
 Application Report

 Mar 2016

1

Safety Features on VisionSDK
Automotive Processor Business Unit

ABSTRACT

This document describes the integration of various safety modules in TDAx family of SoCs in
VisionSDK. This document is intended to highlight key points like boot-flow, memory layouts, etc.

to be addressed during integration of these modules into any system.

Contents

Abstract .. 1
Contents.. 1

Figures... 2

Tables.. 3
Abbreviations.. 4

1 Introduction .. 5
2 Vision SDK updates ... 7

2.1 Build flow.. 7

2.2 New plugin and use-cases ... 8
2.3 FFI mode for AlgorithmLink ... 8

2.4 RTI/DCC/ESM .. 9

3 EMIF ECC, IPU ECC, DSP Parity ...10
3.1 Hardware requirements ...10

3.2 VisionSDK and SBL implementation ..11

4 Freedom From Interference (FFI) ...13
4.1 Introduction...13

4.2 Hardware requirements ...13

4.3 VisionSDK implementation ...15
5 DCC/ESM (TDA3x only) ..18

5.1 Hardware requirements ...18

5.2 Vision SDK integration..18
6 RTI/WWDT (TDA3x only) ...19

6.1 Hardware requirements ...19

6.2 Vision SDK integration..19
7 BSP and Starterware additions for FFI ...21

2 Safety Features on VisionSDK

Figures

No table of figures entries found.

 Safety Features on VisionSDK 3

Tables

Table 1. Feature List ... 5

Table 2. Vision SDK Memory Map ...15

Table 3. XMC segments for FFI ..16
Table 4. Regions for L3 firewall on EMIF ..16

4 Safety Features on VisionSDK

Abbreviations

connID: Connection Identifier. Used in L3 Firewalls to control access permissions to different targets.

CPU: Refers to the processor rather than the subsystem. eg: CPU in ARP32 refers to the RISC core. ARP32
subsystem refers to the RISC Core, VCOP, internal MMUs, internal EDMAs, etc.

DCC: Dual Clock Comparator – HW module available on TDA3x

ECC: Error Correcting Code module. Supports Single Bit Correction and Double Bit Detection.

ESM: Error Signaling Modules – HW module available on TDA3x

IPC: Inter-processor communication

L3FW: Level 3 Interconnect Firewall – HW module available on TDAx SoCs to control accesses to slave
modules from different masters based on multiple parameters.

MPU: Memory Protection Unit on C66x

FFI: Freedom From Interference. The scope of this document is limited only to methods of achieving FFI
on memory regions and limited to only two levels of protection – QM and ASIL.

kB, MB: 1024 bytes and 1024*1024 bytes respectively.

RTI: Real Time Interrupt module available on TDA3x. This module implements the Windowed Watchdog
Timer functionality. Any mention of RTI, implicitly refers to this functionality.

SBL: Secondary Boot Loader

WWDT: Windowed Watchdog Timer. This term is used interchangeably with RTI in this document.

XMC: Extended Memory Controller on C66x

 Safety Features on VisionSDK 5

1 Introduction

Table 1. Feature List

 TDA2X
(SR 1.1)

TDA2X
(SR 2.0)

TDA2EX
(SR 1.0)

TDA2EX
(SR 2.0)

TDA3X
(SR 1.0)

TDA3X
(SR 2.0)

EMIF ECC NS YES NS YES NS YES

FFI (DSP CPU) - XMC YES YES YES YES YES YES

FFI (DSP EDMA) - L3FW NS NS NS NS YES YES

FFI (EVE) - L3FW NS NS NA NA YES YES

ESM NA NA NA NA YES YES

DCC NA NA NA NA NS YES

RTI NA NA NA NA YES YES

IPU ECC NA NA NA NA YES YES

DSP Parity YES YES YES YES YES YES

NA: Feature is not available in hardware
NS: Feature is not available due to silicon errata

Following is a brief summary of these features

 EMIF ECC

– On TDAx SoC, EMIF1 supports ECC features for DDR memories. This supports error handlers for

one-bit and two-bit errors. This feature is available only SR 2.0 versions for TDA2x, TDA2Ex and
TDA3x SoCs. It is not available on SR 1.1 versions due to silicon erratum i882.

 FFI (DSP CPU) - XMC

– To implement FFI on C66x DSP CPU on TDA 2x/TDA2Ex/TDA3x, we use the XMC module to

control the read and write permissions of different tasks.

 FFI (DSP EDMA) – L3FW

– To implement FFI on accesses made by EDMA within the C66x subsystem, we use the L3 firewalls

since EDMA accesses do not go through XMC.

