

Copyright © 2014 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 42

Vision SDK TDA3xx

(v03.07.01)

User Guide

 Page 2 of 42

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated

 Page 3 of 42

TABLE OF CONTENTS

1 Introduction ... 4

1.1 References .. 4

2 System Requirements .. 5

2.1 Windows Installation... 5

2.2 Linux Installation ... 6

2.3 Hardware Requirements .. 7

2.4 Required H/W modification / Configurations ... 10

2.5 Supported Sensors ... 12

2.6 Software Installation .. 12

3 Build and Run ... 13

3.1 Overview of application in release .. 13

3.2 Building the application ... 14

3.3 UART settings .. 16

3.4 Boot Modes ... 18

3.5 Load using QSPI ... 18

3.6 Load using QSPI and SD boot .. 22

3.7 Load using CCS .. 24

3.8 Run the demo .. 29

3.9 DCC ... 32

3.10 Fast boot usecase .. 35

3.11 Surround View Fast Boot Use case .. 37

3.12 Surround View Use case under 128 MB DDR configuration 37

3.13 Build IPU in SMP mode .. 39

3.14 DCAN Usecase ... 39

4 Revision History ... 42

 Page 4 of 42

1 Introduction

Vision Software Development Kit (Vision SDK) is a multi-processor software

development package for TI’s family of ADAS SoCs. The software framework allows

users to create different ADAS application data flows involving video capture, video

pre-processing, video analytics algorithms, and video display. The framework has

sample ADAS data flows which exercises different CPUs and HW accelerators in the

ADAS SoC and demonstrates how to effectively use different sub-systems within the

SoC. Frame work is generic enough to plug in application specific algorithms in the

system.

Vision SDK is currently targeted for the TDA2xx and TDA3xx family of SoCs

This document explains the HW/SW setup for TDA3x EVM. Refer to

VisionSDK_UserGuide_TDA2xx.pdf for TDA2x EVM related HW/SW setup info.

1.1 References

Refer the below additional documents for more information about Vision SDK

Document Description

VisionSDK_ReleaseNotes.pdf Release specific information

VisionSDK_UserGuide_TDA3xx.pdf This document. Contains install,

build, execution information

VisionSDK_ApiGuide.CHM User API interface details

VisionSDK_SW_Architecture.pdf Overview of software architecture

VisionSDK_DevelopmentGuide.pdf Details how to create data flow (s)

& add new functionality

VisionSDK_DataSheet.pdf Summary of features supported,

not supported in a release.

Performance and benchmark

information.

VisionSDK_FAQs.pdf Document contains FAQ

 Page 5 of 42

2 System Requirements

This chapter provides a brief description on the system requirements (hardware and

software) and instructions for installing Vision SDK.

2.1 Windows Installation

2.1.1 PC Requirements

Installation of this release needs a windows machine with about 8GB of free disk

space. Building of the SDK is supported on windows environment.

2.1.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.1.2.1 A15 Compiler, Linker

The windows installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/windows/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before

proceeding else compile will fail. Also make sure the compiler is installed at

the exact path mentioned above

2.1.3 Code Composer Studio

CCS is needed to load, run and debug the software. CCS can be downloaded from

the below link. CCS version 6.0.1.00040 or higher should be installed.

http://processors.wiki.ti.com/index.php/Download_CCS

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update
http://processors.wiki.ti.com/index.php/Download_CCS

 Page 6 of 42

2.2 Linux Installation

2.2.1 PC Requirements

Installation of this release needs a Linux Ubuntu 14.04 machine.

IMPORTANT NOTE: If you are installing Ubuntu on a virtual machine, ensure it’s a

64 bit Ubuntu.

2.2.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.2.2.1 A15 Compiler, Linker

The Linux installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/linux/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before initiating the

build else compilation will fail. Also make sure the compiler is installed at the exact

path mentioned above after installation of vision sdk.

Use following steps to install the toolchain

$> cd $INSTALL_DIR/ti_components/cg_tools/linux

$> tar -xvf gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.tar

IMPORTANT NOTE: Ensure the toolchain is for 32 / 64 bit machine as per

configuration of installation machine

If your machine is 64 bit and you have downloaded toolchain from link above

Execute following step on installation machine

$>sudo apt-get install ia32-libs lib32stdc++6 lib32z1-dev lib32z1 lib32ncurses5
lib32bz2-1.0

2.2.3 Other software packages for build depending upon OS baseline

Ensure these packages/tools are installed on the installation machine

uname, sed, mkimage, dos2unix, dtrx, mono-complete, git, lib32z1

lib32ncurses5 lib32bz2-1.0 libc6:i386 libc6-i386 libstdc++6:i386

libncurses5:i386 libz1:i386 libc6-dev-i386 device-tree-compiler mono-

complete

To install

$>sudo apt-get install <package_name>

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

 Page 7 of 42

2.3 Hardware Requirements

Hardware setup for different use-cases is described in this section

2.3.1 Single Channel (SC) Use-case Hardware Setup

SC use-case needs the below hardware

1. TDA3xx EVM , power supply (12V 5 AMP)

2. Video Sensors, you would require one of the sensors listed in section 2.5. Please
refer section 2.3.4, it visually shows as to where the sensor should be connected.

3. 1Gbps Ethernet Cable (optional)

4. HDMI 1080p60 capable Display Monitor OR LCD Screen. LCD should be connected
to LCD out connector, as shown in section 2.3.4. 10’’ or 7’’ LCD is supported

WARNING: LI Camera Interface is different from LI Camera CSI2 Interface. Putting

a CSI2 sensor on LI Camera Interface will damage the sensor

2.3.2 VIP multi-channel LVDS capture (SRV) Use-case Hardware Setup

Refer the TDA2x user guide “VisionSDK_UserGuide_TDA2xx.pdf” for the LVDS set-

up.

To support multichannel LVDS capture on TDA3xx EVM, there are some board

modifications required. Please refer to the “Running VPS Application on TDA3XX

EVM” section of the VPS user guide to get the more details

1. For VIP capture from Multi-deserializer board, the multi-deserializer board should

be configured for 4-channel operation. The CN2, CN3 and CN4 jumper settings

should be set.

2. In case of Multi-deserializer capture through VIP or ISS capture from sensors,

board modification is required in the base board to avoid I2C issues

WARNING: Select the display resolution as HDMI XGA TDM mode <TDA3xx

ONLY>. Failing which, only 2 channels of captured video streams are displayed. This

is required as some of the VIP input pins is multiplexed with display output pins.

