
Connectivity Processor Driver Library
User’s Manual

Revision 1.5

© 2003 National Semiconductor Corporation. All rights reserved. No
warranty is provided and no liability is assumed by National Semicon-
ductor Corporation with respect to the accuracy of this documenta-
tion or the merchantability or fitness of the product for a particular
application. No license of any kind is conveyed by National Semicon-
ductor Corporation with respect to its intellectual property or that of
others. All information in this document is subject to change without
notice.

National Semiconductor Corporation products are not authorized for
use in life support systems or under conditions where failure of the
product would endanger the life or safety of the user, except when
prior written approval is obtained from National Semiconductor Cor-
poration.

The National Semiconductor logo is a registered trademark of
National Semiconductor Corporation.

Bluetooth is a trademark of Bluetooth SIG, Inc. and is used under
license by National Semiconductor.

All other trademarks mentioned in this document are property of
their respective companies.

Preface
Scope of This Document

This document is a guide and reference manual for the peripheral
driver library provided for the Connectivity Processors (CP3BT1x/
CP3CN1x/CP3UP1x).

Related Documentation

CompactRISC CR16C Programmer’s Reference Manual—
This is the authoritative reference for the architecture of the CR16C
CPU. Compiler writers and assembly-language programmers should
consult this document for detailed information about the instruction
set.

Device Datasheets—Refer to the datasheets for the individual Con-
nectivity Processor device types for detailed information about the
on-chip peripheral devices, signal descriptions, package pinout, and
electrical specifications.
CP Driver Library 3

Preface
Notational Conventions

Commands selected from menus are shown as "File -> New", which
represents the "New" command selected from the "File" menu.

High-level language and assembly code, command lines, and macro
file statements are shown in the Courier font, for example:

add r2,r3;

When a single command or statement is too long to fit on one line, a
backslash (\) is used to indicate continuation on the following line, for
example:

echo "ERROR 137 -- square root domain error, \
try using a positive number"
4 CP Driver Library