 FFI (EVE) – L3FW

– To implement FFI on accesses made by EDMA and the CPU within the EVE subsystem, we use the

L3 firewalls.

 ESM

– This module allows the software to track multiple events in the SoC using a single interrupt

handler and is available only on TDA3x.

 DCC

– This module allows the software to track drifts between two clock sources and is available only

on TDA3x SR 2.0. In TDA3x SR 1.0, DCC is unusable due to a silicon erratum.

6 Safety Features on VisionSDK

 RTI

– This module provides the WWDT functionality and is available only on TDA3x.

 IPU ECC

– IPU Unicache on TDA3x support ECC functionality of IPU L2RAM and IPU Unicache.

 DSP Parity

– This module is a part of C66x subsystem and does simple parity checks on L1 program memory,

L1 program cache, L2 RAM and L2 cache.

 Safety Features on VisionSDK 7

2 Vision SDK updates

2.1 Build flow

For safety specific features, following variables are enabled in Rules.make

 ECC_FFI_INCLUDE

– To search for all software changes relevant to these, user can search for following terms and

files:

ECC_FFI_INCLUDE

BspSafetyOsal_setSafetyMode
BspSafetyOsal_getSafetyMode

vision_sdk/src/utils_common/utils_l3fw.c

vision_sdk/src/utils_common/utils_xmc.c
vision_sdk/src/utils_common/utils_emif_ecc.c

vision_sdk/src/utils_common/utils_ecc_c66x.c

vision_sdk/src/utils_common/safety_osal.c
vision_sdk/src/utils_common/tda3xx/utils_ipu_ecc.c

– This enables the consolidated memory map change to allow for ECC and FFI.

– This enables error handlers for interrupts from XMC and L3FW.

– This enables the ECC error handlers

– This also enables IPU ECC error handlers

– This also enables the DSP parity checks and corresponding error handlers

– To ensure that ECC and DSP parity checks work correctly, SBL should be built with following

variables defined correctly in following files based on platform in
sbl_lib_config_tda2xx.h / sbl_lib_config_tda2ex.h / sbl_lib_config_tda3xx.h

o Ensure ECC_FFI_INCLUDE is set to yes in vision_sdk/Rules.make while building SBL.

o SBL_LIB_CONFIG_DSP1_PARITY_CHECK = 1

o SBL_LIB_CONFIG_DSP2_PARITY_CHECK = 1

o SBL_LIB_CONFIG_ENABLE_IPU_RAM_ECC = 1

o SBL_LIB_CONFIG_ENABLE_EMIF_ECC = 1

o SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1 (TDA2x)

SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1_15X15 (TDA3x 15x15)

SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1_12X12 (TDA3x 12x12)
SBL_LIB_CONFIG_EMIF_ECC_END_ADDR1 (TDA2x)

SBL_LIB_CONFIG_EMIF_ECC_ END _ADDR1_15X15 (TDA3x 15x15)

SBL_LIB_CONFIG_EMIF_ECC_END_ADDR1_12X12 (TDA3x 12x12)
The value of these variables will be explained in 4.3

8 Safety Features on VisionSDK

o SBL_LIB_CONFIG_EMIF_ECC_REG1_RANGE_TYPE

For VisionSDK implementation, this is set to EMIF_ECC_ADDR_RANGE_WITHIN. For
custom implementations, this can be changed to EMIF_ECC_ADDR_RANGE_OUTSIDE.

These correspond to values 1 and 0 for REG_ECC_ADDR_RGN_PROT in

EMIF_ECC_CTRL_REG register. Refer to TDAx TRM for further details.

 DCC_ESM_INCLUDE

– DCC errors are tracked using ESM. This variable enables the example integration of these two

modules in VisionSDK.

 RTI_INCLUDE

– This enables the example integration of RTI WWDT functionality on TDA3x.

 Build commands for VisionSDK for different platforms

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA2XX_EVM ECC_FFI_INCLUDE=yes

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA2EX_EVM ECC_FFI_INCLUDE=yes

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA3XX_EVM ECC_FFI_INCLUDE=yes
DCC_ESM_INCLUDE=yes RTI_INCLUDE=yes

 Build commands for SBL for different platforms

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA2XX_EVM ECC_FFI_INCLUDE=yes
sbl_sd

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA2EX_EVM ECC_FFI_INCLUDE=yes
sbl_sd

– make -s BUILD_DEPENDANCY_ALWAYS=yes VSDK_BOARD_TYPE=TDA3XX_EVM ECC_FFI_INCLUDE=yes
DCC_ESM_INCLUDE=yes RTI_INCLUDE=yes sbl_qspi_sd

 AppImage generation

– In case of TDA3x, all safety features are enabled in SBL when ECC_FFI_INCLUDE is used.