2.3.3 ISS Multiple Channel (SRV) Use-case Hardware Setup

SRV use-case needs the below hardware

1. TDA3xx EVM, power supply (12V 5 AMP)

2. UB960 Application Board, power supply (12V 5 AMP)

3. 4 TIDA00262 modules (AR0140 sensor) or IMI modules (OV10640 Rev E sensor)

& LVDS cables to connect camera modules to UB960 application board

a. List details of this camera module http://www.ti.com/tool/TIDA-

00262?keyMatch=TIDA-00262&tisearch=Search-EN-Everything#tiDevice

4. HDMI 1080p60 capable Display Monitor

WARNING: CSI2 Clock: The maximum CSI2 clock could be 750 MHz, please refer

the device data manuals for details. Some of the VisionSDK usecases (UB964 based),

overclocks by 50 MHz (i.e. 800 MHz) and it works as expected. This over clocking is

due the crystal (25 MHz) used in UB964 EVM, by choosing 24 MHz crystal UB964

CSI2 clock can be operated with-in specified limits.

http://www.ti.com/tool/TIDA-00262?keyMatch=TIDA-00262&tisearch=Search-EN-Everything#tiDevice
http://www.ti.com/tool/TIDA-00262?keyMatch=TIDA-00262&tisearch=Search-EN-Everything#tiDevice

 Page 8 of 42

2.3.4 Sensor Interfaces

Figure 2.3 1 15x15 TDA3x EVM (FRONT SIDE)

CSI2 Receiver Connector

 Page 9 of 42

Figure 2.3 2 15x15 TDA3x EVM (BACK SIDE)

Figure 2.3 3 TDA3x EVM with UB960 Application Board

NOTE: For Switch settings refer section 2.4.2

2.3.5 EDID Programming for HDMI Capture

EDID information needs to be programmed on the EEPROM present on the EVM. This

is required for the HDMI source to recognize the format and resolution supported by

 Page 10 of 42

the receiver (TDA3xx SoC). If this step is not done or if this step fails, then TDA3xx

SoC will not be able to receive data via HDMI.

IMPORTANT NOTE: It’s recommended to program the HDMI receivers EDID.

The default EDID is programmed to receive 1080P60 video streams only. If

stream of different resolution is required (or EDID is corrupted), the EDID

would require an update. Refer the EDID programming points in the section

Running VPS Application on (TDAXXX EVM) documented in VPS User Guide

in PDK.

2.4 Required H/W modification / Configurations

2.4.1 TDA3XX EVM Modifications for SCH use case

I2C transactions for few sensors like OV10640 fail at 400 KHz I2C frequency. To fix

this issue, few resistors need to be updated/changed on the TDA3xx EVM. Please

refer to the “Running VPS Application on TDA3XX EVM” section of the VPS user guide

to get the more details

2.4.2 Changes required on UB960 Application board

1. Configure to supply 9V on the LVDS lines to TIDA00262 modules

a. J14 Short pins 1-2 as show in Error! Reference source ot
found.

2. Configure UB960 to operate in LVDS in 75 MHz mode

a. Dip Switch MODE 3 should be ON

3. Refer the picture below

Mode

 □ 4

□ 3

 □ 2

 □ 1

 Page 11 of 42

Mode

 Page 12 of 42

2.5 Supported Sensors

Refer to ProcessorSDK_Vision_IssSensor_TestMatrix.xlsx in docs/TestReports for the

supported feature on each of the sensors.

2.6 Software Installation

PROCESSOR_SDK_VISION_03_xx_xx_xx_setupwin.exe is the SDK package installer.

Copy the installer to the path of your choice.

Double click the installer to begin the installation.

Follow the self-guided installer for installation.

IMPORTANT NOTE: On some computers running as administrator is needed. Right

click on the installer and select option of “Run as administrator”. If this is not done

then you may see a message like “This program might not have installed correctly

On completion of installation a folder by name

PROCESSOR_SDK_VISION_03_xx_xx_xx would have been created in the installation

path.

2.6.1 Uninstall Procedure

To uninstall, double click on uninstall.exe created during installation in the folder

PROCESSOR_SDK_VISION_03_xx_xx_xx.

At the end of uninstall, PROCESSOR_SDK_VISION_03_xx_xx_xx folder still remains.

It is just an empty folder. It can be deleted manually.

 Page 13 of 42

3 Build and Run

This chapter provides a brief overview of the sample application or use case present

in the SDK and procedure to build and run it. For more details about optimized build

process please refer to VisionSDK_UserGuide_BuildSystem.pdf

3.1 Overview of application in release

The Vision SDK supports the following use-cases are grouped under following

categories

 Single Camera Use-cases

 Multi-Camera LVDS Use-cases

 AVB RX Use-cases, (TDA2x & TDA2Ex ONLY)

 Dual Display Use-cases, (TDA2x EVM ONLY)

 ISS Use-cases, (TDA3x ONLY)

 Network RX/TX Use-cases

 Fast boot ISS capture + display (TDA3x ONLY)*

* Not listed in Runtime Menu

Refer to VisionSDK_DataSheet.pdf for detailed description of each category.

The demos support devices listed in section 2.4.2 as capture source and HDMI

1080P60 can also be used as a capture source.

The demos support following devices as display devices

 LCD 7-inch 800x480@60fps

 LCD 10-inch 1280x720@60fps

 LCD 10-inch 1920x1200@60fps

 HDMI 1080p60 (default)

Use option "s" on the main menu in UART to select different capture and display

devices.

 Page 14 of 42

3.2 Building the application

a) On windows command prompt, go inside the directory

PROCESSOR_SDK_VISION_03_xx_xx_xx\vision_sdk\build.

b) Open file Rules.make and

set MAKEAPPNAME=apps and MAKECONFIG=tda3xx_evm_bios_all

c) Build is done by executing gmake. “gmake” is present inside XDC package. For

“gmake” to be available in windows command prompt, the XDC path must be set in

the windows system path.

IMPORTANT NOTE: xdc path is needed to be set in environment variables. If not,

then set it using the set PATH =

<Install_dir>/ti_components/os_tools/windows/xdctools_x_xx_xx_xx;%PATH% in

command prompt

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before proceeding

else compile will fail. Also make sure the compiler is installed at the exact path as

mentioned in Directory Structure .

IMPORTANT NOTE: If the installation folder depth is high then windows cmd

prompt fails with error that it cannot find a file, even in file is present in

mentioned path, this is because Windows has a limitation of 8191

characters for the commands that can execute. In such a situation as a

workaround either restrict the folder depth to d:/ or if it cannot be

restricted use git bash (version 2.13) to build. Refer

https://support.microsoft.com/en-in/kb/830473 for more details.

