
StarterWare

ADAS Driver Team
8th Jan 2015

1

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

What is Starterware

• C based NO-OS code

• Can be used stand-alone

• Provides peripheral programming interface -Easy to use SW interface

• Provides software portability across devices for a given peripheral

• Provides stand-alone examples

• Not a middleware complete solution

• Product is designed to scale for each SoC. Single package is used to
support more than one SoC. The product packaging/folder takes care
of scalability for new IPs of new SoCs.

• Supports all four SoCs in single software package: TDA1Mx, TDA2xx,
TDA2ex and TDA3xx.

3

Starterware Scope

4

IS

• C based NO-OS code
• Can be used stand-alone or with

an RTOS
• Provides peripheral

programming interface
– Easy to use SW interface

• Provides software portability
across devices for a given
peripheral

• Tool-chain agnostic
• Provides stand-alone examples

and example drivers with an
RTOS

• Optimal software for peripherals
in terms of performance, size

IS-NOT

• Depend upon any OS services
(e.g. thread, locks, memory
mgmt)

• Full featured software for
peripherals (async, queuing)

• Peripheral “IP version specific”
software

• Code with OS dependency for
examples, demos

• Middleware complete solution

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

Enabling customers to differentiate

• Starter-ware to start development on TI devices

• Enable customer to understand our IPs along with the TRM

6

HAL Libraries:
UART, I2C

GPIO, Mailbox,
Spinlock, EDMA,
GPMC, McASP,
McSPI, OCMC,
QSPI, SBL, MMU,
Timer, MMCSD,
WDTIMER, PCIe

Driver
libraries: I2C,

QSPI, FAT, NOR,
VPS (VIP/DSS/VPE)

SD, NOR and
QSPI
bootmodes
UART console
utility

SW ARCHITECTURE PICTURE

Hardware Peripherals

I2C QSPI OCMC McASP
VPS

(VIP/VPE/DSS) UART GPIO
Timer
WDT

GPMC
Mailbox
Spinlock

MMU EDMAMcSPI
MMC
SD

Driver Abstraction Layer (DAL)

McSPIMcASP UARTI2C

Middle Layer/Libraries

QSPI

VPS
(VIP/VPE/DSS)

I2C QSPI

FAT

GPIO
Timer
WDT

GPMC
Mailbox
Spinlock

MMU EDMAOCMC
MMC
SD

Application/VSDK

•System Configuration
•Boot Modes: SD/NOR/QSPI
•UART Console Utility

SBL
(Pinmux, PRCM,

Device Config)

Interrupt
Handling

Device ConfigPinmux Config

BIOS Driver (BSP)
VIP/VPE/DSS

I2C/UART
McASP/McSPI

NOR

DAL Layer

LIB Layer

BIOS Driver Layer

PM LIB

Software Partition(1/6)

• Driver Abstraction Layer

• Libraries

• System Configuration Code

• Utilities

• Platform Code

• Tools

• Boards

• Devices

• Secondary Boot loader (SBL)

• Peripheral Examples
7

Software Partition(2/6)

• Driver Abstraction Layer

– APIs to configure and access peripherals

– Simple, consistent and intuitive to use APIs

– Logical group of register reads and writes to get a functional layer for a

given IP

– Stateless functions; blocking and runs to completion

• Libraries

– Provide higher level API for certain complex peripherals

– Uses driver abstraction layer

– Provide buffer management and manage state of the device

8

Software Partition(3/6)

9

• System Configuration Code

– Provides functions specific to SoC level System Configuration.

– Provides the following functionalities:

• Start-up Code

• Interrupt-vector initialization

• Low level CPU specific code

– May involve assembly code and hence can be tools specific

• Utilities

– Quick start utilities for external devices and interfaces on the board.

– Build on underlying DAL or driver library

– E.g. UartConsole contains wrapper functions which use UART APIs to

interface with the user through the serial console.

Software Partition(4/6)

10

• Platform Code

– Provides functions specific to an EVM to enable peripheral operations.

– Normally provides the following functionalities:

• Peripheral pin-muxing

• Peripheral clock setting

• EVM profile setting

• I/O Expander settings

• Tools

– Contains various SW tools like flash tools

– E.g. Nor flash Writer is used to write data or erase the NOR flash

Software Partition(5/6)

11

• Boards

– Contains list of on-board devices and daughter cards like Vision App Board,

Custom Board, etc

– Provides routines to auto-detect the board/daughter card type

– Provides special programming like I2C configuration for selecting on-board

device.

• Devices

– Contains APIs to control IO expanders

– Used to read/write into video on-board devices such as Sii9022a, TVP7002,

etc.