Therefore, ensure that calculate_crc is set to 1 in MulticoreImageGen_tda3xx.sh or

MulticoreImageGen_tda3xx.bat when generating AppImages

2.2 New plugin and use-cases

A new plugin called “safeframecopy” has been added to demonstrate “Freedom from Interference
(FFI)”. This is based on the older “framecopy” plugin in VisionSDK. This plugin is intended to be executed

only on DSP and EVE. Example use-case based on this plugin on DSP and EVE is available through the
standard VisionSDK use-case menu. This plugin switches between CPU based copy and EDMA based copy

for alternate frames. EDMA based copy in forced for a special scenario explained in 6.2.

2.3 FFI mode for AlgorithmLink

A new API has been included for AlgorithmLink - AlgorithmLink_setPluginFFIMode(). This is used to set
the FFI mode to ASIL or QM for Algorithm links. By default, all algorithms are provided ASIL (full) access.

The “safeframecopy” plugin registers itself as QM using this API.

 Safety Features on VisionSDK 9

2.4 RTI/DCC/ESM

 This is enabled in the “framecopy” and “safeframecopy” based use-cases for TDA3x.

 RTI monitoring code is available in the folder vision_sdk/examples/tda2xx/src/modules/rti/. Other

framework updates are under the macro RTI_INCLUDE.

 DCC and ESM related code is under the macro DCC_ESM_INCLUDE and in following files

vision_sdk/src/utils_common/src/tda3xx/utils_dcc.c

src/utils_common/src/tda3xx/utils_esm.c.

10 Safety Features on VisionSDK

3 EMIF ECC, IPU ECC, DSP Parity

3.1 Hardware requirements

 EMIF ECC

– Available only on SR 2.0 and higher revisions of TDA2x, TDA2Ex, TDA3x.

– All write accesses to ECC protected region in EMIF must be 32bit aligned

– ECC protected region should be “primed” by doing a write to complete region before performi ng

any reads.

– Since DSP L1 cache is not “write-allocate”, boot time stack pointer should be in L2SRAM to

ensure no un-aligned writes to EMIF. L2 cache must be enabled before moving to a stack in EMIF
region.

– Priming can be done only by using EDMA or system DMA or by making non-cached “memset”

from CPU. Cached “memset” will not work since cache will always do read before write which

will cause uncorrectable errors.

 IPU ECC

– Available only on TDA3x

– IPU L2RAM and IPU Cache need to be “primed” by doing writes without any reads.

– Unicache “priming” is done by doing a cache preload of a 64kB (size of Unicache) section using

the Unicache maintenance registers. During this step, software must ensure following steps:

o Ensure cache is enabled

o “Priming” code and its stack is placed in non-cached section. This is to prevent errors due

to code/data caching during the “priming” step.

o Do full cache write-back and invalidate.

o Enable ECC generation and ECC checks using ECC_CFG register in Unicache. Refer TRM for

details.

o Preload a 64kB (size of Unicache) section from a cacheable region using CACHE_MAINT,

CACHE_MTSTART and CACHE_MTEND registers in IPU Unicache. This completes the

“priming”.

o Switch back to normal code execution from cached regions

 DSP Parity

– DSP L2RAM needs to be “primed” using 128bit write to ensure valid parity.

– Since EMIF ECC needs boot time to be in L2SRAM (refer bullet point above), L2SRAM “priming”

must happen in SBL.

 Safety Features on VisionSDK 11

3.2 VisionSDK and SBL implementation

 “Priming”

– SBL performs priming for EMIF, IPU and DSP based on macros defined in 2.1. All code can be

found using these macros.

– EMIF, IPU L2SRAM and DSP L2SRAM are “primed” using EDMA.

– It should be ensured that EMIF ECC start address matches the start address of data memory

(IPU1_1_DATA_MEM in the current implementation, this may change in future).

– IPU Unicache is primed using maintenance register as explained in 3.1

 Ensure “32bit” aligned write access for EMIF ECC

– A15/M4

o A15 and M4 support “write-back, write-allocate” cache. This ensures all write accesses to

EMIF are cache line aligned. This is ensured in the A15 and M4 SYS/BIOS configuration files.

– DSP

o DSP L1 cache is not “write-allocate”. This is enabled at reset.

o DSP L2 cache is “write-allocate”. This is not enabled at reset.

o If default “.stack” section is in ECC protected DDR region, this can generate errors.