(Always point to xdc path gmake only)

d) Under vision_sdk\build directory

i. When building first time run the below sequence of commands

 > gmake -s -j depend

 > gmake -s –j

IMPORTANT NOTE: For Windows PC use “-j<number of CPUs>” instead of just

–j. For example if PC has 2 CPUs then use “-j2”. Random build dependency issues

has been noticed with –j & windows PC. If not sure about the number of CPUs of

PC, then suggests not using –j option with windows build environment.

ii. When building after the first time or incremental build, run the below command

> gmake -s -j

Executing “gmake -s -j depend “ will build all the necessary components (PDK drivers,

EDMA drivers and sdk dependent files) and “gmake -s -j” will build the Vision SDK
framework and examples.

IMPORTANT NOTE: For incremental build, make sure to do "gmake -s -j

depend" before "gmake -s -j” when below variables specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)*cfg.mk are changed

 when PROC_$(CPU)_INCLUDE is changed

 when DDR_MEM is changed

 when PROFILE is changed

 when ALG plugin or usecase is enabled or disabled in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG) *_cfg.mk

https://support.microsoft.com/en-in/kb/830473

 Page 15 of 42

 when any .h or .c file in TI component is installed in ti_components is

changed

 when any new TI component is installed in ti_components

If "gmake -s -j depend" is not done in these cases then build and/or execution

may fail.

IMPORTANT NOTE: When options (other than those specified above) are

changed in \vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk, a

clean build is recommended for the updated settings to take effect.

e) On a successful build completion, following executables will be generated in the

below path

\vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\vision_sdk\bin\tda3xx-

evm

 vision_sdk_arp32_1_release.xearp32F

 vision_sdk_c66xdsp_1_release.xe66

 vision_sdk_c66xdsp_2_release.xe66

 vision_sdk_ipu1_0_release.xem4

 vision_sdk_ipu1_1_release.xem4

f) To speed up the incremental builds the following can be done as required.

The number of processors included in the build can be changed by modifying below

values in \vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk. A value of

"no" means CPU not included in build, value of "yes" means CPU included in build.

Make sure to do clean build and then “gmake -s -j depend” before “gmake -s- j”

when number of CPUs included is changed

PROC_DSP1_INCLUDE=yes

PROC_DSP2_INCLUDE=yes

PROC_EVE1_INCLUDE=yes

PROC_IPU1_0_INCLUDE=yes

PROC_IPU1_1_INCLUDE=yes

g) The build configuration that is selected in config file can be confirmed by doing below

> gmake -s showconfig

h) Cleaning the build can be done by following command

> gmake -s clean

Alternatively, below folder can be deleted to delete all

generated files

> rm -rf

..\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\vision_sdk\bin

> rm –rf ..\links_fw\include\configs

 Page 16 of 42

3.3 UART settings

Connect a serial cable to the UART port of the EVM and the other end to the serial

port of the PC (configure the HyperTerminal at 115200 baud rate) to obtain logs and

select demo. EVM it detects 4 UART ports, you need to select the 3rd one.

IMPORTANT NOTE: On some EVMs we were observing that UART terminal does not

work. Updating the USB to UART driver on PC made UART work on the failings PCs.

You can download the drivers from the below link.

http://www.ftdichip.com/Drivers/VCP.htm

http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20Certified.exe

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20Certified.exe

 Page 17 of 42

 Page 18 of 42

3.4 Boot Modes

Supported boot modes on TDA3xx ES1.0 and ES2.0 device:

Boot Mode EVM Switch Setting
SYSBOOT(SW2)[1:16]

EVM Switch Setting
SW8001[1:8]

QSPI_1 00011000 10000001 0100 0001

QSPI_4 10011000 10000001 0100 0001

NOR 01011000 10000101 1100 0001

Debug 00111000 10000001 XXXXXXXX

3.5 Load using QSPI

3.5.1 Steps to generate qspi writer tools

NOTE: SBL qspi image is built from pdk package. To build qspi, run the command gmake -s sbl
from vision_sdk\build directory This generates all required tools and all sbl images under
vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl directory

1. The flash writer is present in

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi_flash_writer\$(P

LATFORM)\qspi_flash_writer_ipu1_0_release.xem4

2. The SBL images are present in

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi\$(OPP)\$(PLATF

ORM)\sbl_qspi_$(OPP)_ipu1_0_release.tiimage

IMPORTANT NOTE: “gmake -s sbl” requires GCC tools need to be installed in

“<install dir>/ti_components/cg_tools/<os>/gcc-arm-none-eabi-4_9-2015q3”

location. Tool can be downloaded from below link.

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

3.5.2 Steps to generate appImage

Following steps need to be followed to generate the application image

1. Make sure the executables are built as shown in Building the application

2. To generate the application image run below command from “vision_sdk\build”

folder

> gmake -s appimage

IMPORTANT NOTE:

 The config options, like CPUs to use, debug or release profile etc, used to

make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk

 The Surround View LUT and Perspective Matrix are flashed at an

offset of 20 MB in the QSPI hence make sure the generated appImage

doesn’t exceed 20 MB in case Surround View use cases are intended

to be run.

3.5.3 Flashing steps

Flashing pin settings: Please refer Boot Modes for pin boot mode pin setting.

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

 Page 19 of 42

 NOTE: Image indicates the sysboot position on board not the switch settings

For loading binaries using CCS refer Load using CCS till step 8.

1. Connect M4 (IPU). Do CPU reset

2. Load below image on M4

C:\PROCESSOR_SDK_VISION_03_XX_XX_XX\vision_sdk\binaries\$(MA

KEAPPNAME)\$(MAKECONFIG)\sbl\qspi_flash_writer\$(PLATFORM)\qs

pi_flash_writer_ipu1_0_release.xem4

3. Run the core. You would see below console logs

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA3x EVM, press ‘2’.

MID - 1

DID - 18

Enter 0 for Erase-Only (without flashing any image)

Note : File size should be less than 33554432 Bytes.

Enter the file path to flash:
C:\PROCESSOR_SDK_VISION_03_XX_XX_XX\vision_sdk\binaries\$(M

AKEAPPNAME)\$(MAKECONFIG)\sbl\qspi\$(OPP)\$(PLATFORM)\sbl_qs

pi_$(OPP)_ipu1_0_release.tiimage

Enter the Offset in bytes (HEX) 0x00

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 1

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 0

Read xxxxxx bytes from [100%] file...Done.

