C66 Efficient Code

UMEN

TS

C66 efficient code

Agenda:

« Understanding Compiler Feedback
» Overview of few C66x Instructions
 Restrict keyword

« Control loop/code optimizations

 Variables and Types

13 TEXAS
INSTRUMENTS

Software Pipelining feedback (.asm file)

SOFTWARE FIPELINE INFORMATION

Enown Minimum Trip Count
¥nown Maximum Trip Count
¥nown Max Trip Count Factor
Loop Carried Dependency Bound(™)
Unpartitioned Rescurce Bound
Partitioned Rescurce Bound(*}
Rescurce Partiticm:
A-gide B-side
units

units

units

units

cross paths

.T address paths
Long read paths
Long write paths 0
Logical ops {.LS) 0 1
Addition ops {.LSD}
Boundi.L .8 .LS&) 3
Bound(.L .8 .D .L& .L&D)

L TN N S S 8]

WD

2
4
1
]
1
1

=
o R B PRSI = =

e

5%

Searching for scftware pipeline schedule at
ii = 5 Register is live too long
ii = & Did not find schedule
ii = 7 gZchedule found with 3 iterations in paral
done
3/9/2016

.

Loop unroll factor. The number of times the loop was unrolled specifi-
cally to increase performance based on the resource bound constraint in
a software pipelined loop.

Known minimum trip count. The minimum number of times the loop will
be executed.

Known maximum trip count. The maximum number oftimes the loop will
be executed.

Known max trip count factor. Factor that would always evenly divide the
loops trip count. This information can be used to possibly unroll the loop.

Loop label. The label you specified for the loop in the linear assembly
input file. This field is not present for C/C++ code.

Loop carried dependency bound. The distance of the largest loop carry
path. A loop carry path occurs when one iteration of a loop writes a value
that must be read in a future iteration. Instructions that are part of the loop
carry bound are marked with the * symbal.

Iteration interval (ii). The number of cycles between the initiation of
successive iterations of the loop. The smaller the iteration interval, the
fewer cycles it takes to execute a loop.

Resource bound. The most used resource constrains the minimum itera-
tion interval. For example, if four instructions require a .D unit, they require
at least two cycles to execute (4 instructions/2 parallel .D units).

13 TEXAS
INSTRUMENTS

J

J

Software Pipelining feedback (.asm file)

Unpartitioned resource bound. The best possible resource bound val-
ues before the instructions in the loop are partitioned to a particular side.

Partitioned resource bound (*). The resource bound values after the
instructions are partitioned.

Resource partition. This table summarizes how the instructions have
been partitioned. This information can be used to help assign functional
units when writing linear assembly. Each table entry has values for the
A-side and B-side registers. An asterisk is used to mark those entries that
determine the resource bound value. The table entries represent the
following terms:

B .L units is the total number of instructions that require .L units.

B .S units is the total number of instructions that require .S units.

3/9/2016

.D units is the total number of instructions that require .D units.
.M units is the total number of instructions that require .M units.
X cross paths is the total number of .X cross paths.

.T address paths is the total number of address paths.

Long read path is the total number of long read port paths.

Long write path is the total number of long write port paths.

Logical ops (.LS) is the total number of instructions that can use
either the .L or .S unit.

B Addition ops (.LSD) is the total number of instructions that can use
either the .L or .S or .D unit

Bound(.L .S .LS) is the resource bound value as determined by the
number of instructions that use the .L and .S units. It is calculated with the
following formula:

Bound(.L .S LS) =ceil{(.L +.S +.LS)/2)

Bound(.L .S.D.LS .LSD) is the resource bound value as determined by
the number of instructions that use the .D, .L and .S unit. It is calculated
with the following formula:

Bound(.L .5.D LS .LSD) = ceil((.L + .S + .D + LS + LSD)/ 3)

Minimum required memory pad. The number of bytes that are read if
speculative execution is enabled. See section 3.2.3, Collapsing Prologs
and Epilogs for Improved Performance and Code Size, on page 3-13, for
more information.

