

Page 1 of 26

Vision SDK

Network Tools

User Guide

Document Revision v1.07

Page 2 of 26

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards ought to be provided by the customer so as to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products or
services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is neither responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service, is
an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303

Dallas, Texas 75265

Copyright © 2014, Texas Instruments Incorporated

Page 3 of 26

TABLE OF CONTENTS

1 Introduction ... 4

1.1 Building the PC side tools .. 4

1.2 Finding IP address of the target EVM .. 4

2 Network Control Tool ... 6

2.1 Tool Summary ... 6

2.2 Tool Usage .. 6

2.3 Extending the tool .. 10

2.4 Communication Protocol .. 12

3 Network TX Tool ... 14

3.1 Tool Summary ... 14

3.2 Tool Usage .. 14

4 Network RX Tool .. 16

4.1 Tool Summary ... 16

4.2 Tool Usage .. 16

5 Network CONS Tool .. 18

5.1 Tool Summary ... 18

5.2 Tool Usage .. 18

5.3 Tool Internal Implementation Details .. 18

6 Networking with TI Fast Data Transfer Protocol (TFDTP) 20

6.1 TFDTP/TCP tradeoffs ... 21

6.2 Enabling TFDTP .. 22

6.3 Tools Summary for TFDTP ... 22

6.4 Tools Usage ... 23

6.5 TFDTP/TCP Performance.. 25

6.6 TFDTP FAQs ... 25

Page 4 of 26

1 Introduction

This document describes the various networking tools that are available on PC side

to interface with Vision SDK network use-cases running on target (TDA2x or TDA3x

EVM).

Following tools are available

 Network Control tool to send user defined commands and parameters to the

target. Target will do a user defined action on receiving the command and can

optionally return results to the PC.

 Network TX tool to send MJPEG compressed frames and RAW/YUV frames

from PC to EVM. This tool can be used to feed pre-recorded test data to

algorithms on target side

 Network RX tool to receive MJPEG compressed frames, RAW/YUV frames,

meta-data buffers from EVM to PC. This tool can be used to send algorithm

results to PC

 Network CONS (Console) tool to redirect Vps_printf() string from EVM over

network to the tool and to redirect “getchar” from network CONS tool to the

EVM

NOTE: These tools can be used only when BIOS based NDK/NSP runs on target

1.1 Building the PC side tools

 Install GCC compiler for Windows (ex, http://www.codeblocks.org/)

 Install GNU Make for Windows (ex, “gmake” is available as part XDC install at

$(xdc_PATH)/gmake)

 Install bash shell in Windows via tool like https://msysgit.github.io/ or Cygwin

 Edit RULES.MK at vision_sdk\apps\tools\network_tools\build to point to

installed path of GCC compiler (CGTOOLS_PATH=xxx) and installed path of

GNU make (MAKE=xxx)

 Edit RULES.MK to add path of NSP directory and BUILD_OS.

 Open bash shell prompt and goto vision_sdk\apps\tools\network_tools\build

 Invoke GNU make to build the tools (“gmake” if XDC path is in your system

path)

 Binaries are generated at vision_sdk\apps\tools\network_tools\bin

1.2 Finding IP address of the target EVM

 All the networking tools uses TCP/IP to exchange data with EVM. NDK needs

to be enabled on EVM to support TCP/IP & TFDTP communication.

 All the networking tools need to know the IP address of the EVM in order to

exchange information with it.

 By default NDK is enabled in Vision SDK

o To make sure NDK is enabled, open command prompt at path

“$(VISION_SDK_INSTALL)\vision_sdk” and type “gmake showconfig”

o Make sure “NDK_PROC_TO_USE” is NOT “none”

o By default for TDA2x, NDK_PROC_TO_USE=a15_0

o By default for TDA3x, NDK_PROC_TO_USE=ipu1_1

http://www.codeblocks.org/
https://msysgit.github.io/

Page 5 of 26

o You can edit “cfg.mk” (in

“vision_sdk\links_fw\src\rtos\bios_app_common /<configname>”) to

change the CPU on which NDK runs. NDK can run on a15_0 or ipu1_0

or ipu1_1

o When transferring large data it is recommended to run networking on

a15_0 (TDA2x) to get better network throughput. Also TFDTP can be

used for better throughput on M4 using optimized patch.

IMPORTANT NOTE: When FATFS (FATFS_PROC_TO_USE != none) is

enabled in TDA3x, networking is DISABLED by the build system.

 By default IP address is set to DHCP mode

o This can be changed to static IP by editing below file

vision_sdk\links_fw\src\rtos\bios_app_common\<soc>\cfg\NDK_confi

g.cfg

o Change at lines

var enableStaticIP = 1;

if (enableStaticIP)

{

 /* Settings for static IP configuration */

 Ip.address = "192.168.1.200";

 Ip.mask = "255.255.255.0";

 Ip.gatewayIpAddr = "192.168.1.1";

 Ip.ifIdx = 1;

}

 Build and boot the Vision SDK on EVM as mentioned in Vision SDK user guide.

Make sure network cable is connected. If DHCP mode is selected make sure

the network can give a IP address to the EVM via DHCP.

 After boot note the IP address as mentioned in the main menu
[IPU1-0] 23.294372 s: Current System Settings,
[IPU1-0] 23.294403 s: ========================
[IPU1-0] 23.294464 s: Display Type : HDMI 1920x1080 @ 60fps
[IPU1-0] 23.294494 s: Capture Source : Sensor OV10635 1280x720 @30fps - VIP, YUV422
[IPU1-0] 23.294555 s: My IP address : 172.24.190.226

 The IP address is also printed on the CCS console window.