 QSPI whole chip erase in progress

 QSPI file write started

 ************QSPI flash completed

sucessfully**************

4. Reset the board and Repeat step 1, 2, 3.

 Page 20 of 42

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA3x
EVM, press ‘2’.

MID - 1

DID - 18

Enter the File Name

C:\PROCESSOR_SDK_VISION_03_XX

_XX_XX\vision_sdk\binaries\$(MAK

EAPPNAME)\$(MAKECONFIG)\vision

_sdk\bin\$(SOC)\sbl_boot\AppIma

ge_BE

Enter the Offset in bytes (HEX): 0x80000

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 0

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 1

Open Scripting console window by clicking
“Menu -> View -> Scripting console” and enter
below command on scripting console.

loadRaw(0x80500000, 0,
"C:/VISION_SDK_XX_XX_XX_XX/vision_s
dk/binaries/$(MAKEAPPNAME)/$(MAKECO
NFIG)/vision_sdk/bin/$(SOC)/sbl_boot/A
ppImage_BE", 32, false);

IMPORTANT NOTE: The load address in
loadRaw command could be different based on
the board/SBL size etc. SBL figures out the
address and prints it on CCS console. Use this
address in loadRaw command for copying
AppImage_BE.

In CCS console Enter any alpha-numeric key
once loadraw is complete... as shown in below
image

QSPI file write started

 ************QSPI flash completed
successfully**************

NOTE: If flashing binaries for fast boot use case then the file name and offsets will

be different and this step needs to be done twice, once for UCEarly, once for UCLate.

Refer section section 3.10.3 for steps to generate binaries, binary names, offsets

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA3x
EVM, press ‘2’.

MID - 1

DID - 18

Enter the File Name

C:\PROCESSOR_SDK_VISION_03_XX

_XX_XX\vision_sdk\binaries\$(MAK

EAPPNAME)\$(MAKECONFIG)\vision

_sdk\bin\$(SOC)\sbl_boot\AppIma

ge_UcEarly_BE

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 1

Open Scripting console window by clicking
“Menu -> View -> Scripting console” and enter
below command on scripting console.

loadRaw(0x80500000, 0,

"C:/VISION_SDK_XX_XX_XX_XX/vision_s
dk/binaries/$(MAKEAPPNAME)/$(MAKECO
NFIG)/vision_sdk/bin/$(SOC)/sbl_boot/A
ppImage_UcEarly_BE", 32, false);

 Page 21 of 42

Enter the Offset in bytes (HEX): 0x80000

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 0

IMPORTANT NOTE: The load address in
loadRaw command could be different based on
the board/SBL size etc. SBL figures out the
address and prints it on CCS console. Use this
address in loadRaw command for copying
AppImage_BE.

In CCS console Enter any alpha-numeric key
once loadraw is complete... as shown in below
image

QSPI file write started

 ************QSPI flash completed
successfully**************

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA3x
EVM, press ‘2’.

MID - 1

DID - 18

Enter the File Name

C:\PROCESSOR_SDK_VISION_03_XX

_XX_XX\vision_sdk\binaries\$(MAK

EAPPNAME)\$(MAKECONFIG)\vision

_sdk\bin\$(SOC)\sbl_boot\AppIma

ge_UcLate_BE

Enter the Offset in bytes (HEX): 0xA80000

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 0

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 1

Open Scripting console window by clicking
“Menu -> View -> Scripting console” and enter
below command on scripting console.

loadRaw(0x80500000, 0,
"C:/VISION_SDK_XX_XX_XX_XX/vision_s
dk/binaries/$(MAKEAPPNAME)/$(MAKECO
NFIG)/vision_sdk/bin/$(SOC)/sbl_boot/A
ppImage_UcLate_BE", 32, false);

IMPORTANT NOTE: The load address in
loadRaw command could be different based on
the board/SBL size etc. SBL figures out the
address and prints it on CCS console. Use this
address in loadRaw command for copying
AppImage_BE.

In CCS console Enter any alpha-numeric key
once loadraw is complete... as shown in below
image

QSPI file write started

 ************QSPI flash completed
successfully**************

5. On completion change the pin setting as shown in Boot Modes table.

 Page 22 of 42

3.6 Load using QSPI and SD boot

In this mode SBL boots from QSPI but AppImage boots from SD card. This allows us

to flash SBL once to QSPI and subsequently we can boot new AppImage just by

copying AppImage to SD card.

3.6.1 Steps to generate qspi writer tools

NOTE: SBL image for the qspi sd boot is built from pdk package.To build this image,

Run the command gmake -s sbl from vision_sdk\build dir. This generates all

required tools under vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\

1. The flash writer is present in

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi_flash_writer\$(P

LATFORM)\qspi_flash_writer_ipu1_0_release.xem4

2. The SBL images are present in

vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi_sd\$(OPP)\$(PL

ATFORM)\sbl_qspi_sd_$(OPP)_ipu1_0_release.tiimage

IMPORTANT NOTE: “gmake -s sbl” requires GCC tools need to be installed in

“<install dir>/ti_components/cg_tools/<os>/gcc-arm-none-eabi-4_9-2015q3”

location. Tool can be downloaded from below link.

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

3.6.2 Steps to generate appImage

Following steps need to be followed to generate the application image

1. Make sure the executables are built as shown in Building the application

2. To generate the application image run below command from “vision_sdk\build”

folder

> gmake -s appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release profile

etc, used to make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk

3.6.3 Flashing steps

Flashing pin settings: Please refer Boot Modes for pin boot mode pin setting.

For loading binaries using CCS refer Load using CCS till step 8.

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

 Page 23 of 42

1. Connect M4 (IPU). Do CPU reset

2. Load image on M4

(C:\PROCESSOR_SDK_VISION_03_XX_XX_XX\vision_sdk\binaries\$

(MAKEAPPNAME)\$(MAKECONFIG)\sbl\qspi_flash_writer\$(PLATFO

RM)\qspi_flash_writer_ipu1_0_release.xem4)

3. Run the core.

You should get below logs on console outputs

[Cortex_M4_IPU1_C0]
QSPI Flash writer application
Enter Device type to use
1 - 1 bit read from flash

2 - 4 bit (Quad) read from flash

Select appropriate Device Type, for TDA3x EVM, press ‘2’.

MID - 1

DID - 18

Enter 0 for Erase-Only (without flashing any image)

Note : File size should be less than 33554432 Bytes.