13 TEXAS
INSTRUMENTS

C66 efficient code

Agenda:

« Understanding Compiler Feedback

» Overview of few C66x Instructions
 Restrict keyword

« Control loop/code optimizations

 Variables and Types

13 TEXAS
INSTRUMENTS

Load - Store Instructions

- LDDW
— Will load aligned 64 bit data from memory to register pair.
— Occupies one .D, and one .T unit.

« STDW
— Will store aligned 64 bit data from memory to register pair.
— Occupies one .D, one .T unit.

- LDNDW
— Will load non-aligned 64 bit data from memory to register pair.
— Occupies one .D, and two .T unit.

« STNDW
— Will store non-aligned 64 bit data from memory to register pair.
— Occupies one .D, and two .T unit.

» Address increment/offset, if fits within 5 bits then it can happen in free.
Otherwise extra instructions are needed to increment/decrement the source or
destination pointer.

3/9/2016 “T1 Proprietary Information - Strictly Private” or similar placed here if applicable

13 TEXAS
INSTRUMENTS

Multiply Instructions

« 8-Bit operands

— DMPYU4 (.M)
» 16 8-bit multiplication per cycle

« 16-Bit operands

— DMPY2 (M)

8 16-bit multiplication per cycle. For complex matrix multiply it is 32 multiplication per
cycle

« 32-Bit operands

— QMPY, QMPYSP (.M)
« 8 32 bit multiplication per cycle 39-bit

a3 a2 | _al a0
MPYSP
b3 | b [b1 | b0

3/9/2016 “T1 Proprietary Information - Strictly Private” or similar placed here if applicable 7

i3 TEXAS
INSTRUMENTS

Addition/Subtraction Instructions

 8-bit operands

— ADD4, SUB4 (.L)
« 8 8-bit addition/subtraction per cycle

« 16-bit operands
— DADD2, DSUB2 (.L,.S)

— ADD2, SUB2 (.L,.S,.D)
» 20 16-bit addition/subtraction per cycle

« 32-bit operands
— DADD, DSuUB, DADDSP, DSUBSP (.L,.S)

— ADD, SUB (.L,.S,.D)
» 10 32-bit addition/subtraction per cycle

3/9/2016 “T1 Proprietary Information - Strictly Private” or similar placed here if applicable

13 TEXAS
INSTRUMENTS

C66 efficient code

Agenda:

« Understanding Compiler Feedback
» Overview of few C66x Instructions
* Restrict keyword

« Control loop/code optimizations

 Variables and Types

13 TEXAS
INSTRUMENTS

Restrict Qualifiers (cont.)

— T

original loop restrict qualified loop

execution time
iter i

load
compute [load

load
compute
store

store compute [load
store compute

store

load

compute
store

load
compute
store

13 TEXAS
INSTRUMENTS

Restrict Qualifiers

myfunc (typel input[],
type2 *output)

{
for (..)
{
load from input
compute
store to output
}
}

C6000 depends on overlapping loop iterations for
good (software pipelining) performance.

Loop iterations cannot be overlapped unless
input and output are independent (do not
reference the same memory locations).

Most users write their loops so that loads and
stores do not overlap.

Compiler does not know this unless the compiler
sees caller or user tells compiler.

Use restrict qualifiers to tell compiler:

myfunc (typel input[restrict],
type2 *restrict output)

13 TEXAS
INSTRUMENTS

Restrict Qualifying Pointers in Structures

« At present, pointers that are typedef struct {int *p} _str;
structure elements cannot
be directly restrict-qualified myfunc (_str *s)

--- neither with. —mt nor by {
using the restrict keyword. _str *t;

e |Instead. create local // create local pointers
pointers and restrict qualify int * restrict sp = s->p;
pointers instead. int * restrict tp = t->p;

- I d tp instead
- Use local pointers in // use sp and tp instea

function/loop instead of // of s->p and t->p
original pointers. *tp = ..
*sp —
. - *Sp
Local pointers can be _ «tp

declared within any local
scope, not just the top-level !
of the function

13 TEXAS
INSTRUMENTS

Writing Efficient Code

Structure References

General Tips:

* Avoid dereferencing structure
elements in loop control and

loops.

