

Copyright © 2017 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

Page 1 of 21

Vision SDK on TDA3X RVP

(v03.07.01)

User Guide

Page 2 of 21

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2017, Texas Instruments Incorporated

Page 3 of 21

TABLE OF CONTENTS

1 Introduction ... 4

1.1 References .. 4

1.2 Directory Structure ... 4

2 System Requirements .. 5

2.1 Windows Installation... 5

2.2 Linux Installation ... 6

2.3 Hardware Requirements .. 7

2.4 Software Installation .. 7

3 Build and Run ... 8

3.1 Overview of RVP application in release .. 8

3.2 Building the application ... 8

3.3 UART settings .. 10

3.4 Load using QSPI and SD boot .. 12

3.5 Load using CCS .. 13

3.6 Run the demo .. 20

4 Revision History ... 21

Page 4 of 21

1 Introduction

Vision Software Development Kit (Vision SDK) is a multi processor software

development package for TI’s family of ADAS SoCs. The software framework allows

users to create different ADAS application data flows involving video capture, video

pre-processing, video analytics algorithms, and video display. The framework has

sample ADAS data flows which exercises different CPUs and HW accelerators in the

ADAS SoC and shows customer how to effectively use different sub-systems in the

SoC. Frame work is generic enough to plug in application specific algorithms in the

system.

Vision SDK is currently targeted for the TDA2xx, TDA3xx family of SoCs.

This document explains the HW/SW setup for TDA3xx Rugged Vision Platform (RVP).

The RVP developed by D3 Engineering is one of the evaluation platforms for Vision

SDK. The RVP supports the following Vision SDK data flows:

 Surround View (SRV) Auto Calibration

 SRV 3D

 SRV 2D + 3D

 Fast Boot SRV 3D

 Network Tx/Rx (Limited support: Few command exchanges between PC

network tool and RVP are tested)

1.1 References

Refer the below additional documents for more information about Vision SDK

Document Description

VisionSDK_ReleaseNotes.pdf Release specific information

VisionSDK_UserGuide_TDA3xx.pdf This document. Contains install,

build, execution information

VisionSDK_ApiGuide.CHM User API interface details

VisionSDK_SW_Architecture.pdf Overview of software architecture

VisionSDK_DevelopmentGuide.pdf Developer Guide

1.2 Directory Structure

Once Vision SDK is installed; there will be two main directories installed - vision_sdk and

ti_components.

Refer VisionSDK_UserGuide_TDA3xx.pdf for details of directory structure.

Page 5 of 21

2 System Requirements

This chapter provides a brief description on the system requirements (hardware and

software) and instructions for installing Vision SDK.

2.1 Windows Installation

2.1.1 PC Requirements

Installation of this release needs a windows machine with about 8GB of free disk

space. Building of the SDK is supported on windows environment.

2.1.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.1.2.1 A15 Compiler, Linker

The windows installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/windows/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before

proceeding else compile will fail. Also make sure the compiler is installed at

the exact path mentioned above

2.1.3 Code Composer Studio

CCS is needed to load, run and debug the software. CCS can be downloaded from

the below link. CCS version 6.0.1.00040 or higher should be installed.

http://processors.wiki.ti.com/index.php/Download_CCS

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update
http://processors.wiki.ti.com/index.php/Download_CCS

Page 6 of 21

2.2 Linux Installation

2.2.1 PC Requirements

Installation of this release needs a Linux Ubuntu 14.04 machine.

IMPORTANT NOTE: If you are installing Ubuntu on a virtual machine, ensure its a

64 bit Ubuntu.

2.2.2 Software Requirements

All software packages required to build and run the Vision SDK are included as part

of the SDK release package except for the ones mentioned below

2.2.2.1 A15 Compiler, Linker

The Linux installer for the GCC ARM tools should be downloaded from below link

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

The tools need to be installed under

 “<install dir>/ti_components/cg_tools/linux/”.