 This IP address will be used as input when running the PC side tools

 Ping the EVM from PC side to make sure its accessible on the network

o Ex, $ ping 172.24.190.226

o Make sure you see reply from EVM

o If ping is not able to succeed then there is some issue in your network

connectivity

 IMPORTANT NOTE: Make sure “ping” is successful before trying any

of the network tools

Page 6 of 26

2 Network Control Tool

This tool can be used to send user defined commands with parameters from PC side

to the target. The target will respond with appropriate results. Users can extend this

tool define their own set of commands, parameters and responses.

2.1 Tool Summary

Tool name network_ctrl.exe

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_ctrl

Tool source code (target

side)

vision_sdk\apps\src\rtos\modules\network_ctrl

2.2 Tool Usage

 Make sure you know the IP address of the EVM

 Invoke the tool as shown below, it will print the supported options

o $ network_ctrl.exe

network_ctrl --ipaddr <ipaddr> [--port <server port>] --cmd <command string>

<command parameters>

(c) Texas Instruments 2014

Supported commands,

echo <string to echo>

mem_rd <memory address in hex> <size of memory to read in units of 32-bit

words>

mem_wr <memory address in hex> <value to be written in units of 32-bit words>

mem_save <memory address in hex> <size of memory to read in bytes>

<filename in which data is saved>

iss_raw_save <filename in which data is saved>

iss_yuv_save <filename in which data is saved>

iss_send_dcc_file <dcc file name to be sent>

iss_save_dcc_file <Sensor ID> <dcc file name to be sent>

Supported sensors IDs are 140, 10640, 132 and 224

iss_clear_dcc_qspi_mem <Sensor ID>

Supported sensors IDs are 140, 10640, 132 and 224

iss_write_sensor_reg <chan num> <RegAddr> <RegVal>

iss_read_sensor_reg <chan num> <RegAddr>

iss_read_2a_params

iss_write_2a_params <AE Mode> {Digital Gain} {Analog Gain} {Exposure Time}

<AWB Mode> {Red Gain} {Green Gain} {Blue Gain} {Color Temparature}

stereo_calib_image_save <filename prefix in which data is saved>

Page 7 of 26

stereo_set_params <numDisparities> <disparityStepSize> <disparitySearchDir>

<disparitySupportWinWidth> <disparitySupportWinHeight> <leftRightCheckEna>

<censusWinWidth> <censusWinHeight> <censusWinHorzStep>

<censusWinVertStep> <pp_colormap_index>

[EXAMPLE] stereo_set_params 128 4 0 11 11 0 9 9 2 2 0

#stereo_set_dynamic_params <pp_cost_max_thresh> <pp_conf_min_thresh>

<pp_texture_lumalothresh> <pp_texture_lumahithresh> <pp_texture_thresh>

<pp_leftright_thresh> <pp_maxdisp_dissimilarity> <pp_minconf_nseg_thresh>

#stereo_set_dynamic_params <pp_cost_max_thresh> <pp_conf_min_thresh>

<pp_texture_lumalothresh> <pp_texture_lumahithresh> <pp_texture_thresh>

<pp_leftright_thresh> <pp_maxdisp_dissimilarity> <pp_minconf_nseg_thresh>

[EXAMPLE] stereo_set_dynamic_params 95 98 0 100 85 255 2 2

 The “port” option need not be specified

 By default when NDK is enabled on target, a task is started on target side to

listen to commands from this tool

#stereo_calib_lut_to_qspi <rectMapRight_int_converted.bin>

<rectMapLeft_int_converted.bin>

2.2.1 Supported commands

Current commands mentioned below are supported

Command Description

echo Takes a string as input and on successful execution, this string

is printed on target side console

mem_rd Reads specified memory contents from target and prints its

value on PC side. Useful for dumping HW registers when JTAG

is not connected

mem_wr Writes a value to user defined memory location on target.

Useful for writing a HW register when JTAG is not connected

mem_save Reads specified memory contents from target and write to a

file on PC. Useful to dump a chunk of memory like buffer data

to a file on PC

mem_load Reads data from a file on PC side and writes to specified

memory location on target.

qspi_wr Writes SBL/TESOC/AppImage into QSPI memory. It accepts

Image name and address where image to be written. SBL

need to flash at 0x0 and AppImage_BE at 0x80000. For

TDA3xx TESOC image need to be written at 0x60000

sys_reset EVM will receive command for COLD RESET

iss_raw_save Dumps a frame of ISS raw data to a file on PC. Applicable only

when ISS use-case with ISS capture link is running on target.

Applicable to TDA3x ONLY.

Page 8 of 26

iss_yuv_save Dumps ISS simcop output frame in yuv format to a file on PC.

Applicable only when ISS use-case with ISS simcop link is

running on target. Applicable to TDA3x ONLY.

iss_send_dcc_file Send DCC tuning file from PC to target and apply the settings

to ISS HW. It applies the settings to the ISS HW immediately,

so old settings will get overwritten with the new settings. But

this will not save the new settings, so when the use case is

rerun, it will rerun with the old settings. To save the new

settings, use iss_save_dcc_file command which will save the

settings in the QSPI or save the settings in the sensor specific

driver (refer to the BSP driver user guide to get more

information).

Applicable only when ISS use-case with ISS capture link and

ISS ISP link are running on target. Applicable to TDA3x ONLY.

iss_save_dcc_file Send DCC tuning file from PC to target and target saves DCC

tuning file to QSPI. Currently it is supported only for AR0140,

OV10640 and AR0132 sensors. The QSPI offset for each

sensor is fixed. If this is changed in network tool, it requires

change in the target application also.

Applicable only when ISS use-case with ISS capture link and

ISS ISP link are running on target. Applicable to TDA3x ONLY.

Iss_clear_dcc_qspi_

mem

Erases contents of the QSPI for the given sensor id. DCC

profile is stored in the QSPI at a fixed location for the sensors

AR0140, OV10640, AR0132 and IMX224. This API is used to

erase this memory.