Software Partition(6/6)

12

• Secondary Boot loader (SBL)

– Secondary boot loader does the following:

• Initialize the SoC

• Configure the peripheral I/O

• Initialize DDR

• Load multicore RPRC image and brings the slave cores out of reset

– Boot Modes: QSPI, QSPI_SD, NOR and MMCSD

– Various boot modes are supported depending upon SoC.

• Peripheral Examples

– Sample applications for different peripherals

– Demonstrate some of the capabilities of IP

– Uses driver abstraction layer or library

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

Directory Structure

• Uses simple and intuitive directory
structure

• Provides scope to accommodate new
SoCs in the same directory structure

• Build folder contains all the make
rules for building starterware

• Separate directories for different
libraries like i2clib, vpslib, etc.

• Include folder contains all the DAL
header files

– Contains register layer files which

contain peripheral register offset

macros and register field token fields

14

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

Starterware Build

• Dependencies:

– TI Compiler TMS470

– TI Compiler C6000

– TI Compiler ARP32

– Linaro GCC tool chain for A15

• Build:

– Makefile based build

– Makerules for different cores are specified in build/makerules

– Environment variables are specified in build/makerules/env.mk

– gmake all PLATFORM=<PLATFORM> builds all the components

– gmake libs PLATFORM=<PLATFORM> builds libs

16

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

MPU Subsystem

• MPU Subsystem contains

– Two Cortex A15 cores : MPU_C0 and MPU_C1

– L1 and L2 cache (32 KB and 2 MB respectively)

– Interrupt Controller

• Supports continuous fetch and decoding of three instructions per clock
cycle.

• Can issue two simple instructions in a cycle.

• Can issue a load and store instruction in a cycle.

• Symmetric Multi Processing (SMP) Architecture

• Starterware does not support Cache.

18

Generic Interrupt Controller

• Generic Interrupt Controller (GIC), also referred to as MPU_INTC.

• Supports 160 shared peripheral interrupts.

• Supports 16 software generated interrupts.

• Individual priority of each interrupt.

• Non-secure interrupt generates an IRQ interrupt request to target
processor.

• Secure interrupt can signal either IRQ or FIQ interrupt request to target
processor.

19

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

IPU Subsystem

• IPU Subsystem contains

– Two Cortex M4 cores : IPUx_C0 and IPUx_C1

– Common L1 cache (called Unicache): 32 KB

– Integrated Nested Vector Interrupt Controller

• Internal MMU(called AMMU)

– 16-entry region-based address translation

– Read/write control and access type control

– Execute never(XN) MMU protection policy

• L2 MMU: 32 entries with table walking logic

• On-chip ROM (IPUx_ROM) and banked RAM (IPUx_RAM) memory.

21

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

Interrupt Controller- StarterWare

• The Interrupt System exports a set of APIs to enable/disable the core
interrupts and to configure and use the INTC.

• The API functions are exported in
\starterware_xx_xx_xx_xx\include\<arch>\interrupt.h

• It might be required to configure IRQ Crossbar before using the system
interrupt in order to connect the interrupt source with the IRQ line.

Programming

• Following sequence can be used to setup INTC for system interrupt:

1. In privilege mode of core restore the processor IRQ only status by
calling Intc_IntEnable() API.

23

Interrupt Controller- StarterWare

2. INTC initialization shall be done before any interrupt processing is
enabled, by calling Intc_Init() API.

3. Register the interrupt handler for the system interrupt using
Intc_IntRegister().

4. The priority is set through Intc_IntPrioritySet() API.

5. Enable the system interrupt using the API Intc_SystemEnable().

• After the configuration and setting up of INTC, the application shall
enable the interrupt processing at the peripheral.

24

Agenda

�Starterware Overview

�Starterware Software Architecture

�Directory Structure

�Starterware Build

�MPU Subsystem

�IPU Subsystem

�Interrupt Controller

�Running Examples

�Q&A

Tools Required

• Code Composer Studio (v 5.4.0.00091 or above)

• Chip Support Package (CSP)

• Development Board

– TDA2xx CPU Board (Vision High EVM)

– TDA3xx CPU Board (Vision Low EVM)

• Emulator

– XDS560v2

– XDS200

• Flash tools:

– NOR Flash Writer

– QSPI Flash Writer

• SD Card

26

Running Examples

• Depending on the boot mode, set the SYSBOOT switch as per the SBL user

guide.

• For SD boot, copy the MLO file from

bootloader\prebuild_binaries\tda2xx_images\sd to sd card.

• For QSPI, QSPI_SD and NOR boot, write the SBL image from

bootloader\prebuild_binaries\<tda2xx/tda3xx>_images\<qspi/nor/qspi_sd> into

flash using flash writer.

• Power on the CPU Board.

• Use CCS to connect to EVM using the target configuration.

• Load and run the binaries on the A15/M4 (or any other appropriate) core.

• Prints can be observed on CCS console or Tera Term can be used for viewing

UART prints.

27

28