Revision History
Revision Release Date Summary of Changes

1.5 9/8/03 Original release.
CP Driver Library 5

Preface
6 CP Driver Library

Table of Contents
1 Overview 15

2 Using the Driver Library 17

2.1 Driver Library Header Files 17

2.2 Library Contents 18

3 Accessing I/O Registers 19

4 Data Link Mechanism 21

5 Interrupts 23

A On-Chip Peripheral Drivers 25

A.1 Summary of On-Chip Peripheral Driver Functions 25

A.2 ACCESS.bus (Master Mode) 33

A.2.1 acbm_init() 33

A.2.2 acbm_tx() 34

A.2.3 acbm_rx() 35

A.3 ACCESS.bus (Slave Mode) 36

A.3.1 acbs_init() 36

A.3.2 acbs_tx() 37
CP Driver Library 7

Table of Contents
A.3.3 acbs_rx() 38

A.3.4 acbs_rx_count() 39

A.4 Analog/Digital Converter (ADC) 40

A.4.1 AdcInit() 40

A.4.2 AdcShutDown() 42

A.4.3 AdcTouchScreenConfig() 42

A.4.4 AdcStartConversion() 43

A.4.5 AdcReadResult() 43

A.5 Advanced Audio Interface (AAI) 44

A.5.1 audio_init() 44

A.5.2 audio_set_control_bits() 45

A.5.3 audio_start() 45

A.5.4 audio_stop() 45

A.6 Bus Interface Unit (BIU) 46

A.6.1 biu_config_zone() 46

A.6.2 biu_set_early_write() 47

A.7 Controller Area Network (CAN) 48

A.7.1 can_init() 48

A.7.2 can_config_tx() 50

A.7.3 can_config_rx() 51

A.7.4 can_read_msg() 52
8 CP Driver Library

A.7.5 can_shutdown() 53

A.8 Flash Memory Interface 54

A.8.1 FlashInit() 54

A.8.2 FlashGetPageSize() 55

A.8.3 FlashGetPageNum() 55

A.8.4 FlashGetStartAddress() 56

A.8.5 FlashInformationBlockRead() 57

A.8.6 FlashInformationBlockWrite() 58

A.8.7 FlashInformationBlockErase() 59

A.8.8 FlashRead() 60

A.8.9 FlashPageProgramSafe() 61

A.8.10 FlashPageProgram() 62

A.8.11 FlashEraseAll() 63

A.8.12 FlashPageErase() 64

A.9 Interrupt Control Unit (ICU) 65

A.9.1 icu_init() 65

A.9.2 icu_mask() 65

A.9.3 icu_unmask() 66

A.10 Multi-Function Timer (MFT) 67

A.10.1 mft_init() 67

A.10.2 mft_delay() 68
CP Driver Library 9

Table of Contents
A.11 Microwire Interface 69

A.11.1 mw_init() 69

A.11.2 mw_tx() 70

A.11.3 mw_rx() 70

A.11.4 mw_tx_rx() 71

A.12 System Configuration 72

A.12.1 SYSCFGEnableIoExpansion() 72

A.13 System Timer 73

A.13.1 timer_init() 73

A.13.2 timer_set_wakeup() 74

A.13.3 timer_clear_wakeup() 75

A.13.4 timer_wakeup_check() 75

A.13.5 timer_wait() 76

A.14 Triple Clock and Reset 77

A.14.1 TCRSetClock() 77

A.14.2 TCRPllEnable() 77

A.14.3 TCRPllDisable() 78

A.15 Timer Watchdog Module (TWM) 79

A.15.1 twm_init() 79

A.15.2 wd_init() 79

A.15.3 wd_restart() 80
10 CP Driver Library

A.16 UART Interface (Interrupt Mode) 81

A.16.1 usart_init() 81

A.16.2 usart_shutdown() 82

A.16.3 usart_tx() 83

A.16.4 usart_rx() 84

A.16.5 usart_rx_count() 85

A.17 UART Interface (DMA Mode) 86

A.17.1 usart_dma_init() 86

A.17.2 usart_dma_tx() 87

A.17.3 usart_dma_rx() 88

A.17.4 usart_dma_rx_count() 88

A.18 Universal Serial Bus (USB) 89

A.18.1 usb_init() 89

A.18.2 usb_shutdown() 90

A.18.3 node_resume() 90

A.18.4 get_node_status() 91

A.18.5 handle_std_usb_request() 91

A.19 Versatile Timer Unit (VTU) 92

A.19.1 vtu_init() 92
CP Driver Library 11

Table of Contents
B Board-Level Peripheral Drivers 93

B.1 Summary of Board-Level Peripheral Driver Functions 93

B.2 CFI-Compliant Flash Interface 95

B.2.1 CfiFlashGetNumBlocks() 95

B.2.2 CfiFlashReadReset() 95

B.2.3 CfiFlashAutoSelect() 96

B.2.4 CfiFlashPageErase() 97

B.2.5 CfiFlashEraseAll() 98

B.2.6 CfiFlashProgram() 99

B.2.7 CfiFlashQueryGet() 100

B.2.8 CfiFlashReadQuery() 101

B.2.9 CfiFlashBlock() 102

B.3 Codec 103

B.3.1 codec_init() 103

B.3.2 codec_set_volume() 104

B.3.3 codec_adjust_volume() 104

B.3.4 codec_start() 105

B.3.5 codec_stop() 105

B.4 EEPROM 106

B.4.1 eep_init() 106

B.4.2 eep_buf_read() 107
12 CP Driver Library

B.4.3 eep_buf_write() 108

B.4.4 eep_total_size() 108

B.5 LEDs 109

B.5.1 led_init() 109

B.5.2 led_set_all() 109

B.5.3 led_set() 110

B.5.4 led_clear() 110

B.5.5 led_toggle() 111

B.6 DIP Switches 112

B.6.1 switch_on() 112
CP Driver Library 13

Table of Contents
14 CP Driver Library

Overview
 1

The Connectivity Processors include a rich set of on-chip I/O periph-
erals for supporting a broad range of embedded applications. To help
application developers use these peripherals, a set of software drivers
is provided for accessing the peripherals through generic software
APIs (Application Programming Interfaces). For most applications,
these APIs eliminate the need to have an intimate knowledge of the
register-level interface to the peripherals. Source code for the drivers is
available, to allow customizing the drivers for specific needs.

This document describes:

Chapter 2—Driver Library. Describes the contents of the driver
library and how to integrate the library into applications.

Chapter 3—Accessing I/O Registers. Describes how to access
peripheral I/O registers from application code written in C.

Chapter 4—Data Link Mechanism. Describes the data link mecha-
nism for streaming data between the application and peripherals.

Chapter 5—Interrupts. Describes interrupt service routines and the
interrupt table.