Applicable only when ISS use-case with ISS capture link and

ISS ISP link are running on target. Applicable to TDA3x ONLY.

Iss_write_sensor_re

g

Writes the 16bit value to the given sensor registers. Channel

id is used to select the sensor. For single sensor usecase,

channel id must be set to 0. For multiple sensor usecase,

appropriate channel id should be used.

Used by the DCC (Dynamic Camera Configuration Tool) to

write to sensor registers.

Applicable only when ISS use-case with ISS capture link is

running on target. Applicable to TDA3x ONLY.

Iss_read_sensor_re

g

Reads a value of the given sensor register and prints it on PC

side. Channel id is used to select the sensor. For single sensor

usecase, channel id must be set to 0. For multiple sensor

usecase, appropriate channel id should be used.

Used by the DCC (Dynamic Camera Configuration Tool) to

read sensor registers.

Applicable only when ISS use-case with ISS capture link is

running on target. Applicable to TDA3x ONLY.

iss_read_2a_param

s

Used to read AEWB algorithms current output parameters.

This includes AEWB algorithm mode, analog/digital gains,

exposure time and color temperature.

Applicable only when ISS use-case with ISS capture link is

Page 9 of 26

running on target. Applicable to TDA3x ONLY.

iss_write_2a_param

s

Used to set the AEWB mode to manual and set the output

parameters to fixed value. This includes AEWB algorithm

mode, analog/digital gains, exposure time and color

temperature.

Applicable only when ISS use-case with ISS capture link is

running on target. Applicable to TDA3x ONLY.

stereo_calib_image

_save

This command saves a frame each from left and right sensor

into pgm files. The final filename for the left image will be

composed by the strings ‘left_’+’ <filename_prefix> + ‘.pgm’.

Similarly, the filename for the right image will be composed by

the strings ‘right_’+’ <filename_prefix> + ‘.pgm’ It is used

during stereo calibration process.

stereo_set_params This command sets stereo parameters. It should be

sent before any stereo usecase is started. All the

parameters are configured together and there is no

means of changing specific items.

It takes following parameters : <numDisparities>

<disparityStepSize> <disparitySearchDir>

<disparitySupportWinWidth>

<disparitySupportWinHeight> <leftRightCheckEna>

<censusWinWidth> <censusWinHeight>

<censusWinHorzStep> <censusWinVertStep>

<pp_colormap_index>whose default values are 128 4

0 11 11 0 9 9 2 2 0 respectively.

Please refer to the StereoVision_DSP_UserGuide.pdf inside the

ti_components\algorithms_codecs\REL.200.V.ST.C66X.00.XX.

XX.XX\modules\ti_stereovision\docs directory, for details on

each parameter.

stereo_set_dynamic

_params

This command sets stereo parameters on the fly. It can be

sent after any stereo use-case is started. All the parameters

are configured together and there is no means of changing

specific items.

It takes following parameters : <pp_cost_max_thresh>

<pp_conf_min_thresh> <pp_texture_lumalothresh>

<pp_texture_lumahithresh> <pp_texture_thresh>

<pp_leftright_thresh> <pp_maxdisp_dissimilarity>

<pp_minconf_nseg_thresh>whose default values are 95 98 0

100 85 255 2 2 respectively.

Please refer to the StereoVision_DSP_UserGuide.pdf inside the

ti_components\algorithms_codecs\REL.200.V.ST.C66X.00.XX.

XX.XX\modules\ti_stereovision\docs directory, for details on

each parameter.

stereo_calib_lut_to

_qspi

This commands writes into NAND flash memory the lookup

tables generated by the camera automatic calibration tool for

use by the remap algorithm running on EVE.

Page 10 of 26

It takes following parameters:

<rectMapRight_int_converted.bin>

<rectMapLeft_int_converted.bin>

These are files generated by the camera automatic calibration

tool. Please see the

VisionSDK_MultiSensorFusionStereoCalibrationGuide.pdf for

further details.

On the PC side, the following output should be displayed:

NETWORK: Connected to Server (172.24.190.212:5000)!!!

FILE: Reading file [rectMapRight_int_converted.bin] ...
Done. [1136472 bytes]

FILE: Reading file [rectMapLeft_int_converted.bin] ...
Done. [1136472 bytes]

Writing the QSPI tags

Command stereo_calib_lut_to_qspi: Sent 2272960 bytes

Command stereo_calib_lut_to_qspi: Received reponse
(status = 0, prmSize = 0)

Whereas on the target’s side, the console window should show

something similar to:

[HOST] 119.827209 s: NETWORK_CTRL: Received command
[stereo_calib_lut_to_qspi], with 2100032 bytes of
parameters

[HOST] 119.903656 s: NETWORK_CTRL: qSpiOffset =
30408704, size = 2100032

[HOST] 119.903686 s: QSPI Init Started

[HOST] 119.903808 s: MID - 1

[HOST] 119.903808 s: DID - 18

[HOST] 119.903808 s: QSPI Init Completed Sucessfully

[HOST] 119.903839 s: QSPI Write Started, please
wait!

[HOST] 120.003295 s: QSPI Erase Block Started,
please wait!

[HOST] 123.427154 s: QSPI Erase Block Completed
Sucessfully

[HOST] 126.839233 s: QSPI Write Completed
Sucessfully

[HOST] 126.840728 s: NETWORK_CTRL: Sent response for
command [stereo_calib_lut_to_qspi], with 0 bytes of
parameters

Note that due to the size of the tables, it will take a long time

before seeing the text output ‘QSPI Write Completed’.

2.3 Extending the tool

NOTE: Users needs to read this section only if they plan to extend the tool

by adding their own commands and command handlers, others can ignore

this section.