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before initiating the

build else compilation will fail. Also make sure the compiler is installed at the exact

path mentioned above after installation of vision sdk.

Use following steps to install the toolchain

$> cd $INSTALL_DIR/ti_components/cg_tools/linux

$> tar -xvf gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.tar

IMPORTANT NOTE: Ensure the toolchain is for 32 / 64 bit machine as per

configuration of installation machine

If your machine is 64 bit and you have downloaded toolchain from link above

Execute following step on installation machine

$>sudo apt-get install ia32-libs lib32stdc++6 lib32z1-dev lib32z1 lib32ncurses5
lib32bz2-1.0

2.2.3 Other software packages for build depending upon OS baseline

Ensure these packages/tools are installed on the installation machine

uname, sed, mkimage, dos2unix, dtrx, mono-complete, git, lib32z1

lib32ncurses5 lib32bz2-1.0 libc6:i386 libc6-i386 libstdc++6:i386

libncurses5:i386 libz1:i386 libc6-dev-i386 device-tree-compiler mono-

complete

To install

$>sudo apt-get install <package_name>

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

Page 7 of 21

2.3 Hardware Requirements

Hardware setup required for RVP use-cases is described in this section

2.3.1 ISS Multiple Channel (SRV) Use-case Hardware Setup

SRV use-cases needs the below hardware

1. TDA3xx RVP, power supply (12V 5 AMP)

2. Four TIDA00262 (AR0140 sensor) modules or IMI (OV10640 sensor) modules

and LVDS cables to connect camera modules to UB964 input ports of RVP.

a. Details of TIDA00262 camera module:

http://www.ti.com/tool/TIDA-00262?keyMatch=TIDA-

00262&tisearch=Search-EN-Everything#tiDevice

3. HDMI 1080p60 capable Display Monitor and Type C HDMI cable.

4. UART cable for user inputs.

2.4 Software Installation

PROCESSOR_SDK_VISION_xx_xx_xx_xx_setupwin.exe is the SDK package installer.

Copy the installer to the path of your choice.

Double click the installer to begin the installation.

Follow the self-guided installer for installation.

IMPORTANT NOTE: On some computers running as administrator is needed. Right

click on the installer and select option of “Run as administrator”. If this is not done

then you may see a message like “This program might not have installed correctly

On completion of installation folders by name ‘ti_components’ and ‘vision_sdk’ would

have been created in the installation path.

http://www.ti.com/tool/TIDA-00262?keyMatch=TIDA-00262&tisearch=Search-EN-Everything#tiDevice
http://www.ti.com/tool/TIDA-00262?keyMatch=TIDA-00262&tisearch=Search-EN-Everything#tiDevice

Page 8 of 21

2.4.1 Uninstall Procedure

To uninstall, double click on uninstall.exe present in the installation directory.

3 Build and Run

This chapter provides a brief overview of the RVP sample application or use case

present in the SDK and procedure to build and run it.

3.1 Overview of RVP application in release

The Vision SDK on RVP supports the following use-cases

 SRV 3D

 SRV 2D + 3D

 Fast boot SRV 3D

 Network Tx/Rx (Limited support: Few command exchanges between PC network

tool and RVP are tested)

Refer to VisionSDK_DataSheet.pdf for detailed description of the use-cases.

3.2 Building the application

1. On windows command prompt, go inside the directory \vision_sdk\build\.

2. Open file \vision_sdk\build\Rules.make and set

MAKEAPPNAME=apps and MAKECONFIG=tda3xx_rvp_bios_all

3. Open file \vision_sdk\apps\configs\tda3xx_rvp_bios_all\cfg.mk

a. Additionally to build for Fast Boot SRV 3D set

SRV_FAST_BOOT_INCLUDE=yes

IMPORTANT NOTE: Ensure the post-calibration tables are present on the SD

Card that is being used to run the usecase. The details of such tables can be

found in the relevant SRV UserGuides.