Appendix A—Driver Library API. Defines the function calls to the
driver library API.
CP Driver Library 15

Overview
16 CP Driver Library

Using the Driver Library
 2

2.1 Driver Library Header Files

Driver libraries are provided for both the on-chip peripherals and on-
board peripherals (external to the CP3000 device).

Application programs that use the drivers for on-chip peripherals
must include the drivers.h header file, located in the include direc-
tory. The drivers.h file contains function prototypes for the API
functions and additional definitions such as data structures and other
types used by the on-chip peripheral drivers.

Application programs that use the board-level peripheral drivers must
include the boarddrv.h header file, also located in the include direc-
tory. The boarddrv.h file contains prototypes and definitions used by
drivers for external peripherals, such as LEDs, DIP switches,
EEPROM, etc.
CP Driver Library 17

Library Contents

Using the Driver Library
2.2 Library Contents

The modules in the driver library are listed in Table 2-1.
Table 2-1. Modules in the Connectivity Processor Driver Library

File Name Module

acbm.c ACCESS.bus (master mode)

acbs.c ACCESS.bus (slave mode)

adc.c Analog/Digital Converter

audio.c Advanced Audio Interface

biu.c Bus Interface Unit

btllc.c Bluetooth Lower Link Controller

can.c Controller Area Network

flash.c Flash Memory

icu.c Interrupt Control Unit

lmx5250.c LMX5250 (radio chip)

mft.c Multi Function Timer

mw.c Microwire

syscfg.c System Configuration

tcr.c Triple Clock and Reset

timer.c System Timer (currently uses Timing and Watchdog Module)

twm.c Timing and Watchdog Module

usart.c UART (Interrupt mode)

usart_dma.c UART (DMA mode)

vtu.c Versatile Timer Unit
18 CP Driver Library

Accessing I/O Registers
 3

Each of the drivers has to access some I/O registers (also known as
Special Function Registers or SFRs) that are associated with I/O
peripherals. In the driver source code, each register is referred to by its
name as defined in the device datasheet.

The actual implementation of I/O registers in the driver library uses
one structure for each I/O peripheral registers set. These structures
are defined in the cp3bt1x.h header file. Each structure member rep-
resents a register or a space between registers (spaces exist because I/
O registers are always assigned an even address -- if a register is one
byte long there a one-byte space between the register and the follow-
ing register). Each structure represents the memory layout of register
set associated with one peripheral. An example of a peripheral register
set structure is:

typedef volatile FARIO struct {
 unsigned char bcfg;
 unsigned char f1;
 unsigned short iocfg;
 unsigned short szcfg0;
 unsigned short szcfg1;
 unsigned short szcfg2;
} biu_t;
CP Driver Library 19

Accessing I/O Registers
For each peripheral, a constant structure pointer is defined which
points to the base address of the peripheral register set. To access a
register, access the structure member through the constant pointer.
For example, the pointer to the BIU register set is defined as follows:

biu_t * const biu = (biu_t *)BIU_BASE_ADDR;

The IOCFG register of the BIU peripheral is accessed as follows:

biu->iocfg

Finally, there is a definition for each register that allows using only its
name for simplicity and readability:

#define IOCFG biu->iocfg

In this case, the IOCFG register of the BIU peripheral is referred to in
the driver code simply as IOCFG.
20 CP Driver Library

Data Link Mechanism
 4

Some drivers stream data between the application and the peripheral
using the data link mechanism.

The data link mechanism is a simple concept used to synchronize a
producer and a consumer. A producer continuously generates data
that is later read by the consumer. They are not synchronized except
through the data link mechanism. The data link is implemented as a
circular buffer and a control structure that keeps all the necessary
information about the status of the buffer. The circular buffer is used
for the data transfer between the producer and the consumer.

The most important field in the data link structure is the data link
counter, which indicates how many bytes have been written to the
buffer by the producer and not yet read from the buffer by the con-
sumer. The value in this counter can be anywhere between zero and
the size of the circular buffer in bytes. The consumer and the pro-
ducer each have a private pointer to the circular buffer. The producer
pointer points to the location in the buffer to which the producer
should write the next byte. The consumer pointer points to the loca-
tion in the buffer from which the consumer will read the next byte.
The producer can write to the data link buffer as long as the buffer is
not full (data link counter less than buffer size). The consumer can
read from the data link buffer as long as the buffer is not empty (data
link counter not equal to zero).
CP Driver Library 21

Data Link Mechanism
The data link structure and a set of useful data link macros are defined
in the dl.h header file under the include directory. Some of the
important primitives provided by these macros are described in
Table 4-1.