This tool can be extended by users to add more commands from PC side and “plugin”

different actions on target side when the command is received.

Page 11 of 26

TIP: The easiest way to extend the tool is see an existing command implementation

and customize it

 On PC side do the below

o Create your own file for the command, ex, network_ctrl_handle_echo.c

(vision_sdk\apps\tools\network_tools\network_ctrl\src)

o Write a function that will send the command and receive the results,

ex, handleEcho

o A command is string of characters

o Use below API to send the command, “params” point to the user

specific parameters of “size” bytes

 SendCommand(char *command, void *params, int size);

 Command line parameters are available inside the user handler

in the below structure fields

 gNetworkCtrl_obj.params[x]

o Use below API to receive results, “prmSize” is size of result parameters

 RecvResponse(char *command, UInt32 *prmSize);

o If “prmSize” is not zero then read the parameters using below API into

user pointer

 RecvResponseParams(char *command, UInt8 *pPrm, UInt32

prmSize);

o Register this handler using below API in function Init()

 void RegisterHandler(char *command, void (*handler)(), int

numParams)

o Now build and run the tool with the new command and command

specific parameters

 On target side do the below

o Create your own file for handling the command, ex,

network_ctrl_handle_echo.c

(vision_sdk\apps\src\rtos\modules\network_ctrl)

 Void NetworkCtrl_cmdHandlerEcho(char *cmd, UInt32 prmSize)

o This handler is called, when the “cmd” is received, “prmSize” is size of

parameters that accompany this command

o Use below API to read the received parameters

 Int32 NetworkCtrl_readParams(UInt8 *pPrm, UInt32 prmSize)

o Based on the parameters handle the command

o Use below API to send reply for the command

 Int32 NetworkCtrl_writeParams(UInt8 *pPrm, UInt32 prmSize,

UInt32 returnStatus)

o Register the handler in NetworkCtrl_init()

(vision_sdk\apps\src\rtos\modules\network_ctrl\network_ctrl_tsk.c)

using below API

 Int32 NetworkCtrl_registerHandler(char *cmd,

NetworkCtrl_Handler handler)

Page 12 of 26

 Ex, NetworkCtrl_registerHandler("echo",

NetworkCtrl_cmdHandlerEcho);

 Once handler are registerd on PC side and target side, recompile and run the

binaries

 On PC side call the tool with the new command and parameters as input

o Ex, network_ctrl --ipaddr 192.168.1.200 --cmd echo “hello,

world !”

2.4 Communication Protocol

NOTE: Users needs to read this section only if they plan to implement their

own tool on PC side to interface with the target side, others can ignore this

section.

The tool uses TCP/IP as underlying communication protocol. On top of this a thin

application layer protocol is added as described below.

This protocol needs to be used in case other tools are made on PC which need to

interface to the target side.

See also vision_sdk\apps\tools\network_tools\common\inc\networkCtrl_if.h

NOTE: All fields are specified in little-endian order

2.4.1 Command protocol

Fields Bytes Description

Header TAG

(0x1234ABCD)

4 HEADER TAG to make sure

this is not a spurious data

on the network port

Command 64 Command to be sent.

Represented as a string of

NULL terminated

characters

returnValue 4 Set to 0 when sending

command, filled by

response

Flags 4 Flags for specific status

control

prmSize 4 Size of parameters that

follow. Can be set to 0

when no parameters are

present

Params “prmSize” Stream of bytes

representing parameters,

MUST be equal to

“prmSize” that is specified

earlier

Page 13 of 26

2.4.2 Response protocol

The response protocol format is exactly same as command protocol with the

following differences

 “Command” is set to same value as the command that was received

 “returnValue” is set based result of command execution. Value itself depends

on command. Typically value of 0 indicates successful command execution

 “Flags” is set with value of 0x00000001 to indicate that this response is ACK

to earlier command

 “prmSize” is set to parameter of results, i.e parameter sent as response are

different from parameters sent as command

 “Params” is the response / result parameters

Page 14 of 26

3 Network TX Tool

Network TX tool is used to send MJPEG compressed frames and RAW/YUV frames from PC to
EVM. This tool can be used to feed pre-recorded test data to algorithms on target side.

IMPORTANT NOTE:

 On TDA3x, though MPJEG frames can be sent to TDA3x, there is no MJPEG decode on
TDA3x to decode the frames. Hence on TDA3x, typically one would use RAW/YUV frame
for network TX

 When sending RAW/YUV frames
o When NDK runs on M4 CPU, one can achieve a data rate of about 2 MB/s (16Mbps)
o When NDK runs on A15 CPU (TDA2x ONLY), one can achieve a data rate of about

60 MB/s (480Mbps)
o Make sure to select the appropriate CPU to run the NDK depending on the SoC that

is used.
o For higher throughput on M4, TFDTP can be enabled. Please refer to benchmarking

numbers for each core in section 6.5.