* Instead create/use local
copies of pointers and
variables when possible.

* Locals do not need to be
declared at top-level of
function.

Original Loop:

while (g->y < 25)

{
g->p->a[i++] = ..

}
Hand-optimized Loop:

int Yy = g->y;
short *a g->p->a;

while (y < 25)

{
a[i++] = ..

}

13 TEXAS
INSTRUMENTS

Example

void BasicLoop(int * output, void BasicLoop(int *restrict output,
int * inputl, innputl,
int * input2, int *restrict input2,
int n) int n)
{ {
inti; int i;
for (i=0; i<n; i++) { nassert((int) inputl @ // inputl is 8-byte aligned
output[i] = inputl[i] + input2]i]; _nassert((int) input2 % 8 == 0); // input2 is 8-byte aligned
} _nassert((int) output % 8 == 0); // output is 8-byte aligned

} @ MUST_ITERATE(4,4))//n>=4,Nn%4=0

for (i=0; i<n; i++) {

outputi] = inputl[i] + input2][il;
}
}

3/9/2016 “T1 Proprietary Information - Strictly Private” or similar placed here if applicable 14

13 TEXAS
INSTRUMENTS

Example Contd..

A OFF F % £ K £ K £ F F £ % F & & & £ & £ & % % &

Loop opening brace source line : 13
Loop closing brace source line : 15
Loop Unrcell Multiple ax
Enown Minimum Trip Count 1
Enown Max Trip Count Factor 1
Loop Carried Dependency Bound (™) : O
Unpartitioned Resource Bound 3
Partitioned Resocurce Bound (*) 3
Resource Partition:

A-side B—side
.L units 0 0
.S units 1]
.D units 3* 3*
.M units]]
.¥ cross paths
. T address paths * *

Long read paths
Long write paths

By b D00 Wk
MoOkMOoOoOo Wk

Logical ops (.LS) (., or .8 unit)
Addition ops (.LSD) (., or .8 or .D unit)
Bound(.L .S .LS)
Bound(.L .S .D .LS .LSD)
Searching for software pipeline schedule at
ii = 3 Schedule found with 3 iterations in parallel
o w
;e SINGLE SCHEDULED ITERATION
= R
B CZi:
P o0 LDDW .D2T2 *B5++(1€) ,B9:BE ;o114
; [TDDW .D1T1 *B16++ (16) ,AT:RE6 ; |14]
P 1 LDDW .D2T2 *-BS5(B),BT7:Be ;o114
; [TDDW .D1T1 *-A16(8) ,A9:A8 ;o114
;e 2 NOP 1
P 3 AQ] BLDEC .51 CZe, Al i 113
;e 4 NOP 1
P > ADD . S1X B9, AT, DD P14
;e 5 EDD .L1X BE, G, B4 ;o114
;o | ADD .L2ZX BE, AB,BE P14
;e 7 ADD .LZ2X BT7,25, BT ;o114
P g8 STDW .D1T1 BSR4, *A3++ (16) P14
;e | STDW .D2T2 BT7:B&, *++B4 (16) F o114
i =) 7 BRANCHCC QCCURS {CZ6} P 113
3/9/2016 “T1 Proprietary Information - Strictly Private” or similar placed here if applicable 15
I$ TEXAS

INSTRUMENTS

C66 efficient code

Agenda:

« Understanding Compiler Feedback
» Overview of few C66x Instructions
 Restrict keyword

« Control loop/code optimizations

 Variables and Types

13 TEXAS
INSTRUMENTS

What is Control Code?

» Control Code compilation often results In:

— Lots of software branches
 Unfilled delay slots

— Irregular loops
 Gets in the way of software pipelining

— Serial software
« Little use of the up to 8 instructions/CPU cycle

 Typical symptom:

H SOFTWARE PIPELINE INFORMATION
i Disqualified loop: Loop contains control code

INSTRUMENTS

If Statements

« Compiler will if-convert short if statements:

Original C code:

Before if conversion:

After if conversion:

i3 TEXAS
INSTRUMENTS

If Statements

« Compiler may not if-convert large if statements.