Table 4-1. Data Link Primitives

Name Description

dl_advance Advances a pointer by one position in the circular buffer. Per-
forms a wrap around if required.

dl_p_commit Producer commit. The producer releases a given number of
bytes to the consumer. The bytes have already been written and
now they are confirmed as released by incrementing the data
link counter.

dl_c_commit Consumer commit. The consumer reports unloading a certain
amount of bytes. The bytes have already been read and now
they are confirmed as unloaded by decrementing the data link
counter. The memory space previously occupied by these bytes
is now available for writing by the producer.

dl_empty A predicate telling whether the data link buffer is empty or not.

dl_full A predicate telling whether the data link buffer is full or not.

dl_cnt Provides the current number of bytes that have been written by
the producer but not read by the consumer.

dl_p_space_available Tells the producer how much space is available in the buffer for
writing new data.
22 CP Driver Library

Interrupts
 5

Many peripheral drivers must handle interrupts generated by their
associated peripheral. These drivers include an interrupt handler func-
tion also called an interrupt service routine or ISR. Some drivers may
include more than ISR, because they must handle more than one type
of interrupt. An ISR is invoked by the CPU when the associated inter-
rupt is triggered and several other conditions exist: the interrupt must
be unmasked inside the interrupt control unit (ICU), interrupts must
be globally enabled, and no other higher-priority interrupt may be
pending.

The CPU uses an interrupt dispatch table to assign an ISR entry point
address for each type of the interrupt. Each type of interrupt is
assigned a number (also called vector). This number is used to calcu-
late an offset into the interrupt dispatch table, from which the entry
point address to the ISR is retrieved.

The interrupt table is generated automatically by the compiler. Each
ISR is preceded by a definition of its vector number, and the compiler
uses this information to generate an entry in the interrupt table. The
compiler fills only entries for ISRs that are used in the application.
CP Driver Library 23

Interrupts
24 CP Driver Library

On-Chip Peripheral Drivers
 A

A.1 Summary of On-Chip Peripheral
Driver Functions

Table A-1 lists the on-chip peripheral driver functions.

Table A-1. On-Chip Peripheral Driver Functions

Module Function Call Section Page Description

ACCESS.
bus
(Master
mode)

acbm_init() A.2.1 33 Initializes the
ACCESS.bus interface.

acbm_tx() A.2.2 34 Transmits data to
specified slave device.

acbm_rx() A.2.3 35 Receives data from
specified slave device.

ACCESS.
bus
(Slave
mode)

acbs_init() A.3.1 36 Initializes the
ACCESS.bus interface.

acbs_tx() A.3.2 37
Deposits data to be
transmitted on next
master transmit request.

acbs_rx() A.3.3 38
Reads received bytes to
a specified memory
location.

acbs_rx_count() A.3.4 39 Returns number of bytes
available for reading.
CP Driver Library 25

Summary of On-Chip Peripheral Driver Functions

On-Chip Peripheral Drivers
Analog/
Digital
Converter

AdcInit() A.4.1 40 Initializes ADC periph-
eral and driver.

AdcShutDown() A.4.2 42 Shuts down the ADC.

AdcTouchScreenConfig() A.4.3 42 Sets up ADC for reading
touchscreen coordinates.

AdcStartConversion() A.4.4 43 Starts a conversion.

AdcReadResult() A.4.5 43 Reads the conversion
result.

Advanced
Audio
Interface
(AAI)

audio_init() A.5.1 44
Initializes the AAI and
CVSD/PCM hardware
and driver.

audio_set_control_bits() A.5.2 45
Specifies control bit
settings appended to each
transmitted word.

audio_start() A.5.3 45 Starts the AAI and
CVSD/PCM hardware.

audio_stop() A.5.4 45 Stops the AAI and
CVSD/PCM hardware.