3.1 Tool Summary

Tool name network_tx.exe

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_tx

Tool source code (target

side)

vision_sdk\links_fw\src\rtos\links_common\nullSrc

Example usage (target

side)

vision_sdk\apps\src\rtos\usecases\network_rx_tx

chains_networkRxDecDisplay*.*

chains_networkRxDisplay*.*

3.2 Tool Usage

Make sure you know the IP address of the EVM (see 1.2 Finding IP address of the

target EVM)

Target side: Create a Vision SDK use-case on target side

 Specify the source of data as “NullSrc” link.

o IMPORANT: Make sure “NullSrc” is on the same CPU that NDK is

enabled

 Set NullSrcLink_CreateParams.dataRxMode as

NULLSRC_LINK_DATA_RX_MODE_NETWORK

 Set NullSrcLink_CreateParams.networkServerPort, if specified default value is

not used.

o This value needs to match the “—port” value specified in PC tool

o Typically when only single “NullSrc” link exists in use-case no need to

specify this value

o When more than one “NullSrc” link is present in use-case then each

“NullSrc” link MUST have unique networkServerPort. In this case,

“network_tx.exe” is invoked multiple times on PC with matching “—

port” value

o Set other “NullSrc” create parameters like data type, MJPEG or

RAW/YUV and frame resolution, like width, height

Page 15 of 26

o Set NullSrcLink_CreateParams.timerPeriodMilliSecs to specify the rate

as which data should be sent, ex, set to 33 for approx. 30fps receive

frame-rate

 Some examples which use the “NullSrc” link to receive data over network can

be found at below path

o vision_sdk\apps\src\rtos\usecases\network_rx_tx

 chains_networkRxDecDisplay*.*

 chains_networkRxDisplay*.*

 Compile and run the use-case as usual. Once the use-case is running on the

target side …

PC Side: Invoke the tool as shown below, it will print the supported options

Network PC tools are supported on both Windows and Linux PCs. Pre-built binaries

are located in /bin/ folder for both platforms.

$ network_tx.exe or network_tx.out

.\network_tx --host_ip <ipaddr> --target_ip <ipaddr> [--port <server

port>] --usetfdtp --verbose --no_loop --delay <delay in secs>] --files <CH0

file> <CH1 file> ...

(c) Texas Instruments 2014

 The “port” option when not specified default port is used.

 Multiple “channels” of data can be sent by specifying multiple files.

 No need to specify the data type, frame resolution etc on the PC side,

this is specified on the target side

 When use-case runs on the target, target will request frames from PC

side, PC side will read from the input files and send the data over

network

 “network_tx.exe” can be invoked multiple times, each invocation

feeding different “NullSrc” links in the use-case on target

 Once the input file reaches “end of file”, input is read again from start

of the file, i.e it will continuously stream the data until either the use-

case stops or tool exit by doing “Ctrl-C”

 For ‘Network + stereo + Display’ use-case, <Ch0 file> corresponds to

the left camera and <Ch1 file> corresponds to the right camera.

IMP Note: Make sure to close PC tools first before stopping VSDK use-case from

console. On Windows PC it is observed that if network tool from PC is not closed

VSDK use-case doesn’t stop.

Page 16 of 26

4 Network RX Tool

Network RX tool is used to receive MJPEG compressed frames and RAW/YUV/Meta data frames
from EVM to PC. This tool can be used to save data from algorithms on PC side.

IMPORTANT NOTE:

 On TDA3x, MPJEG frames can not sent to PC, since there is no MJPEG encoder on
TDA3x

IMPORTANT NOTE:

 When sending RAW/YUV frames

 When NDK runs on M4 CPU, one can achieve a data rate of about 2 MB/s (16Mbps)

 When NDK runs on A15 CPU (TDA2x ONLY), one can achieve a data rate of about
60 MB/s (480Mbps)

 Make sure to select the appropriate CPU to run the NDK depending on the SoC that
is used

 For higher throughput on M4, TFDTP can be enabled. Please refer to benchmarking
numbers for each core in section 6.5.

4.1 Tool Summary

Tool name network_rx.exe

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_rx

Tool source code (target

side)

vision_sdk\links_fw\src\rtos\links_common\null

Example usage (target

side)

vision_sdk\apps\src\rtos\usecases\network_rx_tx

chains_networkTxEncDisplay*.*

chains_networkTxDisplay*.*

4.2 Tool Usage

Make sure you know the IP address of the EVM (see 1.2 Finding IP address of the

target EVM)

Target side: Create a Vision SDK use-case on target side

 Connect the output of the algorithm or link for which data needs to be saved

to PC to a “Null” link

o IMPORANT: Make sure “NullSrc” is on the same CPU that NDK is

enabled

 Set NullLink_CreateParams. dumpDataType as

NULL_LINK_COPY_TYPE_NETWORK

 Set NullLink_CreateParams.networkServerPort, if not specified default value is

used.

o This value needs to match the “—port” value specified in PC tool

o Typically when only single Null link exists in use-case no need to

specify this value

o When more than one “Null” link is present in use-case then each “Null”

link MUST have unique networkServerPort. In this case,

“network_rx.exe” is invoked multiple times on PC with matching “—

port” value

 Set other “Null” create parameters as usal

Page 17 of 26

 Some examples which use the “Null” link to receive data over network can be

found at below path

 vision_sdk\apps\src\rtos\usecases\network_rx_tx

o chains_networkTxEncDisplay*.*

o chains_networkTxDisplay*.*

 Compile and run the use-case as usual. Once the use-case is running on the

target side …

PC side: Invoke the tool as shown below, it will print the supported options

network_rx --ipaddr --target_ip <ipaddr> --host_ip <ipaddr> [--port <server port>] –usetfdtp --files <CH0
file> <CH1 file>

(c) Texas Intruments 2014
#The “port” option when not specified default port is used.

o Multiple “channels” of data can be saved by specifying multiple files.
o No need to specify the data type, frame resolution etc on the PC side, PC side

will just save whatever is sent by target side
o When use-case runs on the target, target will send frames to PC side via the

“Null” link, PC side will write the received frames to files specified by the user
o “network_rx.exe” can be invoked multiple time, each invocation receiving data

from different “Null” links in the use-case on target
o Once the use-case on target is stooped, the tool on PC exits and saved file can

be viewed/analysed as required. Alternatively “Ctrl-C” can be used to stop the
tool and close the file which is being written

IMP Note: Make sure to close PC tools first before stopping VSDK use-case from console.

On Windows PC it is observed that if network tool from PC is not closed VSDK use-case

doesn’t stop.