4. Build is done by executing gmake. “gmake” is present inside XDC package.

For “gmake” to be available in windows command prompt, the XDC path must

be set in the windows system path.

IMPORTANT NOTE: xdc path is needed to be set in environment variables.

If not, then set it using the set PATH =

<Install_dir>/ti_components/os_tools/windows/xdctools_x_xx_xx_xx;%PATH

% in command prompt

IMPORTANT NOTE: A15 Compiler and linker MUST be installed before

proceeding else compile will fail. Also make sure the compiler is installed at

the exact path as mentioned in Directory Structure .

IMPORTANT NOTE: If the installation folder depth is high then

windows cmd prompt fails with error that it cannot find a file, even in

file is present in mentioned path, this is because Windows has a

limitation of 8191 characters for the commands that can execute. In

such a situation as a workaround either restrict the folder depth to

Page 9 of 21

d:/ or if it cannot be restricted use git bash to build. Refer

https://support.microsoft.com/en-in/kb/830473 for more details.

(Always point to xdc path gmake only)

5. Under \vision_sdk\build\ directory

a. When building first time run the below sequence of commands

 > gmake -j depend

 > gmake –j

IMPORTANT NOTE: For Windows PC use “-j<number of CPUs>” instead of

just –j. For example if PC has 2 CPUs then use “-j2”. Random build

dependency issues has been noticed with –j & windows PC. If not sure about

the number of CPUs of PC, then suggests not using –j option with windows

build environment.

b. When building after the first time or incremental build, run the below

command

> gmake -j

Executing “gmake -j depend “ will build all the necessary components (PDK (Platform

Development Kit), EDMA drivers) and “gmake -j” will build the Vision SDK links framework
and apps.

IMPORTANT NOTE: For incremental build, make sure to do "gmake -j depend"

before "gmake -j" when below variables specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)*cfg.mk are changed

 when PROC_$(CPU)_INCLUDE is changed

 when DDR_MEM is changed

 when PROFILE is changed

 when ALG plugin or usecase is enabled or disabled in

\vision_sdk\configs\$(MAKECONFIG) *_cfg.mk

 when any .h or .c file in TI component is installed in ti_components is changed

 when any new TI component is installed in ti_components

If "gmake -j depend" not done in these cases then build and/or execution may fail

IMPORTANT NOTE: When options (other than those specified above) are changed

in \vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk a clean build is

recommended for the updated settings to take effect.

6. On a successful build completion, following executables will be generated in

the below path

\vision_sdk\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)\vision_sdk\bin\tda3xx-rvp

 vision_sdk_arp32_1_release.xearp32F

 vision_sdk_c66xdsp_1_release.xe66

 vision_sdk_c66xdsp_2_release.xe66

 vision_sdk_ipu1_0_release.xem4

 vision_sdk_ipu1_1_release.xem4

7. To speed up the incremental builds the following can be done as required.

The number of processors included in the build can be changed by modifying

https://support.microsoft.com/en-in/kb/830473

Page 10 of 21

below values in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk. A value of

"no" means CPU not included in build, value of "yes" means CPU included in

build. Make sure to do “gmake -j depend” before “gmake -j” when number

of CPUs included is changed

PROC_DSP1_INCLUDE=yes

PROC_DSP2_INCLUDE=yes

PROC_EVE1_INCLUDE=yes

PROC_IPU1_0_INCLUDE=yes

PROC_IPU1_1_INCLUDE=yes

8. The build config that is selected in config file can be confirmed by doing below

> gmake -s showconfig

9. Cleaning the build can be done by following command

> gmake clean

Alternatively, below folder can be deleted to delete

all generated files

> rm -rf ..\binaries\$(MAKEAPPNAME)\$(MAKECONFIG)

3.3 UART settings

Connect a serial cable to the UART port of the RVP and the other end to the serial

port of the PC (configure the HyperTerminal at 115200 baud rate) to obtain logs and

select demo. RVP detects 4 UART ports, you need to select the 3rd one.