Enter the file path to flash:

C:\PROCESSOR_SDK_VISION_03_XX_XX_XX\vision_sdk\binaries\$(MAK

EAPPNAME)\$(MAKECONFIG)\sbl\qspi_sd\$(OPP)\$(PLATFORM)\sbl_qspi_

sd_$(OPP)_ipu1_0_release.tiimage

Enter the Offset in bytes (HEX) 0x00

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 1

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 0

Read xxxxxx bytes from [100%] file...Done.

 QSPI whole chip erase in progress

 QSPI file write started

************QSPI flash completed sucessfully**************

NOTE: User needs to copy the AppImage to root folder in SD card and insert SD

card and power on EVM to boot it. SD card should be formatted as FAT32 with 512

bytes per sector.

 Page 24 of 42

3.7 Load using CCS

After installing CCS, follow below steps to complete the platform setup,

1. GELs are available in

<Install_dir>\ti_components\ccs_csp \auto_device_support_x.x.x.zip

NOTE:

o GELs are also available at

http://processors.wiki.ti.com/index.php/Device_support_files

Under Automotive pick

Automotive vX.X.X

o To install the new GEL versions, you need to extract the zip to

<CCS_INSTALL_DIR>/ccsv6/ccs_base

Change the following GEL files for vision SD as below,

- TDA3xx_multicore_reset.gel
o Set VISION_SDK_CONFIG to 1
o 256MB mode not supported

2. CCS Target Configuration creation:

a. Open “Target Configurations” tab, by navigating through the menu “View -

>Target Configurations”.

b. Create a new Target Configuration (TDA3xx Target Configuration) by

navigating through the menu “File->New->Target Configuration File”.

http://processors.wiki.ti.com/index.php/Device_support_files

 Page 25 of 42

c. Specify Connections as “Spectrum Digital XDS560V2 STM USB Emulator”.

Specify Board or Device as “TDA3x”.

3. Connect JTAG to the board.

 Page 26 of 42

4. Reset EVM through the power recycle button.

5. Now launch the previously created TDA3xx Target Configuration.

 Page 27 of 42

6. Connect to core Cortex_M4_IPU1_C0.

7. On successful connect, the following log appears on CCS console:

Cortex_M4_IPU1_C0: GEL Output: --->>> TDA3xx Target Connect Sequence DONE !!!!! <<<---

8. Select Cortex_M4_IPU1_C0, navigate to Scripts->TDA3xx MULTICORE Initialization
TDA3xx_MULTICORE_EnableALLCores

9. On successful script execution, the following log appears on CCS console:

Cortex_M4_IPU1_C0: GEL Output: --->>> EVESS Initialization is DONE! <<<---

10. Now connect the core shown below

ARP32_EVE_1, C66xx_DSP1, C66xx_DSP2 and Cortex_M4_IPU1_C1

 Page 28 of 42

11. Once the cores are connected, do CPU Reset for all the cores.

12. On the cores load the binaries as mentioned below

On ARP32_EVE_1, load the binary, “vision_sdk_arp32_1_release.xearp32F”.
On C66xx_DSP2, load the binary, “vision_sdk_c66xdsp_2_release.xe66”.
On C66xx_DSP1, load the binary, “vision_sdk_c66xdsp_1_release.xe66”.
On Cortex_M4_IPU1_C0, load the binary, “vision_sdk_ipu1_0_release.xem4”.
On Cortex_M4_IPU1_C1, load the binary, “vision_sdk_ipu1_1_release.xem4”.

IMPORTANT NOTE: Binary for Cortex_M4_IPU1_C0 MUST be loaded before
Cortex_M4_IPU1_C1 since IPU1-0 does MMU config for the complete IPU1 system. Other
binaries can be loaded in any order.

 Page 29 of 42

3.8 Run the demo

3.8.1 Single channel demos with HDMI input

IMPORTANT NOTE: To demonstrate better output all single channel use cases that require
HDMI input should use video clips mentioned in the table below. These clips can be downloaded
from

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.

30602.25095 .

SFM_POSE.bin - SFM (Usecase ‘c’) and EUNCAP demo (Usecase ‘f’) needs

SFM_POSE.bin on the SD card. It will be available as part of the file downloaded

from the above link.

3.8.2 Steps to run

1. Power-on the Board after loading binaries by (SD, QSPI, NOR or CCS) and follow

Uart settings to setup the console for logs and selecting demo.

2. For HDMI as input select capture source as HDMI “s: System Settings”->

“Capture Settings” -> “2: HDMI Capture 1080P60”

3. Select demo required from the menu by keying in corresponding option from the

uart menu.

IMPORTANT NOTE: Make sure you select SCV (1Ch VIP capture) use-case or ISS use-case
depending on the camera that is connected and supported

After successful initialization of the use-case, you will see video been display on the HDMI as
shown below

Use case

No.

“Runtime

Menu”

Use case Input clip to

be played

by HDMI

player

7 1CH VIP capture + Sparse Optical Flow (EVE1) + Display Clip2

b b: 1CH VIP capture (HDMI) + Lane Detect (DSP1) +

Display

Clip1

c c: 1CH VIP capture (HDMI) + SOF (EVE1) + SFM (DSP1)

+ Display

Clip2

d d: 1CH VIP capture (HDMI) + Traffic Light Recognition

(TLR) (DSP1) + Display

Clip2

e e: 1CH VIP capture (HDMI) + Pedestrian, Traffic Sign,

Vehicle Detect 2 (EVE1 + DSP1) + Display

Clip2

f f: 1CH VIP capture (HDMI) + FrontCam Analytics 2

(PD+TSR+VD+LD+TLR+SFM) (DSPx, EVEx) + Display

(HDMI)

Clip3

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.30602.25095
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.30602.25095

 Page 30 of 42

a. SCV use-cases:

b. EDGE Detect use-case:

c. Sparse optical flow usecase

 Page 31 of 42

 Page 32 of 42

3.9 DCC

Dynamic Camera Configuration (DCC) tool is a PC based tool suit that is primarily

used for offline tuning of raw images obtained from raw camera sensors connected

to ISS hardware. Apart of tuning tool, DCC also contains ISP simulator.

NOTE: DCC tool can be downloaded from the below CDDS link. DCC version 2.1, compatible
with the Vision SDK 3.0 release, should be installed. Please contact local TI FAE to get access to
this CDDS link.
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.33350.26722

DCC tool is dependent on matlab runtime libraries, refer to the DCC user guide and install
required MatLab runtime.

DCC tuning tool with help of plug-ins generate a set of DCC XML and BIN files. BIN

files contain tuned values in binary file format for various ISP modules. These binary

files for different ISP modules are merged into single binary file and used in the

Vision SDK ISS sensor framework.

