams *pCreatePrms);

Create Parameter structure

 Page 7 of 11

typedef struct

{

 char name[ISS_SENSORS_MAX_NAME];

 /**< Name of the sensor */

 UInt32

enableFeatures[ISS_SENSORS_MAX_CHANNEL];

 /**< Bit mask of the features to be enabled in the sensor */

 UInt32 fps[ISS_SENSORS_MAX_CHANNEL];

 /**< Sensor output fps */

 System_VideoIfWidth

videoIfWidth[ISS_SENSORS_MAX_CHANNEL];

 /**< Video Interface Width for each channel

 used for specifying number of lanes in CSI2 capture */

 UInt32 numChan;

 /**< Number of channel in which sensor is to be opened */

 UInt32 i2cInstId;

 /**< Instance id of the I2c on which this sensor is to be

configured */

 UInt8 i2cAddr[ISS_SENSORS_MAX_CHANNEL];

 /**< I2c address of the each sensor channel */

} IssSensor_CreateParams;

Below are important steps that create API performs

1. It searches the registered sensor based on the sensor name given in the

create Params.

2. If the sensor is found

a. It checks for the requested features vs supported features and returns

error if a requested feature is not supported

b. If there is no other error, it returns handle to the sensor.

c.

d. It uses the BSP board module to configure board. This includes setting

up the pinmux, configuring IO expander to connect sensor to ISS input

port and powering up the sensor. Board module also provides sensors

i2c information like i2c instance and i2c address of the sensor.

e. If the board module is not supported by the sensor driver, i2c

information of the sensor is provided at the registration time.

f. It opens BSP sensor driver using the i2c information from the board

module or from the registration information.

g. It gets the features supported by the sensor driver. These features

help in configuring and controlling the sensor driver

h. ISP operation mode in the create parameters is used to configure

sensor in the WDR mode. Based on this mode, sensor is either

configured in non-wdr, two pass wdr or single pass wdr mode.

 Page 8 of 11

i. Once the WDR mode is configured in the sensor, it gets the DCC

profile from the sensor driver.

j. It calls the getDefaultConfig callback API to get the default resolution

from the sensor. Sensor driver could be supporting multiple resolution,

but the usecase runs with the resolution supported in the

detDefaultConfig callback.

k. It sets the default resolution in the sensor driver.

2.2.2 Start/Stop API

This APIs are mainly used for configuring and starting/stopping sensor. The core

layer internally calls sensor specific start/stop callback and sensor layer configures

sensor and then starts/stops the sensor.

This API takes handle to the sensor and channel id of the sensor in case if sensor is

opened in multi-channel mode.

Int32 IssSensor_Start(Ptr handle, UInt32 chId);

Int32 IssSensor_Stop(Ptr handle, UInt32 chId);

2.2.3 Control API

This API is mainly used for sending control command. Below table lists the supported

control command.

Idx Command Argument Description

1 Get Default ISP
configuration

Pointer to the ISP configuration
IssIspConfigurationParameters

This ioctl is used for
getting default ISP

configuration.

Typically, used to get the
H3A and GLBCE
configuration, the

modules for which DCC is
not supported.

Also used for the sensor
for which DCC is not
available.

2 Initialize AEWB

Create Params

Pointer to

AlgorithmLink_IssAewbCreateParams

Initialize AEWB Create

parameters

AEWB create parameters

are sensor specific, this
command is used for

initializing create args ofr
AEWB algorithm.

3 SET AE Params Pointer to IssSensor_AeParams When AEWB algorithm is

running, it requires to
change the AE and analog
gain in the sensor
runtime.

This command is used for

setting AE and analog

 Page 9 of 11

gain in the sensor.

4 GET Exposure

Params

Pointer to

IssSensor_ExposureParams

When WDR is enabled in

the sensor, this command
is used to get the
exposure ratio

5 Read/Write Register Pointer to IssSensor_ReadWriteReg Command to read/write
sensor register

6 Get DCC Config Pointer to IssSensor_DccParams Returns size and pointer

to array containing DCC
profile

2.2.4 Get Sensor Information

This API provides sensor specific information, it provides sensor resolution, sensor

connection information, DCC information etc..

Int32 IssSensor_GetSensorInfo (

 char name[],IssSensor_Info *pSensorInfo)

Sensor Information Structure

typedef struct

{

 UInt32 width;

 /**< output width of the sensor */

 UInt32 height;

 /**< output height of the sensor */

 System_VideoDataFormat dataFormat;

 /**< dataformat of the sensor */

 System_BitsPerPixel bpp;

 /**< Bits per pixel*/

 UInt32 features;

 /**< Bitwise list of feature supported by the sensor */

 UInt32 aewbMode;

 /**< AEWB mode */

 UInt32 ramOffset;

 /**< Offset where DCC profile for this sensor is stored,

 Currently used for specifying QSPI offset */

 UInt32 maxExp;

 /**< Max Exposure supported for WDR mode, used in #frmInfo */

 Page 10 of 11

 IssSensor_LineInterleavedExpFrmInfo lnIntrExpFrmInfo;

 /**< Frame Information for line interleaved output frame */

} IssSensor_Info;

3 Steps for adding new sensor

This chapter provided steps for adding new sensor in the ISS sensor framework.

1. Each sensor is implemented in a unique file under

vision_sdk\apps\src\rtos\iss\src\sensor folder. For the given new

sensor, add a new C file.

2. Create a global instance of the structure IssSensorIf_Params in this file.

3. Implement the init function in this file. This init function should initialize

instances of IssSensorIf_Params and registers the new sensor to the sensor

frame work using IssSensorIf_RegisterSensor API.

4. Implement start and stop callbacks API. These APIs are used for configuring

the sensor as well as starting/stopping sensor streaming.

5. Implement IssGetDefaultISPConfig API. This api is used to get the default

ISP configuration for this sensor. If the sensor does not support DCC, this

default configuration will be used for configuring ISP. Also for H3A and GLBCE

modules, the configuration comes from this file. DCC profile does not have

configuration for H3A and GLBCE modules

6. Implement IssGetAewbConfig API. If the usecase uses AEWB algorithm, this

API is used for initializing AEWB create parameters. Based on the H3A

configuration, it initializes AEWB create parameters, AE dynamic params and

AWB calibration data. It also initializes the DCC information in AEWB create

parameters.

7. Call the implemented init function from IssSensor_Init, available in the file
vision_sdk/apps/src/rtos/iss/src/sensor/iss_sensors.c

8. Add this new sensor file in

vision_sdk/apps/src/rtos/iss/src/sensor/SRC_FILES.MK make file so

that it gets build along with the other files.

 Page 11 of 11

4 Revision History

Version Date Revision History

1.0 20th January 2016 Initial Version

2.0 04
th

 July, 2017 Updated as per new sensor
framework in Vision SDK 3.0

««« § »»»

	TABLE OF CONTENTS
	1 Introduction
	2 Design
	2.1 Internal SW Interface
	2.1.1 Register API

	2.2 External SW Interface
	2.2.1 Create API
	2.2.2 Start/Stop API
	2.2.3 Control API
	2.2.4 Get Sensor Information

	3 Steps for adding new sensor
	4 Revision History