Bus
Interface
Unit
(BIU)

biu_config_zone() A.6.1 46
Configures a given mem-
ory or I/O zone according
to specified parameters.

biu_set_early_write() A.6.2 47
Reports whether the BIU
is in early-write or late-
write mode.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
26 CP Driver Library

Summary of On-Chip Peripheral Driver Functions
Controller
Area
Network
(CAN)

can_init() A.7.1 48 Initializes CAN hardware
and driver.

can_config_tx() A.7.2 50
Configures a message
buffer to transmit a
packet.

can_config_rx() A.7.3 51
Configures the message
buffer to receive a Data
Frame only.

can_read_msg() A.7.4 52 Reads a message buffer.

can_shutdown() A.7.5 53 Shuts down the CAN
driver.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
CP Driver Library 27

Summary of On-Chip Peripheral Driver Functions

On-Chip Peripheral Drivers
Flash
Memory
Interface

FlashInit() A.8.1 54
Initializes the timing regis-
ters for the specified flash
memory.

FlashGetPageSize() A.8.2 55 Returns the page size for
specified flash memory.

FlashGetPageNum() A.8.3 55 Returns number of pages
in specified flash memory.

FlashGetStartAddress() A.8.4 56 Returns start address for
specified flash memory.

FlashInformationBlockRead() A.8.5 57
Reads a specified number
of words from an Infor-
mation Block.

FlashInformationBlockWrite() A.8.6 58
Writes a specified number
of words to an Informa-
tion Block

FlashInformationBlockErase() A.8.7 59
Erases an Information
Block and corresponding
Main Block.

FlashRead() A.8.8 60 Read specified number of
bytes from Main Block.

FlashPageProgramSafe() A.8.9 61 Program specified number
of bytes to Main Block.

FlashPageProgram() A.8.10 62 Program specfied page in
Main Block.

FlashEraseAll() A.8.11 63 Erase specified flash
memory.

FlashPageErase) A.8.12 64 Erase specified page.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
28 CP Driver Library

Summary of On-Chip Peripheral Driver Functions
Interrupt
Control
Unit
(ICU)

icu_init() A.9.1 65 Initializes the ICU
hardware.

icu_mask() A.9.2 65 Masks a specified
interrupt.

icu_unmask() A.9.3 66 Unmasks a specified
interrupt.

Multi-
Function
Timer
(MFT)

mft_init() A.10.1 67

Initializes the MFT hard-
ware to generate a clock
tick every specified period
of time.

mft_delay() A.10.2 68

Loads an MFT counter
with a specified count,
waits for the counter to
underflow, then returns.

Microwire
Interface

mw_init A.11.1 69
Initializes the Microwire
hardware and the
Microwire driver.

mw_tx A.11.2 70 Transmits a specified
number (or less) of bytes.

mw_rx A.11.3 70 Reads a specified number
(or less) of received bytes

mw_tx_rx A.11.4 71

Transmits a specified
number of bytes and
receives the same amount
of bytes at the same time.

System
Configu-
ration

SYSCFGEnableIoExpansion() A.12.1 72
Enables the BIU IO
expansion zone that is
used for external I/O.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
CP Driver Library 29

Summary of On-Chip Peripheral Driver Functions

On-Chip Peripheral Drivers
System
Timer

timer_init() A.13.1 73

Initializes the system timer
hardware and driver.
Currently configured for
using the TWM, but other
timers could be used.

timer_set_wakeup() A.13.2 74 Sets up a wakeup call.

timer_clear_wakeup() A.13.3 75 Clears a wakeup call
setting.

timer_wakeup_check() A.13.4 75

Scans the wakeup list,
updates the time counts,
and calls the wakeup func-
tion for any entry that
expires.

timer_wait() A.13.5 76 Delays execution for a
specified number of ticks.

Triple
Clock and
Reset
Module

TCRSetClock() A.14.1 77 Sets the frequency of the
system’s main clock.

TCRPllEnable() A.14.2 77 Enables the on-chip PLL.

TCRPllDisable() A.14.3 78 Disables the on-chip PLL.

Timing
and
Watchdog
Module
(TWM)

twm_init() A.15.1 79
Initializes the TWM
peripheral and the TWM
driver.

wd_init() A.15.2 79 Initializes the Watchdog.

wd_restart() A.15.3 80 Restarts the Watchdog.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
30 CP Driver Library

Summary of On-Chip Peripheral Driver Functions
UART
Interface
(Inter-
rupt
mode)

usart_init() A.16.1 81 Initializes the UART to
the specified bit rate.

usart_shutdown() A.16.2 82 Shuts down the UART
and releases its resources.

usart_tx() A.16.3 83 Transmits a specified
number (or less) of bytes.

usart_rx() A.16.4 84 Reads a specified number
(or less) of received bytes.

usart_rx_count() A.16.5 85

Returns the number of
bytes that can be currently
read from the UART
driver.