Page 18 of 26

5 Network CONS Tool

Network CONS (Console) tool is used to,
1. Redirect Vps_printf() formatted strings from EVM over network to the tool
2. And to redirect “getchar” from network CONS tool on PC to the EVM

This can used to replace the UART console in cases when UART is not available on the EVM or
HW board.

5.1 Tool Summary

Tool name network_cons.exe

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_cons

Tool source code (target

side)
vision_sdk\apps\src\rtos\modules\network_cons

Example usage (target

side)

Chains_readChar() in file chains_main_bios.c

(vision_sdk\apps\src\rtos\common)

RemoteLog_clientRun() in file utils_remote_log_client.c

(vision_sdk\links_fw\src\rtos\utils_common\src)

5.2 Tool Usage

 Make sure you know the IP address of the EVM (see 1.2 Finding IP address of

the target EVM)

 Set ENABLE_NETWORK_LOG=yes in your cfg.mk file

(vision_sdk/apps/configs/<configname>)

 Confirm that networking is enabled and ENABLE_NETWORK_LOG is “yes” by

doing “gmake –s –j showconfig”

 Build and run Vision SDK application by following steps as mentioned in the

user guide

 On the PC invoke the network console tool as shown below from PC command

prompt

network_cons.exe –ipaddr <ipaddr>

 The Vps_printf’s from EVM will now be visible in PC command prompt

windows

 Any key input to this window will result in the key value being sent to the

EVM

5.3 Tool Internal Implementation Details
This section is meant for developers who want to understand and expand the tool. Simple users
of the tool can skip this section.

5.3.1 Print Redirection

The flow of formatted string data when a Vps_printf is called with network log enabled is as
mentioned below

1. Vps_printf takes a formatted string as input, similar to “printf” in stdio.h

2. Vps_printf can be called by any CPU in the system (A15, DSP, EVE, M4)

3. Vps_printf copies this string to a shared memory area called “RemoteLog”. Each CPU
has its own area within the “RemoteLog” shared memory.

a. This allows multiple CPUs to output formatted strings to the shared memory

Page 19 of 26

b. See utils_remote_log_server.c (vision_sdk\links_fw\src\rtos\utils_common\src)
for implementation of Vps_printf

4. Remote Log Client (a low priority thread) running on IPU1-0 then reads the string from
the shared memory and then outputs them over one of below interfaces

a. UART interface (via UART driver)

b. Network interface (via Network CONS)

c. CCS JTAG interface (via System_printf)

5. See utils_remote_log_client.c (vision_sdk\links_fw\src\rtos\utils_common\src) for
implementation of this read logic

6. When the string needs to be output over network, NetworkCons_txWriteString() is called
from within RemoteLog_clientRun() (Thread main for Remote Client)

7. The networking itself can be enabled on a different core on which the Remote Client
runs, ex, IPU1-1 by default in TDA3x. Due to this one cannot make direct networking
socket API calls from within Remote Client thread

8. Hence NetworkCons_txWriteString() copies the string to another shared memory area
“NetworkCons_TxShm networkConsTxShm” defined in system_ipc_if.h
(vision_sdk\links_fw\include\link_api)

9. A network console reader thread running on the core on which networking is enabled
reads from this shared region and then outputs over the network using TCP/IP sockets.

10. See NetworkConsTx_tskMain () in network_cons_tsk.c
(vision_sdk\apps\src\rtos\modules\network_cons)

11. See network_cons_ipc.c (vision_sdk\apps\src\rtos\modules\network_cons) for
implementation of NetworkCons_txWriteString() and NetworkCons_txReadString

12. On PC side within network_cons.exe a thread is created which reads from the network
socket and writes to stdout

5.3.2 GetChar Redirection

The flow of character input from getchar() on PC via network CONS tool to EVM with network log
enabled is as mentioned below

1. When network_cons.exe runs on PC a thread is created which calls getchar() in a loop.
When user types a character in the console, the character is sent via TCP/IP to the
connected EVM

2. On the EVM side, a network RX thread receives this char and puts the char into a shared
memory.

a. See NetworkConsRx_tskMain () in network_cons_tsk.c
(vision_sdk\apps\src\rtos\modules\network_cons) for implementation of the RX
thread.

b. “NetworkCons_RxShm networkConsRxShm” in system_ipc_if.h
(vision_sdk\links_fw\include\link_api) defines the shared memory

3. This character copy to shared memory is done since the CPU on which networking runs
and CPU on which UI “getchar” is called can be different. Ex, networking is enabled on
IPU1-1, and Chains_getChar() is called from IPU1-0

4. When Chains_getChar() is called it can read input from one of below interfaces

a. UART interface (via UART driver)

b. Network interface (via Network CONS)

c. CCS JTAG interface (via fscanf)

5. When reading input via network CONS, NetworkCons_rxReadChar() API is

called which reads from the shared memory and gives the character to the UI.
6. See network_cons_ipc.c (vision_sdk\apps\src\rtos\modules\network_cons) for

implementation of NetworkCons_rxWriteChar() and NetworkCons_rxReadChar()

Page 20 of 26

6 Networking with TI Fast Data Transfer Protocol (TFDTP)

TI Fast Data Transfer Protocol (TFDTP) is a light weight application layer protocol which
implements standard UDP/IP based packet RX/TX using direct NSP APIs bypassing NDK.
TFDTP sits on the top of NSP to aggregate UDP packets into larger logical frames for taking
advantages of SoC resources like EDMA, Caching etc. For more details about TFDTP and its
implementation refer to TFDTP user/design guide in NSP package.

The VSDK 2.12 and later support TFDTP in Null and NullSrc links with new data transmit/receive
mode. For NullSrc, NULLSRC_LINK_DATA_RX_MODE_NETWORK is used as data receive
mode whereas for Null link NULL_LINK_COPY_TYPE_NETWORK_TFDTP is added as data
dump type.