The binary file can also be flashed in the QSPI. Network tool command

iss_save_dcc_file can be used to save DCC binary file in the QSPI. Refer to the

network tool documentation (VisionSDK_UserGuide_NetworkTools.pdf) for more

information on this command.

When ISS use case is run in the vision sdk, it reads these binary files, parses them

and applies to the ISP modules. Vision SDK first tries to use DCC binary file from the

QSPI, if it is not available in the QSPI, it will use binary file from the ISS sensor

layer. If the binary file is not available even in ISS sensor layer, it uses ISP default

parameters.

IMPORTANT NOTE: DCC is currently supported only for AR0140, AR0132, IMX224 and
OV10640 Rev E sensors. For AR0140 sensor, the DCC xml files with the tuned ISP parameters
can be found in the path vision_sdk\apps\src\rtos\iss\src\sensor\ar0140\dcc_xml, for AR0132
sensor, they can be found in the path vision_sdk\apps\src\rtos\iss\src\sensor\ar0132\dcc_xml, for
OV10640 Rev E driver, they can be found in the path
vision_sdk\apps\src\rtos\iss\src\sensor\ov10640\dcc_xml and for IMX224 driver, they can be
found in the path vision_sdk\apps\src\rtos\iss\src\sensor\imx224\dcc_xml

DCC tuning tool exposes key parameters for each plugin which controls important

tuning parameters. Users who are imaging and TI ISP experts can control/modify

each parameter of plugin through XML files. Use below steps for updating and

applying new tuned parameters.

 Update the DCC xml file for the ISP modules for the given sensor

 Convert xml file to binary file using dcc generator tool. This is a windows based
tool to convert xml file to binary file. This tool can be found from the
vision_sdk\apps\tools\dcc_tools\dcc_gen_win.exe. This tool takes name of the
xml file as an argument and generates the binary file from xml file at the same
folder where xml file is stored.

o Usage: dcc_gen_win.exe <Plugin’s XML FILE >

 Send the binary file to the target using iss_send_dcc_file command of the
network tool. Please refer to the network tool documentation for getting
information on network tool

IMPORTANT NOTE: DCC xml to bin file convertor, dcc_gen_win.exe, is supported only on
Windows platform. Also this tool is dependent on DCC GUI tool, so make sure that the gui tool is

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.33350.26722

 Page 33 of 42

installed on the computer before using dcc_gen_win.exe executable. Please contact local TI
support to get DCC GUI tool.

Once the tuned parameters are tested and finalized, they can be permanently stored
in the QSPI or in driver.

For storing tuned parameters in the QSPI, run iss_save_dcc_file command of the
network tool. Please refer to the network tool documentation
(VisionSDK_UserGuide_NetworkTools.pdf) for more information about this command.
This command saves the binary file at the fixed offset in the QSPI. After saving the
binary file in QSPI, restart the ISS usecase to check the output of the tuned
parameters.

For storing tuned parameters in the sensor driver, go to the dcc_xml folder under
sensor driver. For example, for AR0140 sensor, go to the
vision_sdk\apps\src\rtos\iss\src\sensor\ar0140\dcc_xml\. This folder contains all the
xml files that vision sdk is using for this sensor. Copy the updated the xml file under
this folder and run generate_dcc.bat file from the windows. This batch file converts
all xml files into binary files, merges all binary files to single binary file and converts
binary file to header file, which will be used by the driver. After running this batch,
restart the ISS usecase to check the output of the tuned parameters.

Below is list of the DCC plugins supported in vision SDK.

ISIF_CLAMP DC Offset/Black Level offset in the ISIF

This plugin is currently used only for setting blank level offset.

No other parameters from this plugin are used.

IPIPE_GIC Green Imbalance Correction Module of IPIPE

IPIPE_NF1 Noise Filter 1 module of the IPIPE

IPIPE_NF2 Noise Filter 2 module of the IPIPE

IPIPE_DPC_OTF Defect correction OTF module

IPIPE_CFA Color Filter Array module

IPIPE_Gamma Gamma Correction module

IPIPE_RGB2RGB1 RGB to RGB color correction module-1

Supports multi photospace*, which means multiple set of

parameters can be defined based on the photospace for this

module.

IPIPE_3D_LUT 3D Lut module

IPIPE_RGB2RGB2 RGB to RGB color correction module-2

Supports multi photospace*

IPIPE_RGB2YUV RGB to YUV Color Conversion module

IPIPE_EE Edge Enhancer module

IPIPEIF_SPLIT VP Decompanding module of the IPIPEIF

IPIPEIF_WDRMERGE WDR Merge and WDR Companding module of the IPIPEIF

Most of the WDR merge parameters are calculated on the fly

based on the exposure ratio, so the only WDR merge

parameter used from this plugin are enable and black level for

long and short exposure.

GLBCE GLBCE module

 Page 34 of 42

NSF3V NSF3v module

Supports multi photospace*

CNF Chroma noise filter module

Supports multi photospace*

AWB_ALG AWB Calibration Parameters

TI AWB algorithm requires these calibration parameters. If not

provided, it uses default calibration parameters

LDC Lens Distortion Correction Module

* Photospace is defined by three parameters, exposure time, analog gain and color temperature. A range

of these parameters creates one photospace. Refer the DCC Gui documentation to get more details on
how to create photospace

* Although multiple photospace is supported only for few modules, xml files for almost all modules could
have multiple set of parameters based on the multiple photospace. If the module does not support
multiple photospace and xml file contains multiple set of parameters, only the first parameter set is used
by the parser.

Updating Mesh LDC table in Vision SDK:
For the new fisheye lens, follow below steps to update the mesh LDC table

a. Get the new LDC table for the new Fisheye lens

b. Go to the Vision_sdk\apps\tools\LDC_mesh_table_convert\ directory in the vision

SDK

c. Run the perl script convert.pl as shown below

perl convert.pl input_table.txt imagewidth imageheight downscalefactor

Here inputtable.txt file contains mesh LDC table for the new lens

imagewidth and imageheight are size of the input image

downscalefactor is the down scale factor by which input table is down scaled.

d. It will generate the file input_table.bin file, convert this bin file to header file

using bin2c Vision SDK utility, it can be found under

vision_sdk\apps\tools\dcc_tools\bin2c.exe

e. Replace this header file in

vision_sdk\apps\src\rtos\iss\src\sensor\iss_tables\iss_tables_ldc_lut_1920x1080.

h

f. Rebuild vision sdk

 Page 35 of 42

3.10 Fast boot usecase

This usecase is mainly targeted for rear view camera systems and mainly

demonstrates how boot time can be optimized to show sensor capture output on

display (preview) first on power on reset and then switch to analytics output shown

on display.