IMPORTANT NOTE: On some RVP boards we were observing that UART

terminal does not work. Updating the USB to UART driver on PC made UART

work on the failings PCs. You can download the drivers from the below link.

http://www.ftdichip.com/Drivers/VCP.htm

http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20C

ertified.exe

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20Certified.exe
http://www.ftdichip.com/Drivers/CDM/CDM%20v2.10.00%20WHQL%20Certified.exe

Page 11 of 21

Page 12 of 21

3.4 Load using QSPI and SD boot

In this mode SBL boots from QSPI but AppImage boots from SD card. This allows us

to flash SBL once to QSPI and subsequently we can boot new AppImage just by

copying AppImage to SD card.

The prebuilt QSPI flash writer (qspiFlashWriter_m4_release.xem4) is present in the

‘vision_sdk\build\rtos\scripts\tda3xx-rvp\’ folder.

3.4.1 Steps to generate sbl_qspi_sd

NOTE: SBL qspi_sd image is built from PDK boot package. To build qspi_sd

Run the command gmake sbl from \vision_sdk\build\ directory. This

generates ‘sbl_qspi_sd_opp_nom_ipu1_0_release.tiimage’ under

\vision_sdk\binaries\apps\tda3xx_rvp_bios_all\sbl\qspi_sd\opp_nom\tda3xx-

rvp\ directory.

IMPORTANT NOTE: For RVP default memory map is 1GB , Use the following

build time macro to build SBL. These are changes for SBL any change in

Memory map changes are to be done in corresponding

apps\build\tda3xx\<>.xs Files

Change the macro in apps/configs/<MenuConfig>/cfg.mk file

Memory Map

Configuration

VSDK Buid macro

DDR_MEM

SBL Build macro to be passed

EMIFMODE

1GB Memory Map DDR_MEM_1024M SINGLE_EMIF_1GB

512 MB Memory Map DDR_MEM_512M SINGLE_EMIF_512MB

More info Please look at SBL options in build\rtos\makerules\build_pdk.mk

IMPORTANT NOTE: “gmake sbl” requires GCC tools need to be installed in

“<install_dir>/ti_components/cg_tools/<os>/gcc-arm-none-eabi-4_9-

2015q3” location. Tool can be downloaded from below link.

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

3.4.2 Steps to generate appImage

Following steps need to be followed to generate the application image

1. Make sure the executables are built as shown in Building the application

2. To generate the application image run below command from

“\vision_sdk\build\” folder

> gmake appimage

IMPORTANT NOTE: The config options, like CPUs to use, debug or release

profile etc, used to make the application image will be the values specified in

\vision_sdk\$(MAKEAPPNAME)\configs\$(MAKECONFIG)\cfg.mk

3.4.3 Flashing steps

For loading binaries using CCS refer Load using CCS till step 8.

1. Connect M4 (IPU). Do CPU reset

2. Load image on M4

https://launchpad.net/gcc-arm-embedded/+milestone/4.9-2015-q3-update

Page 13 of 21

D:\vision_sdk\build\rtos\scripts\tda3xx-

rvp\qspiFlashWriter_m4_release.xem4

3. Run the core.

You should get below logs on console outputs

[Cortex_M4_IPU1_C0]
QSPI Flash writer application

Enter Device type to use

1 - Spansion 1 bit

2 - Spansion 4 bit

3 - Micron 1 bit

4 - Micron 4 bit

5 - Winbond 1 bit

6 - Winbond 4 bit

7 - ISSI 1 bit

8 - ISSI 4 bit
$ > 4

MID - 20

DID - ba

Enter 0 for Erase-Only (without flashing any image)

Note : File size should be less than 33554432 Bytes.