To avoid this, VisionSDK configuration for DSP ensures “.stack” section which is used as

stack during initial boot of DSP is kept in L2RAM.

o Using SYS/BIOS cache and reset hooks, L2 cache and DSP parity checks are enabled before

any other code executes.

– EVE

o EVE does not have any data-cache. As a result, EVE code and data must not be kept in ECC

protected regions. Although, theoretically it might be possible to ensure only 32bit write

accesses from EVE, due to compiler optimizations, typical coding optimizations, it is not

practical to do so.

 Simplifications to avoid adding complexity to VisionSDK

– IPC, Remote Log, Link Stats, VIP/VPE descriptors are kept in non-cached section

o Since, the region is non-cached, software changes are needed to IPC to ensure all write

accesses are 32bit aligned. To avoid this, this section is not kept in ECC protected region.

o These are kept in a single section to prevent memory fragmentation and avoid need for

extra regions in L3 firewalls and DSP XMC.

– Debugging

o Breakpoints on IPU are 16bit instructions. Using this will cause ECC errors.

o When combined with FFI features, the code section may not be always writable. This will

prevent user from adding or removing a breakpoint.

12 Safety Features on VisionSDK

o To simplify this and allow easy debugging, all code sections and EVE code and data sections

are kept contiguous and separate from IPU/DSP data sections. This will allow use rs to
move code sections out of ECC protected regions easily for debugging during the

development phase

 Safety Features on VisionSDK 13

4 Freedom From Interference (FFI)

4.1 Introduction

The ISO 26262 “Road Vehicles – Functional Safety” standard for automotive products defines the
Automotive Safety Integrity Level (ASIL) risk classification scheme – ASIL A through ASIL D in increasing

order of safety criticality. A typical ECU contains a mix of software modules with different criticalities

including non-critical software which is classified as QM (Quality Managed). ISO 26262 allows co-
existence of software modules with different criticalities as long as the system demonstrates “Freedom

from Interference (FFI)” across the different modules. FFI ensures that errors in one module do not

propagate or trigger errors in another – potentially more critical – software module. The system should
address interference on three fronts – Memory usage, Time usage and Communication channels.

In VisionSDK, we demonstrate FFI on memory usage by DSP, EVE and their respective EDMAs. We use
XMC (Extended memory controller) for achieving FFI for DSP CPU accesses to memories outside the DSP

sub-system like OCMC RAMs and DDR. For DSP EDMA, EVE CPU and EVE EDMA, we use L3 firewalls for
the same purpose. In case of DSP internal memories, C66x MPU (Memory Protection Unit) can be used to

achieve FFI on L1 and L2 memories. MPU is not used VisionSDK since L1 memories are used only as cache

and L2 memory is used mainly as scratch. Example usage of MPU is available in starterware example at
starterware_/examples/xmc_mpu_app.

4.2 Hardware requirements

 L3 Firewall

– L3 Firewall features:

o Control memory access using connID (master identification) and privilege mode (USER and

SUPERVISOR) using N-regions.

o Regions can overlap. Higher numbered region gets precedence over lower numbered

regions.

o The privilege mode setting for any region applies to all connID enabled in that region. Eg: If

USER accesses are to be prevented for DSP for a region, USER accesses from M4 will also
get blocked for that region.

– EMIF L3 firewall supports 8 regions on TDA2x and TDA2Ex, 16 regions on TDA3x. VisionSDK uses

only 8 regions for keeping code common across platforms.

– L3 Firewall permissions cannot be changed at run-time on TDA2x (SR 1.1 and SR 2.0) and TDA2Ex

(SR 1.1)

– EVE supports only single privilege level which is marked as “USER” at L3 interconnect. As a result,

to ensure EVE accesses always reach EMIF, background region (0th region) in L3 firewall should

allow all USER and SUPERVISOR accesses. Alternately, we can use additional regions to be
defined in L3 firewall which may or may not be possible due to other system constraints.

– DSP1 CPU and DSP1 EDMA have same connID.

14 Safety Features on VisionSDK

o Any attempt to block EDMA writes using connID will block DSP CPU write as well as ca che

writes.

o This is usually not a problem, since DSP EDMA will inherit USER and SUPERVISOR

permissions from DSP CPU and privilege level based access control is sufficient.

– DSP2 CPU and DSP2 EDMA have same connID.

o Any attempt to block EDMA writes using connID will block DSP CPU write as well as cache

writes.

o This is usually not a problem, since DSP EDMA will inherit USER and SUPERVISOR

permissions from DSP CPU and privilege level based access control is sufficient.