As the execution sequence for this usecase is different than all other usecases, it is

not enlisted in console RunTime Menu.

It is a fixed configuration demo usecase which works when you press reset button on

the TDA3X EVM.

3.10.1 Usecase configuration

It supports following configuration _Only_

1CH ISS Capture + ISP + LDC + Obj detect + Display

 Capture - AR0140 Parallel with TDA3x EVM

 Display - 10 inch LCD

 Boot mode - QSPI

3.10.2 Hardware set up

Refer section 0 “Required H/W modification / Configurations” to understand board

modification needed for TDA3X with and above mentioned usecase configuration. It

is important to have this done before fast boot usecase is tried. H/w mods for

following cannot be skipped.

 I2C to run at 400KHz

 Support for AR0140 or OV10640 REV E

Figure: TDA3x EVM Fast boot h/w setup

 Page 36 of 42

3.10.3 Build

Fast boot is special usecase demonstrating how boot time can be optimized for any

vision_sdk usecase; idea here is to have preview display up in minimum possible time

and then switch to actual usecase.

 The usecase is not enlisted in runtime menu it can be enabled using following

variable in \vision_sdk\apps\configs\tda3xx_evm_bios_all\cfg.mk. By default it is “no”.

Fast boot usecase is currently supported only for tda3x

FAST_BOOT_INCLUDE=yes

…

Remove DSP2 and IPU1_1 from the \vision_sdk\apps\configs\tda3xx_evm_bios_all\cfg.mk
& define WDR_LDC_INCLUDE to “yes”

PROC_DSP2_INCLUDE=no

PROC_IPU1_1_INCLUDE=no

NDK_PROC_TO_USE=none

WDR_LDC_INCLUDE=yes

Important Note: These can be defined ‘yes’ even in fast boot usecase but they are

not needed for this usecase and can contribute to boot time hence removed from

build config. User may enable these as per their usecases.

Important Note: In order to test the DSP and EVE analytics off and on options one

must make sure to not include IPU1_1 in the build and the PROC_IPU1_1_INCLUDE

should be ‘no’

 “gmake -s showconfig” command can be used prior to build to confirm the build

configuration.

 To build use

o gmake -s -j depend

o gmake -s –j

 SBL also needs to be built for fast boot usecase

- Ensure to remove SBL binaries if SBL was built previously

- Use “gmake -s sbl” to build SBL

3.10.4 Generating and Flashing images

 Refer section 3.5.1 to generate sbl

 To generate the application image run below command from “vision_sdk\build” folder

> gmake -s appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release profile,

fast boot enable etc, used to make the application image will be the values specified

in \vision_sdk\apps\configs\tda3xx_evm_bios_all\cfg.mk

 This command should generate AppImages at \vision_sdk\binaries\

apps\tda3xx_evm_bios_all\vision_sdk\bin\tda3xx-evm\sbl_boot

o AppImage_UcEarly_BE

o AppImage_UcLate_BE

 Refer section 3.5.3 to flash following images at given offsets.

 Page 37 of 42

Image QSPI offset to be flashed in

sbl_qspi 0x0

AppImage_UcEarly_BE 0x80000

AppImage_UcLate_BE 0xA80000

Important Note: Ensure images are flashed at given offsets only, order is not

mandatory

3.10.5 Run

Press Power On Reset button on Tda3x EVM. Make sure QSPI boot is selected as

mentioned in section 0

Pass criteria

 Display should flash up with preview in 1 sec approx

 Use case should switch to Object detect algorithm and Pedestrian / Traffic signs

detection should start as soon as they are in field of view after boot up.

 You should see boot time printed on the LCD below the CPU performance bar.

 In order to run the analytics ON (option 3) and OFF (option 4) scenario one can

choose to select any of the highlighted menu options. The display shows the

status of the PD+ TSR Object detection above the CPU Performance bar.

1: Save Captured Frame

2: Save SIMCOP Output Frame

3: PD and TSR ON

4: PD and TSR OFF

Important Note: Ensure IPU1_1 image is not a part of the application image when

trying these two options.

3.11 Surround View Fast Boot Use case

The following compile option in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk should be used to enable

fast boot for 3D Surround View:

SRV_FAST_BOOT_INCLUDE=yes

This option builds the Application Image involving only ipu1_0 and DSP_1 cores.

Important Note: Ensure the post-calibration tables are present on the SD Card that

is being used to run the usecase. The details of such tables can be found in the

relevant SRV UserGuides.

3.12 Surround View Use case under 128 MB DDR configuration

The following changes are required to be made before building and running the

Surround View use cases (calibration, 2D and 3D) with the 128 MB DDR

configuration:

1. Set ‘DDR_MEM=DDR_MEM_128M’ in the platform ‘cfg.mk’ file

2. Remove EVE1, IPU1_1 and DSP2 from the build in the platform ‘cfg.mk’ file:

 PROC_EVE1_INCLUDE=no

 Page 38 of 42

 PROC_IPU1_1_INCLUDE=no

 PROC_DSP2_INCLUDE=no

 ECC_FFI_INCLUDE=no

3. Make the following changes to the memory sections in the

‘\vision_sdk\$(MAKEAPPNAME)\build\tda3xx\mem_segment_definition_12

8mb.xs’ file:

 EVE1_VECS_SIZE = 1*KB;

 EVE1_CODE_SIZE = 128*KB;

 EVE1_DATA_SIZE = 128*KB;

 IPU1_1_CODE_SIZE = 128*KB;

 IPU1_1_DATA_SIZE = 128*KB;

 IPU1_0_CODE_SIZE = 10*MB;

 IPU1_0_DATA_SIZE = 10*MB;

 DSP1_CODE_SIZE = 1*MB;

 DSP1_DATA_SIZE = 11*MB;

 DSP2_CODE_SIZE = 128*KB;

 DSP2_DATA_SIZE = 128*KB;

 SR1_FRAME_BUFFER_SIZE = 90*MB;

 SR1_BUFF_ECC_ASIL_SIZE = 4*KB;

 SR1_BUFF_ECC_QM_SIZE = 4*KB;

 SR1_BUFF_NON_ECC_ASIL_SIZE = 4*KB;

4. Increase the size of SR1 heap to 90 MB in the memory map file (.xs).

5. Exclude the use cases which are out of scope for 128 MB build by setting

‘UC_<use case name>=no’ in the platform ‘uc_cfg.mk’ file as shown below, so

that the sizes of the IPU1_0 and DSP1 code and data fits within the

corresponding memory segments defined in the

‘\vision_sdk\$(MAKEAPPNAME)\build\tda3xx\mem_segment_definition_12

8mb.xs’ file.