Enter the file path to flash: D:

\vision_sdk\binaries\apps\tda3xx_rvp_bios_all\sbl\q

spi_sd\opp_nom\tda3xx-

rvp\sbl_qspi_sd_opp_nom_ipu1_0_release.tiimage

Enter the Offset in bytes (HEX) 0x00

Erase Options:

 0 -> Erase Only Required Region

 1 -> Erase Whole Flash

 2 -> Skip Erase

Enter Erase Option: 0

Load Options:

 0 -> fread using code (RTS Library)

 1 -> load raw using CCS (Scripting console)

Enter Load Option: 0

Reading 76504 bytes from file...

Read 16384 bytes [17%] from file...

Read 32768 bytes [34%] from file...

Read 49152 bytes [51%] from file...

Read 65536 bytes [68%] from file...

Read 76504 bytes [100%] from file...

 QSPI Erase started

 QSPI Erase completed

 QSPI file write started: file size 76504

 ************QSPI flash completed sucessfully**************

NOTE: User needs to copy the AppImage to root folder in SD card and insert SD card and power on RVP
to boot it. SD card should be formatted as FAT32 with 512 bytes per sector.

3.5 Load using CCS

After installing CCS, follow below steps to complete the platform setup,

1. GELs are available in

<Install_dir>\ti_components\ccs_csp \auto_device_support_x.x.x.zip

NOTE:

o GELs are also be available at

http://processors.wiki.ti.com/index.php/Device_support_files

Under Automotive pick

Automotive vX.X.X

o To install the new GEL versions, you need to extract the zip to

<CCS_INSTALL_DIR>/ccsv6/ccs_base

Change the following GEL files for vision SDK as below,
- TDA3xx_multicore_reset.gel

http://processors.wiki.ti.com/index.php/Device_support_files

Page 14 of 21

o Set VISION_SDK_CONFIG to 1
o 256MB mode not supported

For RVP, copy the ‘TDA3xx_ddr_config.gel’ present in the

‘/vision_sdk/build/rtos/scripts/tda3xx-rvp/’ folder to

‘<CCS_INSTALL_DIR>/ccsv6/ccs_base/emulation/gel/TDA3x/’ folder.

2. CCS Target Configuration creation:

a. Open “Target Configurations” tab, by navigating through the menu

“View ->Target Configurations”.

b. Create a new Target Configuration (TDA3xx Target Configuration) by

navigating through the menu “File->New->Target Configuration File”.

Page 15 of 21

c. Specify Connections as “Spectrum Digital XDS560V2 STM USB

Emulator”. Specify Board or Device as “TDA3x”.

Page 16 of 21

3. Connect JTAG to the board.

4. Now launch the previously created TDA3xx Target Configuration.

Page 17 of 21

5. Connect to core Cortex_M4_IPU1_C0.

6. On successful connect, the following log appears on CCS console:

Cortex_M4_IPU1_C0: GEL Output: --->>> TDA3xx Target Connect Sequence DONE
!!!!! <<<---

NOTE: If you hit the following error message:

Cortex_M4_IPU1_C0: Trouble Writing Memory Block at 0x55080808 on Page 0 of Length 0x4:
Error 0x80002002/-1203 Fatal Error during: Memory, Control, The DAP
access, address 0x55080808, has returned a SLAVE error.

Cortex_M4_IPU1_C0: GEL: Error while executing OnTargetConnect(): Internal error while
 writing 0x55080808

at *((unsigned int *) regAddr)=(unsigned int) 0xA0000000
[TDA3xx_multicore_reset.gel:12]

at AMMU_config() [TDA3xx_startup_common.gel:96]
at OnTargetConnect()

Then,

 Reset the system : Run->Reset->System reset

 Connect once again : Scripts->TDA3xx Misc Module Configurations-
>OnTargetConnect_API