– EVE1/2/3/4 CPU and corresponding EDMA have same connID

o If FFI is attempted on multiple EVEs, firewall permissions should be changed atomically

from a single core and software should implement mechanism to track firewall mode

changes on all EVE cores.

– If firewall marks a region as read-only, user cannot put breakpoints in this region. So software

must ensure that code sections for different cores are kept together so that permissions for

these can be easily turned ON/OFF using a single regions for easier debugging.

 XMC

– Features

o Support 16 regions of the format defined by “address” and “size” where “address” is “size”

aligned, “size” is a power of 2 and “size” is greater than or equal to 4096.

o Access to different regions can be controlled using USER or SUPERVISOR mode

o EDMA accesses do not go through XMC and need to be controlled using L3FW

– Guard-bands at the boundaries of EMIF and OCMC RAM need to be implemented to prevent

prefetch accesses going into invalid region. These regions can be skipped if software ensures that

no access occurs within 4kB from the start and 4kB from the end of the EMIF and OCMC RAMs.

– XMC requirement of “address” being “size” aligned can put limitations on memory segments in

software. If “address” is not “size” aligned for a memory segment, software would need to set
up multiple XMC segments to protect a single contiguous memory region.

 EVE

– EVE does not support privilege levels like USER and SUPERVISOR. As a result, you cannot

differentiate between VisionSDK framework which is assumed ASIL and QM algorithms. The only
way to achieve FFI from QM tasks is to mark ASIL memory sections as read-only in L3FW before

starting QM tasks.

– Interrupts should be disabled during QM algorithm execution. This ensures that scheduler does

not execute in QM mode as it will not have access to all re levant data structures.

– Since interrupts are disabled, functions like Task_sleep() will not execute for correct time.

o This causes errors for some use-case like RTI. Refer to 6.2 for details.

 Safety Features on VisionSDK 15

4.3 VisionSDK implementation

 FFI is demonstrated only on DSP for TDA2x and TDA2Ex and for DSP and EVE on TDA3x.

 VisionSDK framework is assumed to be ASIL. All code on A15/M4 is assumed to be ASIL.

 QM memories are writable by all, ASIL memories will be protected in QM algorithms on DSP and EVE

only.

 FFI is implemented only in “safeframecopy” based use-cases.

 EVE does not have a data cache and, therefore, its stack is kept in internal memory. FFI cannot be

achieved using hardware mechanism for EVE internal memories. Software mechanisms can be

employed for stack integrity checks, but VisionSDK examples do not implement these.

 All tasks on DSP and EVE in VisionSDK share a common stack as a framework simplification. As a

result, algorithms’ stack (“DSP QM STACK”) has to be kept in QM regions.

 LINK STATS are accessed by QM algorithms. The corresponding data section needs to be mapped as

QM.

 For EVE, .bss section cannot be kept far away in memory from .const and other data sections due to

linker constraints. EDMA library on EVE does a .bss access from the QM safeframecopy plugin. To
prevent changes in EDMA library, EVE data section is marked as QM.

 Memory map (based on ECC and FFI constraints)

Table 2. Vision SDK Memory Map

EVE CODE/DATA

IPU/DSP CODE

IPU/DSP DATA

A15 CODE/DATA

ECC + ASIL HEAP

ECC + QM HEAP

DSP QM STACK

NON ECC + ASIL HEAP

NON ECC + QM HEAP

– SBL_LIB_CONFIG_EMIF_ECC_START/END macros for SBL will map to (start of “IPU/DSP CODE”)

and (start of “NON ECC + ASIL HEAP” – 1) respectively. Start address must be 64kB aligned.

– Memory map is defined in

vision_sdk/build/tda2xx/mem_segment_definition_512mb_bios.xs

vision_sdk/build/tda2ex/mem_segment_definition_512mb_bios.xs

vision_sdk/build/tda3xx/mem_segment_definition_512mb.xs

– Following data sections are added specifically for supporting ECC and FFI

SR1_BUFF_ECC_ASIL_MEM

SR1_BUFF_ECC_QM_MEM

SR1_BUFF_NON_ECC_ASIL_MEM

16 Safety Features on VisionSDK

 XMC segments

Table 3. XMC segments for FFI

ASIL 0x0000_0000 to 0x7FFF_FFFF

ASIL 0x8000_0000 to 0xFFFF_FFFF

4kB Guard Band at OCMC1 start

512kB Guard Band between OCMC1/2 (TDA2x only)

ECC + ASIL HEAP

ECC + QM HEAP + DSP QM STACK

NON ECC + ASIL HEAP

QM LINK STATS

– XMC segments are set up in the function Utils_xmcMpuInit() in the file

vision_sdk/src/utils_common/src/utils_xmc_mpu.c

– It should be ensured that all XMC segments are 4 KB aligned otherwi se this will result in assert

error.