« Compiler will not software pipeline loops with if
statements that are not if-converted.

e K e e e e ——— ———————
’

;* SOFTWARE PIPELINE INFORMATION

;x Disqualified loop: Loop contains control code
o K e e e e e — — — —— ———————————

 For software pipelinability, user may have to
transform large If statements because compiler
may think it is unprofitable or it may be too
complex.

13 TEXAS
INSTRUMENTS

Expressing conditions in loops

 Certain control structures are problematic to compiler
— static conditionals should sometimes be moved out of loops
— heavy use of structures and more so unions can prevent software pipelining

for (i=0; i < N; i++){

if (x->z[j] == TRUE && v[k]->w == FALSE && 1i&0x3)
{
y += a_st[1i];
}
} cond = (x->z[j] == TRUE &&
v[k]->w == FALSE) ;
for (i=0; i < N; 1i++)
{

if (cond && 1&0x3)
y += a st[1i];

13 TEXAS
INSTRUMENTS

Logical vs bitwise operators

 For logical operators (a || b), where a and b are expressions,
the expression “a” must be evaluated first and “b” will not be

evaluated unless “a” is evaluated to false.

* Bitwise operators (a | b) can avoid the control flow (branches)
that is required when using logical operators, and improve
control loop efficiency

« Changing from logical to bitwise operators can make some
control loops pipeline

13 TEXAS
INSTRUMENTS

Reducing Loop Overhead

If the compiler does not know that a
loop will execute at least once, it will myfunc:
need to:

compute trip count

1. insert code to check if the trip count _ _
IS zero if (trip count == 0)

iti b h to postloo
2. conditionally branch around the loop. S p P

for (..)
This adds overhead to loops. {

load input

If loop is guaranteed to execute at compute
least once, insert pragma
immediately before loop to tell the
compiler this:

store output

#pragma MUST _ITERATE(1,,);

or, more generally,

#pragma MUST _ITERATE(min_trip, max_trip, multiple);

i3 TEXAS
INSTRUMENTS

Detecting Loop Overhead

myfunc.c:

myfunc (int *inputl, int *input2, int
*output, int n)

{
int i;
for (1=0; i<n; i++)
output[i] = inputl[i] - input2[i];

Extracted from myfunc.asm (generated using —0 —0S):

if (<= 0) goto qg4:
U$11l = inputl;

Us$13 input2;

US$16 = output;

LS1 = n;

#pragma MUST ITERATE(1,..)

*USL16++ = *US114++-*US13++;
if (--L$1) goto g3;

Examplel.
If Statement Reduction When No Else Block Exists

Original function: Hand-optimized function:

Note: Only assignment to y must be guarded for correctness.

Example2:
If Reduction Via Common Code Consolidation

Original function: Hand-optimized function:

Note: Makes loop body smaller.
Eliminates 2nd copy of:
t=*z++

*y++ =t

Example4.

Function Calls in Loops
Function calls within a loop prevent software pipelining.

Overhead by function call is about 30 CPU cycles. _
Hand-optimized function:

Original function:

C66 efficient code

Agenda:

« Understanding Compiler Feedback
» Overview of few C66x Instructions
 Restrict keyword

« Control loop/code optimizations

* Variables and Types

13 TEXAS
INSTRUMENTS

“Variable type” optimizations

Int8 count;
count = count + 1;
becomes:
.asg _count A20
ADD count, 1, count
EXTU count, 24, 24, count

* The type of variable used will affect performance
— use 32 hit precision whenever possible for control variables

Int32 count;

count = count + 1;
becomes:

.asg _count A20

ADD count, 1, count

* Need to have the correct precision for computations
— don’t declare Int32 when expecting a 16 x 16 bit multiply
— use casting for intermediate multiplications
— try to make all accumulators maximum precision of 32 bits

« Compilers give you exactly what you ask for!

13 TEXAS
INSTRUMENTS

3/9/2016

The End!

33

13 TEXAS

INSTRUMENTS