7. Select Cortex_M4_IPU1_C0, navigate to Scripts->TDA3xx MULTICORE Initialization
TDA3xx_MULTICORE_EnableALLCores

Page 18 of 21

8. On successful script execution, the following log appears on CCS console:

Cortex_M4_IPU1_C0: GEL Output: --->>> EVESS Initialization is DONE! <<<---

9. Now connect the core shown below,
ARP32_EVE_1, C66xx_DSP1, C66xx_DSP2 and Cortex_M4_IPU1_C1.

10. Once the cores are connected, do CPU Reset for all the cores.

11. On the cores load the binaries as mentioned below

Page 19 of 21

On ARP32_EVE_1, load the binary, “vision_sdk_arp32_1_release.xearp32F”.
On C66xx_DSP2, load the binary, “vision_sdk_c66xdsp_2_release.xe66”.
On C66xx_DSP1, load the binary, “vision_sdk_c66xdsp_1_release.xe66”.
On Cortex_M4_IPU1_C0, load the binary, “vision_sdk_ipu1_0_release.xem4”.
On Cortex_M4_IPU1_C1, load the binary, “vision_sdk_ipu1_1_release.xem4”.

IMPORTANT NOTE: Binary for Cortex_M4_IPU1_C0 MUST be loaded before
Cortex_M4_IPU1_C1 since IPU1-0 does MMU config for the complete IPU1 system. Other
binaries can be loaded in any order.

Page 20 of 21

3.6 Run the demo

3.6.1 Steps to run

1. Power-on the Board after loading binaries by (SD or CCS) and follow Uart

settings to setup the console for logs and selecting demo.

2. Select the Camera Module Types “s: System Settings”-> “Capture Settings” ->

“8: AR0140 Sensor for SV - TIDA00262 (TDA3x ONLY)” OR

“9: OV10640 Sensor for SV - IMI (TDA3x ONLY)”

3. Select the SRV use-cases “5: ISS Use-cases, (TDA3x ONLY)”->

 “5: Surround View Calibration” OR

 “4: 3D SRV 4CH ISS capture + ISS ISP + DeWarp + Synthesis (DSP1) +

 Display” OR

“6: 3D + 2D SRV 4CH ISS capture + ISS ISP + DeWarp + Synthesis (DSP1) +

 Display”

Page 21 of 21

4 Revision History

Version Date Revision History

1.0 04
th

 July 2016 Initial Version

1.1 31
st
 October 2016 Updated for Vision SDK ver 2.11

1.2 8
th

 Feb 2017 Updated for Vision SDK ver 2.12

1.3 19
th

 June 2017 Updated linux installer

1.4 29
th

 June 2017 Updated for Vision SDK ver 3.0

1.5 13
th

 October 2017 Updated for Vision SDK ver 3.01

1.6 14
th

 November 2017 Added section for ISS SRV use-
cases

1.7 21
st
 December 2017 Updated for Vision SDK ver 3.02

1.8 6
th

 April 2018 Updated for Vision SDK ver 3.3

1.9 25
th

 June 2018 Added 1GB build info

2.0 7
th

 June 2019 Updated for Vision SDK ver 3.07

2.1 18
th

 July 2019 Updated for Vision SDK ver 3.07.01

««« § »»»

	TABLE OF CONTENTS
	1 Introduction
	1.1 References
	1.2 Directory Structure

	2 System Requirements
	2.1 Windows Installation
	2.1.1 PC Requirements
	2.1.2 Software Requirements
	2.1.2.1 A15 Compiler, Linker

	2.1.3 Code Composer Studio

	2.2 Linux Installation
	2.2.1 PC Requirements
	2.2.2 Software Requirements
	2.2.2.1 A15 Compiler, Linker

	2.2.3 Other software packages for build depending upon OS baseline

	2.3 Hardware Requirements
	2.3.1 ISS Multiple Channel (SRV) Use-case Hardware Setup

	2.4 Software Installation
	2.4.1 Uninstall Procedure

	3 Build and Run
	3.1 Overview of RVP application in release
	3.2 Building the application
	3.3 UART settings
	3.4 Load using QSPI and SD boot
	3.4.1 Steps to generate sbl_qspi_sd
	3.4.2 Steps to generate appImage
	3.4.3 Flashing steps

	3.5 Load using CCS
	3.6 Run the demo
	3.6.1 Steps to run

	4 Revision History