 L3 Firewall regions

Table 4. Regions for L3 firewall on EMIF

Full EMIF ASIL

ECC + ASIL HEAP

ECC + QM HEAP + DSP QM STACK

NON ECC + ASIL HEAP

IPC + LINK STATS + LOGS + VIP/VPE Descriptor QM

DSP1 DATA ASIL

DSP2 DATA ASIL

EVE DATA QM

– These regions are set up in vision_sdk/src/utils_common/src/utils_l3fw.c. Refer to

L3FW_VSDK_REGION_xxx macros.

 Algorithm Link

– A new API has been included for AlgorithmLink - AlgorithmLink_setPluginFFIMode(). This is used

to set the FFI mode to ASIL or QM for Algorithm links. By default, all algorithms are provided ASIL
(full) access. The “safeframecopy” plugin registers itself as QM using this API.

 Safety OSAL

– This layer provides two APIs – BspSafetyOsal_setSafetyMode() and

BspSafetyOsal_getSafetyMode() – to allow users to switch the level of execution to QM or ASIL

using appropriate arguments.

– This interface is defined in bsp_drivers_/include/safety_osal/bsp_safety_osal.h

– For VisionSDK, this layer is implemented in vision_sdk/src/utils_common/safety_osal.c

– SYS/BIOS OS functions are assumed to be ASIL. Since these can be triggered even during QM

tasks, we need to ensure that the BspOsal layer in bsp_drivers_/src/osal/bsp_ osal.c switches to

ASIL mode before any OS function calls and restores back the QM mode at the end of OS
function call.

 Safety Features on VisionSDK 17

– VisionSDK framework is assumed to be ASIL, certain framework commands are triggered from

QM tasks. These function use the safety OSAL layer to temporarily move into ASIL mode and
then go back to QM mode.

 Firewall register configuration

– In case of TDA2x SR 1.1 and SR 2.0, TDA2Ex SR 1.1, EMIF firewall configuration is not allowed

when there is activity on EMIF as per Silicon errata i895

o To work around this, users should configure firewalls statically in boot-loader context

which ensures no EMIF activity

o VisionSDK does not follow this recommendation from point of view of software

maintenance only. VisionSDK does firewall configuration only once during the system

initialization – occurrence error is possible, but is rare and has not been observed in

testing. There is no firewall reconfiguration in VisionSDK after the first initialization in
accordance with the errata.

o This constraint is not applicable to TDA3x

– FFI on EVE requires run-time reconfiguration of firewall registers. Silicon Errata i895 prevents this

on TDA2x SR 1.1 and SR 2.0, TDA2Ex SR 1.1. A work-around detailed below exists but not

implemented in VisionSDK to simplify software

– Brief details of work-around for i895 for FFI on EVE

o Alias DDR memory space using DMM_LISA_MAP register. Eg: For a 512MB DDR, same

memory can be accessed from 0x8000_0000 and 0xA000_0000.

o All memory accessed at 0xA000_0000 should be marked as ASIL in firewall

o By default, access to this aliased space is disabled through EVE MMU. 0x8000_0000 on EVE

gets mapped to 0x8000_0000 by the EVE MMU.

o When switching to an ASIL task, EVE MMU tables are re-mapped to access ASIL region.

0x8000_0000 should be mapped to 0xA000_0000 in EVE MMU.

– In case of warm-reset, firewall configurations are not lost. Bootloader or application must ensure

to reset firewall registers when booting after a warm reset.

o VisionSDK resets the firewall before system initialization to ensure proper booting after

warm reset. Refer to vision_sdk/src/main_app/*/ipu1_0/src/main_ipu1_0.c – Search for
ECC_FFI_INCLUDE.

18 Safety Features on VisionSDK

5 DCC/ESM (TDA3x only)

5.1 Hardware requirements

 DCC (Dual clock comparator)

– DCC tracks the drift between two clock sources and generates an interrupt if the drift exceeds a

specified threshold

– Reference clock for DCC can be SYSCLK or external reference clock. Refer to TRM for additional

details.

– If the clock under test gets “gated”, DCC will detect this as an error. Software must ensure DCC is

turned off if the clock under test is expected to turn off. One such example is CPU clocks. If DSP

goes to a low power state, corresponding DPLL clocks are turned off. If DCC is tracking drifts in

DSP clock, it should be turned off before DSP enters low power mode.

