
CP3UB17/CP3CN17
User Information Sheet

September 21, 2003

2 User Information Sheet

This user information document discloses known problems and limitations with the
CP3UB17/CP3CN17. This document also provides information on potential user issues
which have not yet been incorporated into product documentation and planned design
enhancements for future revisions of the devices.

Number: 1

Name: ACCESS.bus Interface Module Bus Error

Description: A Bus Error (BER) may occur during a write transaction if the data register
is written at a very specific time. The module generates one system-clock
cycle setup time of SDA to SCL vs. the minimum time of the clock divider
ratio.

Workaround: The problem can be masked within the driver by dynamically dividing-by-
half the SCL width immediately after the slave address is successfully sent
and before writing to the ACBSDA register. This has the effect of forcing
SCL into the stretch state.

The following code example is the relevant segment of the ACCESS.bus
driver addressing this issue.

User Information Sheet 3

/*%%
; NAME: ACBRead Reads "Count" byte(s) from selected I2C Slave. If read address differs from previous
; Read or Write operation (as recorded in NextAddress), a "dummy" write transaction is
; initiated to reset the address to the desired location. This is followed by a repeated
; Start sequence and the Read transaction. All transactions begin with a call to ACBStartX
; which sends the Start condition and Slave address. Checks for errors throughout process.
;
; PARAMETERS: UBYTE Slave - Slave Device Address. Must be of format 0xXXXX0000
; UWORD Addrs - Byte/Array address (extended addressing mode uses two byte address)
; UWORD Count - Number of bytes to read
; UBYTE *buf - Pointer to receive buffer
;
; CALLS: ACBStartX
;
; RETURNED: error status
;%%*/

UWORD ACBRead (UBYTE Slave, UWORD Addrs, UWORD Count, UBYTE *buf)
{
 ACB_T *acb;
 UBYTE err, *rcv;
 UWORD Timeout;

 acb = (ACB_T*)ACB_ADDRESS; /* Set pointer to ACB module */
 /* If the indicated address differs from the last */
 if (Addrs != NextAddress) {
 /* recorded access (i.e. Random Read), we must first */
 /* send a "dummy" write to the desired new address.. */
 NextAddress = Addrs; /* Update last address placeholder */

 KeyInit();
KBD_OUT &= ~BIT0;

 /* Send start bit and Slave address... */
 if ((err = ACBStartX (Slave | (Addrs >> 7 & 0x0E), ACB_WRITE, 0)))

 return (err); /* If unsuccessful, return error code */

 // KBD_OUT &= ~BIT0;

 acb->ACBsda = (UBYTE)Addrs; /* Send new address byte */

KBD_OUT &= ~BIT0;

 Timeout = 1000; /* Set timeout */
 /* Wait for xmitter to be ready...zzzzzzzzz */
 while (!(acb->ACBst & ACBSDAST) && !(acb->ACBst & ACBBER) && Timeout--);

if (acb->ACBst & ACBBER) {
/* If a bus error occurs while sending address, clear */

 acb->ACBst |= ACBBER; /* the error flag and return error status */

 return (ACBERR_COLLISION);
 }

 KBD_OUT &= ~BIT0;

 if (!Timeout) /* If we timeout, return error */
 return (ACBERR_TIMEOUT);
 }
 /* (Re)Send start bit and Slave address... */
 if ((err = ACBStartX (Slave | (Addrs >> 7 & 0x0E), ACB_READ, Count)))
 /* If error, return */
 return (err);

 rcv = buf; /* Get address of read buffer */
 /* Read Count bytes into user’s buffer */
 while (Count) {

 if (Count-- == 1) /* If this the final byte, or only one requested, send */
 acb->ACBctl1 |= ACBACK; /* the NACK bit after reception */

 Timeout = 1000; /* Set timeout */

 while (!(acb->ACBst & ACBSDAST) && Timeout--);

 if (!Timeout) /* Timed out?? */
 /* YES - return error */
 return (ACBERR_TIMEOUT);

 rcv++ = acb->ACBsda; / NO - Read byte from Recv register */
 /* Adjust current address placeholder */
 NextAddress++;

4 User Information Sheet

 }

 acb->ACBctl1 |= ACBSTOP; /* Send STOP bit */
 /* Return success status.... */
 return (ACB_NOERR);
}