The Null and NullSrc links are modified to support TFDTP based receive and transmit with
existing PC tools. The underlying framework has not changed and earlier data flow is kept same.
The existing TCP/IP server is used as command server for TFDTP to synchronize data transfer
between client and EVM.

Figure below shows data flow for NullSrc link with TFDTP enabled. As shown the for data
synchronization, existing reliable TCP/IP channel is used as sync channel to send/receive ACKs,
command headers etc. and TFDTP is only used for data transfer. Only difference between
existing TCP/IP based Network use-case and TFDTP is that in TFDTP data is transferred using
TFDTP instead of TCP/IP. Similarly data flow is shown in Figure 6-2 for Null link.

Figure 6-1 Null Source Network Receive using TFDTP

Page 21 of 26

Figure 6-2 Null Network Transmit using TFDTP

6.1 TFDTP/TCP tradeoffs

When running any of Null and NullSrc based use-cases, menu option is given to

select Network Rx and Tx mode resp. This selects dataRxMode for NullSrc &

dumpDataType for Null link. Depending on mode selected make sure you use correct

command line argument in Network PC tools.

Page 22 of 26

Below are TCP/IP and TFDTP network mode comparison to choose between these

two.

NullSrc/Null mode TCP/IP TFDTP

Underlying Protocol TCP UDP

Protocol stack used TCP/IP (NDK) TFDTP (NSP)

Throughput/CPU Load

On Cortex M4 running

@212MHz

RX 10Mbps@50% 320Mbps@80%

TX 40Mbps@80% 320Mbps@42%

Packet drop/Out of order

support

Yes No for RX

Yes for TX

Note:

 When networking is enabled on IPU1-1, TFDTP is recommended to be used

for high throughput with Null, NullSrc links.

 When networking is enabled on A15, NDK with TCP/IP is recommended to be

used for high throughput with Null, NullSrc links.

6.2 Enabling TFDTP

To enable TFDTP stack in VSDK build, set NSP_TFDTP_INCLUDE=yes in the

vision_sdk\apps\configs\$configfile. Make sure NDK is enabled via

NDK_PROC_TO_USE in the same file. Also as TFDTP is not supported on cores other

than ipu1_1, to use TFDTP build, NDK_PROC_TO_USE should be set to ipu1_1.

6.3 Tools Summary for TFDTP

For using TFDTP, the existing PC tools are used with added option to choose between

TFDTP or TCP/IP based receive/transmit. To use TFDTP both address of server and

host needed to be given through command line arguments. You should use --

usetfdtp option to use network tools with TFDTP enabled on null source and null

links. The other options like file path, verbose mode etc. are unchanged for using

network tools.

Tool name network_tx.exe --tfdtp argument

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_tx

Tool source code (target

side)

vision_sdk\links_fw\src\rtos\links_common\nullSrc

vision_sdk\links_fw\src\rtos\links_common\tfdtp_rx

Example usage (target

side)

vision_sdk\apps\src\rtos\usecases\network_rx_tx

chains_networkRxDecDisplay*.*

chains_networkRxDisplay*.*

Tool name network_rx.exe

Page 23 of 26

Tool source code (PC side) vision_sdk\apps\tools\network_tools\network_rx

Tool source code (target

side)

vision_sdk\links_fw\src\rtos\links_common\null

Example usage (target

side)

vision_sdk\apps\src\rtos\usecases\network_rx_tx

chains_networkTxEncDisplay*.*

chains_networkTxDisplay*.*

6.4 Tools Usage

Follow section 3.2 for using TFDTP with NullSrc link and section 4.2 for using TFDTP

with Null link. All other configuration like server port, data format etc. remains same

with TFDTP except mentioned in below sections.

IMP Note: It is recommended to use Linux machine when using PC tools

with TFDTP use-cases. We have observed issues when running on windows.

o Make sure you are using PC with good configuration (Ex - 8GB RAM,

i5@3.40GHz)

o Make sure system is not fully loaded. Restart PC to have clean slate.

o Make sure ports used by networks tools are not used by other application.

You can use tools like port scanner to identify all used ports.

o For receive, network rx tool writes received data to file which may cause

slowdown of use-case and receive. Also as file size grows the fie write may

slowdown.

6.4.1 TFDTP Receive with NullSrc and tfdtp_rx

 Target side: Create a Vision SDK use-case on target side - Network Rx

using TFDTP with NullSrc

o Specify the source of data as “NullSrc” link.

o Set NullSrcLink_CreateParams.dataRxMode as

NULLSRC_LINK_DATA_RX_MODE_NETWORK_TFDTP

o TFDTP Rx supports only single channel receive so it can’t be used

when multiple NullSrc link are used in parallel. Also parameters like

TFDTP receive/transmit port no., data rate etc. are not user

configurable and set in networkCtrlIntf.h

 PC tool: Invoke the tool as shown below, it will print the supported

options

$ network_tx.exe or network_tx.out

network_tx --host_ip <ipaddr> --target_ip <ipaddr> [--port

<server port> --usetfdtp --verbose --no_loop --delay <delay in

secs>] --files <CH0 file>

(c) Texas Instruments 2014

 The “port” option when not specified default port is used.

 IMP: Multiple “channels” of data is not supported for TFDTP

for sending multiple files

mailto:i5@3.40GHz

Page 24 of 26

 IMP: --usetfdtp option should be given when invoking

network_tx.exe utility for using TFDTP receive on PC.

6.4.2 TFDTP Transmit with Null link

 Target side: Create a Vision SDK use-case on target side

o Connect the output of the algorithm or link for which data needs to be

saved to PC to a “Null” link

o Set NullLink_CreateParams. dumpDataType as

NULL_LINK_COPY_TYPE_NETWORK_TFDTP

o Set NullLink_CreateParams.networkServerPort, if not specified default

value is used. Port values in needed when more than one null links are

used in application.