 ESM

– ESM muxes multiple events in the SoC to a single interrupt lines

– DCC error interrupt is one of the events supported by ESM

5.2 Vision SDK integration

 DCC

– Implemented in vision_sdk/src/utils_common/tda3xx/utils_dcc.c

– VisionSDK example for DCC tracks DDR DPLL since it is never turned off in VisionSDK framework.

– DCC is configured to track drifts more than 1% from 532MHz.

– Reference clock source for DCC can be SYSCLK1, SYSCLK2 or XREF_CLK and is set using the

enumeration dccClkSrc0_t from starterware_/include/dcc.h.

– Different DCC modules support tracking of different clocks in the system. These are listed in the

enumeration dccClkSrc1_t in the file starterware_/include/tda3xx/soc_defines.h. Application

must ensure that correct enumeration is used when setting the test clocks.

 ESM

– Implemented in vision_sdk/src/utils_common/tda3xx/utils_esm.c

– This provides interface to register different callback function for different ESM events

– Enumeration esmGroup1IntrSrc_t for ESM events is defined in

starterware_/include/tda3xx/soc_defines.h

– VisionSDK example track DCC error interrupt using ESM

– ESM and DCC usage is triggered only in “framecopy” and “safeframecopy" based use-cases.

 Safety Features on VisionSDK 19

6 RTI/WWDT (TDA3x only)

6.1 Hardware requirements

 RTI – WWDT

– RTI module implements the WWDT (Windowed Watchdog Timer) functionality.

– If a WWDT is serviced outside its specified window or not serviced at all, the RTI module can

generate an interrupt signal which can be routed to all CPUs in the system using the

IRQ_CROSSBAR. Alternately, the expiry of an RTI can also generate a WARM reset on the SoC.

– RTI1 is used by ROM bootloader and is set up to a time-out of 3 minutes. Application can re-use

RTI1 if this time-out value is acceptable.

– RTI2/3/4/5 can be used by software without any limitations. Software can set up timeout value

as required. This timeout value cannot be changed on ce configured. Please refer to TRM for

further details.

6.2 Vision SDK integration

 RTI task

– Implemented in the folder vision_sdk/examples/tda2xx/src/modules/rti

– Other changes are present under RTI_INCLUDE macro.

– This task runs on all cores and registers for WWDT expiry interrupts from all RTI modules

– IPU1_0/DSP1/DSP2/EVE1 setup and service RTI2/3/4/5 respectively in a periodic manner.

– If any core other than IPU1_0 is unable to service the WWDT in the configured service-window,

all cores receive the RTI interrupt.

o On receiving this interrupt, IPU1_0 resets the corresponding core.

o Other cores track this WWDT expiry and stop sending any further message to the expired

core. This allows other frame-work to not hang-up.

– If IPU1_0 is unable to service its RTI correctly, the entire SoC is reset.

– To allow debugging with RTI, the emulation suspend lines from the CPU can be connected to the

associated RTI modules to prevent RTI WWDT from continuing the timer when cores are in a

debug-halt state.

– A single file rtiLink_tsk.c is used to implement the task on all cores, the execution is changed on

basis of System_getSelfProcId() which identifies the current CPU.

– Each RTI is configured with a time-out of 4 seconds and a window size of 50% (2 seconds)

 Integration into a use-case. This section is specific to VisionSDK – any integration of RTI will not

require this method in the final system but can be useful during development phase for debugging.

– RTI WWDT servicing is enable only in “framecopy” and “safeframecopy” usecases.

20 Safety Features on VisionSDK

– At the end of the use-case, a special programming sequence is to ensure following:

o RTI tasks stop servicing the WWDT

o SoC reset generation is not generated by RTI associated with IPU1_0

o Change service window to 100% to allow reconfiguration if needed later

o This is implemented in the function rti_service()

o If any re-configuration of RTI register is needed, a different programming sequence is

needed. This is implemented in rti_setup() under the condition
(RTIDwwdIsCounterEnabled() == TRUE)

 Special constraints: RTI with FFI on EVE

– FFI on EVE needs interrupts to be disabled. This causes Task_sleep() command to work

incorrectly.

– RTI implementation uses Task_sleep() to wait till WWDT service window is open. Since,

Task_sleep() works incorrectly the WWDT associated with EVE can expire under some scenarios.

– In the safeframecopy plugin, if RTI is enabled, we force the copy mode to always use EDMA

instead of CPU. This ensures that the errors in sleep times are not large enough to cause WWDT

expiry.