The below use-cases are validated with 128 MB memory configuration.

UC_saveDisFrame=yes

UC_srv_calibration=yes

UC_iss_mult_capture_isp_simcop_sv_tda3xx=yes

UC_iss_mult_capture_isp_dewarp_3dsv_tda3xx=yes

UC_iss_capture_isp_simcop_display=yes

UC_vip_single_cam_view=yes

 Page 39 of 42

UC_vip_single_cam_view_dsswb=yes

UC_vip_single_cam_display_metadata=yes

3.13 Build IPU in SMP mode

By default Vision SDK build enable both core0 and core1 of IPU sub-system in non-

SMP mode. Where both the cores run independently with two separate binaries,

To build IPU sub-system in SMP mode, modify

\vision_sdk\apps\configs\tda3xx_evm_bios_all\cfg.mk as below

PROC_IPU1_1_INCLUDE=no

IPU1_SMP_BIOS=yes

Make Clean and Build

3.14 DCAN Usecase

The DCAN module is complaint to CAN 2.0B protocol specification and can support bit

rates up to 1 Mbit/s. Connections to the CAN network is performed through external

(for the device/SoC) transceivers (available on the EVM).

3.14.1 Build

The following compile option in “\vision_sdk\apps\configs\tda3xx_evm_bios_all\cfg.mk”
should be used to enable DCAN usecase:

DCAN_INCLUDE=yes

NOTE: DCAN demo/Usecase is only supported and validated on TDA3xx EVM.

3.14.2 Hardware Set-up

To run this Usecase, an external CAN node- which can be a PC CAN emulation tool or

another TDA3xx EVM (running an appropriate application to send/receive CAN

messages), needs to be connected to the CAN1 bus of the TDA3xx EVM. Configured

bit rate is of 1 Mbit/s and same should be configured for other CAN node. PCAN- a

PC CAN emulation tool is used to validate this example as shown in the following

 Page 40 of 42

figure:

Figure: DCAN Usecase connections

NOTE: For more details about PCAN, please refer to https://www.peak-system.com/PCAN-

USB-FD.365.0.html?&L=1.

3.14.3 Run

There is no specific option to run this Usecase. This Usecase runs along with all other

demo applications/usecases.

This application sends out a periodic control message with ID of ‘0xC2’ at an interval

of 10 seconds. On reception of the control message (with ID of ‘0xC1’), it sends out

an ACK message with ID of ‘0xC4’. Same is shown in below figure:

https://www.peak-system.com/PCAN-USB-FD.365.0.html?&L=1
https://www.peak-system.com/PCAN-USB-FD.365.0.html?&L=1

 Page 41 of 42

Figure: PCAN View showing sent/received messages

 Page 42 of 42

asdasd

4 Revision History

Version Date Revision History

1.0 22th August 2014 Initial Version

2.0 14
th

 November 2014 Added QSPI+SD boot,
GCC and CCSversion

3.0 31
st
 December 2014 Some minor changes

4.0 3
rd

 March, 2015 Added new section DCC

5.0 28
th

 June 2015 Added fast boot usecase

6.0 16
th

 Oct 2015 Updated for release 2.8

7.0 18
th

 March 2016 Updated for release 2.9

8.0 18
th

 October 2016 Minor changes and
updated for 2.11

9.0 8
th

 February 2017 Minor changes and
updates for vision sdk

2.12

10.0 15
th

 Apr 2017 Updated for 128M build

11.0 19
th

 June 2017 Updated linux installer

12.0 29
th

 June, 2017 Updated for Processor
SDK Vision 3.0 release

13.0 13
th

 October 2017 Updated for Processor
SDK Vision 3.01 release

14.0 20
th

 December 2017 Update for Processor
SDK vision 3.02 release

15.0 29
th

 Mar 2018 Updated 128MB map file
change

16.0 26th Jun 2018 IPU SMP mode support
details included

17.0 2
nd

 July 2018 Added details about
DCAN demo application.

18.0 7
th

 June 2019 Updated for Processor
SDK Vision 3.7 release

19.0 18
th

 July 2019 Updated for Processor
SDK Vision 3.7.1 release

««« § »»»

	TABLE OF CONTENTS
	1 Introduction
	1.1 References

	2 System Requirements
	2.1 Windows Installation
	2.1.1 PC Requirements
	2.1.2 Software Requirements
	2.1.2.1 A15 Compiler, Linker

	2.1.3 Code Composer Studio

	2.2 Linux Installation
	2.2.1 PC Requirements
	2.2.2 Software Requirements
	2.2.2.1 A15 Compiler, Linker

	2.2.3 Other software packages for build depending upon OS baseline

	2.3 Hardware Requirements
	2.3.1 Single Channel (SC) Use-case Hardware Setup
	2.3.2 VIP multi-channel LVDS capture (SRV) Use-case Hardware Setup
	2.3.3 ISS Multiple Channel (SRV) Use-case Hardware Setup
	2.3.4 Sensor Interfaces
	2.3.5 EDID Programming for HDMI Capture

	2.4 Required H/W modification / Configurations
	2.4.1 TDA3XX EVM Modifications for SCH use case
	2.4.2 Changes required on UB960 Application board

	2.5 Supported Sensors
	2.6 Software Installation
	2.6.1 Uninstall Procedure

	3 Build and Run
	3.1 Overview of application in release
	3.2 Building the application
	3.3 UART settings
	3.4 Boot Modes
	3.5 Load using QSPI
	3.5.1 Steps to generate qspi writer tools
	3.5.2 Steps to generate appImage
	3.5.3 Flashing steps

	3.6 Load using QSPI and SD boot
	3.6.1 Steps to generate qspi writer tools
	3.6.2 Steps to generate appImage
	3.6.3 Flashing steps

	3.7 Load using CCS
	3.8 Run the demo
	3.8.1 Single channel demos with HDMI input
	3.8.2 Steps to run

	3.9 DCC
	3.10 Fast boot usecase
	3.10.1 Usecase configuration
	3.10.2 Hardware set up
	3.10.3 Build
	3.10.4 Generating and Flashing images
	3.10.5 Run

	3.11 Surround View Fast Boot Use case
	3.12 Surround View Use case under 128 MB DDR configuration
	3.13 Build IPU in SMP mode
	3.14 DCAN Usecase
	3.14.1 Build
	3.14.2 Hardware Set-up
	3.14.3 Run

	4 Revision History