/*%%
; NAME: ACBStartX Initiates an ACB bus transaction by sending the Start bit, followed by the Slave address
; and R/W flag. Checks for any ACB errors throughout this sequence and returns status.
;
; PARAMETERS: UBYTE Slave - I2C address of Slave device
; UBYTE R_nW - Read/Write flag (0x01 or 0x00)
; UWORD Count - Desired number of bytes (read/write)
;
; CALLS:
;
; RETURNED: error/success
;%%*/

UWORD ACBStartX (UBYTE Slave, UBYTE R_nW, UWORD Count)
{
 ACB_T *acb;
 UWORD Timeout;
 /* Get address of ACB module */
 acb = (ACB_T*)ACB_ADDRESS;
 /* If Bus is Busy and we’re NOT the Master, return err */
 if (acb->ACBcst & ACBBB && !(acb->ACBst & ACBMASTER))
 return (ACBERR_NOTMASTER);
 /* If we’re good to go, send Start condition */
 acb->ACBctl1 |= ACBSTART;
 /* Check if we’re the Bus Master with timeout */
 Timeout = 100;

 while (!(acb->ACBst & ACBSDAST) && Timeout--) /* Related to bus error problem */
 {
 if (acb->ACBst & ACBBER) { /* If collision occurs, clear error and return status */

 acb->ACBst |= ACBBER;

 return (ACBERR_COLLISION);
 }
 }

 if (!Timeout) /* If timeout, we must NOT be the Master...signal error */
 return (ACBERR_NOTMASTER);
 /* Now, send the address and R/W flag... */
 acb->ACBsda = Slave | R_nW; /* Send address and R/W flag */

 Timeout = 1000; /* Failsafe for lockup */
 /* Wait for address to be sent and ACK’d */
 while (!(acb->ACBst & ACBSDAST) &&

 !(acb->ACBst & ACBNEGACK)&&
 --Timeout) {

 if (acb->ACBst & ACBBER) { /* If a bus error occurs while sending address, clear */

 acb->ACBst |= ACBBER; /* the error flag and return error status */

 return (ACBERR_COLLISION);
 }
 }

KBD_OUT |= BIT0; // OScope marker

 if (!Timeout) /* If timeout, signal error */
 return (ACBERR_TIMEOUT);
 /* Or if Slave does not reply, report busy/error */
 else if (acb->ACBst & ACBNEGACK)
 return (ACBERR_NEGACK);
 /* Otherwise return success */
 else {

 return (ACB_NOERR);
 }

User Information Sheet 5

Number: 2

Name: Advanced Audio Interface Asynchronous Mode
Description: The AAI asynchronous mode only works if it is receiving the frame syncs

and not generating them.

Workaround: In asynchronous mode, configure the AAI to receive frame syncs.

Number: 3

Name: Advanced Audio Interface
Description: While the AAI is active, it can lock up if the receive FIFO is cleared with

the Clear Receive FIFO (CRF) bit, the transmit FIFO is cleared with the
Clear Transmit FIFO (CTF) bit, or the AAI is disabled by clearing the
AGCR.AAIEN bit.

Workaround: While the AAI is active, never clear the receive FIFO with the CRF bit or
clear the transmit FIFO with the CTF bit. To disable the AAI, clear the
ARSCR.RXSA and ATSCR.TXSA bits, then wait 10 receive/transmit
clock cycles before clearing the AGCR.AAIEN bit.

Number: 4

Name: CVSD/PCM FIFO

Description: If the CVSDIN register (Rx FIFO) is read while containing no data, an ir-
reversible lockup in the FIFO logic can occur, rendering it unusable until
reset.

Workaround: The interrupt routine MUST use the value reported in the CVOUTST field
of the CVSDIN register to determine the actual number of words in the
Rx FIFO. Under no circumstances should one assume that the CVNF flag
always indicates that five words are available to be read.

Number: 5

Name: USB 2.0 Compliance
Description: This entry is to serve as a reminder that the USB as implemented is certi-

fied for USB 1.1 compliance.

6 User Information Sheet

Workaround: An application note is available which describes an external circuit to
achieve 2.0 compliance.

User Information Sheet 7

Number: 6

Name: UART RX Lockup
Description: USART can lock up in the presence of noise or an incorrect RX rate.

At a high level, what is happening is that the START DETECT state ma-
chine detects a START bit but a signal which is meant to enable this to the
USART RX state machine happens in a different clock cycle from where it
is required. So, the START DETECT state machine sits and waits for a
STOP from the USART RX state machine, but the USART RX state ma-
chine is sitting in RX_IDLE mode because it has not seen the detection of
the START bit.

Workaround: Fixed in the next silicon revision.