 IPC consideration in case of using RTI

– When a core expires, the WWDT expiry interrupt handler on IPU1-0 resets the CPU

corresponding to the WWDT.

– In this case, the core which is in reset will not respond to any new messages.

– There is a small window between core failure and WWDT expiry, where messages sent will not

be acknowledged. This can result in IPC queue getting stuck and prevent software recovery.

– Therefore, IPC waits must use time-outs and check for core status when time-out occurs to avoid

indefinite waits. This is implemented in
vision_sdk/src/links_common/system/system_ipc_msgq.c. Search for RTI_INCLUDE for

relevant code.

 Warm reset recovery considerations in case of using RTI

– If the WWDT corresponding to master core expires, the system is configured to undergo a warm-

reset.

– During a warm-reset, all register configurations are not lost. Significant among these are

o Control modules registers

o Interrupt crossbar registers

o Firewall configurations

– Software must ensure that to reset such register configurations to ensure that system boots up

correctly after a warm-reset.

 Safety Features on VisionSDK 21

7 BSP and Starterware additions for FFI

 Safety OSAL

– This layer provides two APIs – BspSafetyOsal_setSafetyMode() and

BspSafetyOsal_getSafetyMode() – to allow users to switch the level of execution to QM or ASIL

using appropriate arguments.

– This interface is defined in bsp_drivers_/include/safety_osal/bsp_safety_osal.h

– This is implemented in bsp_drivers_/src/safety_osal/bsp_safety_osal.c

– BSP examples do not implement FFI. Therefore, the safety OSAL implementation in BSP uses only

empty functions.

 USER and SUPERVISOR switch in DSP

– Relevant code is available in

starterware_/include/c66x/dsp_usrSpvSupport.h

starterware_/system_config/c66x/dsp_usrSpvSupport.c

starterware_/system_config/c66x/swenr.asm

– Using the C66x Memory Protection Unit (MPU) and Extended memory controller (XMC), SW can

set up differential access permissions to L1/L2/L3 and DDR memories based on DSP CPU mode.

– DSP CPU supports two modes – USER and SUPERVISOR. At reset, the CPU is in SUPERVISOR

mode. The active mode is available in the CXM bits of the TSR register.

– Current mode can be queried using the DSP_getCpuMode() API or changed using the
DSP_setCpuMode() API.

– Implementation details:

o To switch the CPU mode from SUPERVISOR to USER or vice-versa, we use the SWENR

instruction and the corresponding handler are used.

o The SWENR handler is setup in the when DSP_setCpuMode() is called for the first time.

The handler address is set up in the REP register.

o To change the CPU mode, we execute the SWENR instruction with argument of 0 or 1.

When the CPU jumps to the handler, the current TSR is copied to NTSR. The handler

changes the value of CXM bit in NTSR to 0 or 1 to switch to SUPERVISOR or USER mode

respectively based on the argument.

– The handler then jumps back to the function which executed the SWENR instruction using the

NRP pointer. This causes the NTSR (with new operating mode) to be copied to the TSR register.

This completes the switch of CPU mode. Normal software can resume at this point.

 Summary of features added to SBL

– “Priming” of EMIF ECC protected regions

o ECC regions must be 64 kB aligned and have length in multiples of 64 kB

o Start and End address are considered inclusive. eg: To define a 64kB region at address

0x8000_0000, start address must be 0x8000_0000 and end address must be 0x8000_FFFF.

22 Safety Features on VisionSDK

– “Priming” of IPU L2RAM and Unicache in TDA3x for ECC.

– “Priming” of DSP L2RAM for parity checking.

o SBL assumes all start of all code/data sections in L2SRAM to be 16 byte aligned and length

to be a multiple of 16 bytes.

– IPU cache is set to write-back, write-allocate mode in TDA3x to allow ECC to work correctly.

	Abstract
	Contents
	Figures
	Tables
	Abbreviations
	1 Introduction
	2 Vision SDK updates
	2.1 Build flow
	2.2 New plugin and use-cases
	2.3 FFI mode for AlgorithmLink
	2.4 RTI/DCC/ESM

	3 EMIF ECC, IPU ECC, DSP Parity
	3.1 Hardware requirements
	3.2 VisionSDK and SBL implementation

	4 Freedom From Interference (FFI)
	4.1 Introduction
	4.2 Hardware requirements
	4.3 VisionSDK implementation

	5 DCC/ESM (TDA3x only)
	5.1 Hardware requirements
	5.2 Vision SDK integration

	6 RTI/WWDT (TDA3x only)
	6.1 Hardware requirements
	6.2 Vision SDK integration

	7 BSP and Starterware additions for FFI