 PC tool: Invoke the tool as shown below, it will print the supported

options

network_rx --ipaddr --target_ip <ipaddr> --host_ip <ipaddr> [--port <server port>] --
usetfdtp --files <CH0 file> <CH1 file>

(c) Texas Instruments 2014

 The “port” option when not specified default port is used.

 IMP: Multiple “channels” of data is supported but not tested

for TFDTP for sending multiple files.

o Multiple “channels” of data can be saved by specifying

multiple files.

o “network_rx.exe” can be invoked multiple time, each

invocation receiving data from different “Null” links in

the use-case on target

 IMP: --usetfdtp option should be given when invoking

network_rx.exe utility for using TFDTP receive on PC.

 IMP: For TFDTP TX it is recommended to have both receiver

(EVM) and transmitter (PC app) on the same network switch.

As UDP, by design, doesn’t employ flow control packet

drop/miss can be seen if both operate in different speeds,

configuration.

Page 25 of 26

6.5 TFDTP/TCP Performance

* Run from Linux machine

6.6 TFDTP FAQs

Q. I see lot of drops when running network tx tool on Windows for Nullsource use-

case

The flow control is not supported on Windows so when using network tx on Windows

it sends data at maximum possible rate and causes packet drop at receive target.

Please use Linux machine for flow control support in tool.

Q. I don’t see any data traffic when running my PC tools application

Make sure to network mode selected on EVM and PC tool matches. Use option --

usetfdtp only when TFDTP mode is enabled in use-case.

Q. Why TFDTP build is supported only on IPU1_1? Can I use it on A15 or IPU1_0?

This is because of EDMA PaRAMs requirements for the TFDTP. By default TFDTP

needs 256 EDMA PaRAMs which in VSDK2.12 are allocated statically only for IPU1_1.

To enable TFDTP on other cores, change EDMA PaRAMs allocation in

src\utils_common\src\dma_cfg\utils_dma_cfg_sys_edma_tdaxx.c and add PaRAMs

for A15 or IPU1_0.

Q. My use-case doesn’t stop even issues stop command through console when

running NullSrc TFDTP receive use-case

You need to stop PC/Client transmitter application for stopping use-case. When

transmitter app is not stopped it will keep sending data at faster rate and overload

IPU.

Q. I see packet drops and/or data corruption when running NullSrc TFDTP Rx

This issue can be due to NullSrc data (TFDTP) sent at maximum possible wire rate to

EVM. Currently max. rate supported for TFDTP Rx is 350Mbps. If data-rate crosses

this, packet drop can be seen.

On Linux Network_tx tool implements flow control to send data at rate which TDA

can handle. This is not implemented on Windows. Please see TFDTP user guide in

Core Config No Config TCP/IP TFDTP Mb/S FPS CPU Load Mb/S FPS CPU Load NDK Send NDK Recv

1 TCP/IP = En, TFDTP = En Select 140 12 23.80% 160 (34%)

2 TCP/IP = En, TFDTP = En Select 112 10 5.50% 368 30 23.80% 160 (34%)

3 TCP/IP = En, TFDTP = Dis Select 115 10 17.20% 140 12 26.60% 125 (20%) 150 (30%)

4 TCP/IP = En, TFDTP = En Select 40 3.65 96% 50 4.3 100% 65 (100%) 15 (45%)

5 TCP/IP = En, TFDTP = En Select 112 10 30.4%* 368 30 46.50% 65 (100%) 15 (45%)

6 TCP/IP = En, TFDTP = Dis Select 40 3.65 96% 48 4.1 100% 60 (100%) 15 (45%)

A15

IPU1

Null Src Null

Page 26 of 26

NSP package for more details about this issue.

Q. I see data-rate drop in debug build

~30Mbps difference is seen with debug and release build. For debugging purpose,

reduce input fps in debug build when packet drop is seen.

Q. My network throughput doesn’t exceed 100Mbps

This can be due to either server or client on 100Mbps network.

Also some of WindowsTM PC it is seen that it is not crossing 100Mbps throughput. It

is possibly Winsock or PCAP issue. It is advised to use Linux PC.

Q. How to Enable/Disable TFDTP functionality. How is it advantages using TFDTP

over TCP/IP.

To enable TFDTP set NSP_TFDTP_BUILD=yes in the config file. Please see TCP,

TFDTP comparison table for TCP/TFDTP tradeoffs.

	1 Introduction
	1.1 Building the PC side tools
	1.2 Finding IP address of the target EVM

	2 Network Control Tool
	2.1 Tool Summary
	2.2 Tool Usage
	2.2.1 Supported commands

	2.3 Extending the tool
	2.4 Communication Protocol
	2.4.1 Command protocol
	2.4.2 Response protocol

	3 Network TX Tool
	3.1 Tool Summary
	3.2 Tool Usage

	4 Network RX Tool
	4.1 Tool Summary
	4.2 Tool Usage

	5 Network CONS Tool
	5.1 Tool Summary
	5.2 Tool Usage
	5.3 Tool Internal Implementation Details
	5.3.1 Print Redirection
	5.3.2 GetChar Redirection

	6 Networking with TI Fast Data Transfer Protocol (TFDTP)
	6.1 TFDTP/TCP tradeoffs
	6.2 Enabling TFDTP
	6.3 Tools Summary for TFDTP
	6.4 Tools Usage
	6.4.1 TFDTP Receive with NullSrc and tfdtp_rx
	6.4.2 TFDTP Transmit with Null link

	6.5 TFDTP/TCP Performance
	6.6 TFDTP FAQs