UART
Interface
(DMA
mode)

usart_dma_init() A.17.1 86 Initializes the UART to
the specified bit rate.

usart_dma_tx() A.17.2 87 Transmits a specified
number (or less) of bytes.

usart_dma_rx() A.17.3 88 Reads a specified number
(or less) of received bytes.

usart_dma_rx_count() A.17.4 88

Returns the number of
bytes that can be currently
read from the UART-
DMA driver.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
CP Driver Library 31

Summary of On-Chip Peripheral Driver Functions

On-Chip Peripheral Drivers
Universal
Serial Bus
(USB)

usb_init() A.18.1 89

Initialize the USB control-
ler, attach to USB bus,
perform enumeration and
configuration.

usb_shutdown() A.18.2 90
Detach from bus, disable
USB interrupts, halt USB
controller.

node_resume() A.18.3 90 Send resume signal.

get_node_status() A.18.4 91 Returns the current state
of the USB node.

handle_std_usb_request() A.18.5 91
Selects and calls routines
for handling standard USB
requests.

Versatile
Timer
Unit
(VTU)

vtu_init() A.19.1 92 Initializes a specified VTU
channel.

Table A-1. On-Chip Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
32 CP Driver Library

ACCESS.bus (Master Mode)
A.2 ACCESS.bus (Master Mode)

A.2.1 acbm_init()
Description: This function initializes the ACCESS.bus hardware and the

ACCESS.bus driver.

Function: acbm_init()

Return: void

Parameters:

Type Name Description:

unsigned int acb_num: The unit number of the
ACCESS.bus block to be
initialized. If the CP3000
device has only one
ACCESS.bus block, its unit
number is 0.

unsigned short divisor The ratio between the sys-
tem clock frequency and the
desired ACCESS.bus clock
frequency. For accuracy this
number should be a multiple
of 4. It also must be in the
range of 32 to 2044.

void (*callback_p)(void) A pointer to a callback func-
tion that will be called once
a transmit or receive trans-
action is completed or
aborted.
CP Driver Library 33

ACCESS.bus (Master Mode)

On-Chip Peripheral Drivers
A.2.2 acbm_tx()
Description: This function transmits data to a specified slave device.

Function: acbm_tx()

Return: void

Parameters:

Type Name Description:

unsigned int acb_num: The unit number of the
ACCESS.bus block to be
used. If the CP3000 device
has only one ACCESS.bus
block, its unit number is 0.

unsigned char address The ACCESS.bus address of
the slave device to be
addressed.

unsigned char *data A pointer to a memory
buffer where the data to be
transmitted is stored.

unsigned short size The size of the data to be
transmitted in bytes.

boolean stop A boolean flag indicating
whether a STOP condition
should be generated at the
end of data transmission.
34 CP Driver Library

ACCESS.bus (Master Mode)
A.2.3 acbm_rx()
Description: This function receives data from a specified slave device.

Function: acbm_rx()

Return: void

Parameters:

Type Name Description:

unsigned int acb_num: The unit number of the
ACCESS.bus block to be
used. If the CP3000 device
has only one ACCESS.bus
block, its unit number is 0.

unsigned char address The ACCESS.bus address of
the slave device to be
addressed.

unsigned char *inbuf A pointer to a memory
buffer where the data to be
transmitted is stored.

unsigned short size The size of the data to be
transmitted in bytes.

boolean stop A boolean flag indicating
whether a STOP condition
should be generated at the
end of data transmission.
CP Driver Library 35

ACCESS.bus (Slave Mode)

On-Chip Peripheral Drivers
A.3 ACCESS.bus (Slave Mode)

A.3.1 acbs_init()
Description: This function initializes the ACCESS.bus hardware and the

ACCESS.bus driver.

Function: acbs_init()

Return: void

Parameters:

Type Name Description:

unsigned char address The 7-bit ACCESS.bus
address of the local device.
36 CP Driver Library

ACCESS.bus (Slave Mode)
A.3.2 acbs_tx()
Description: This function deposits data to be transmitted by the slave

the next time the master requests the slave to transmit.

Function: acbs_tx()

Return: unsigned int The number of bytes that
were actually transmitted.
Could be less than the
requested number.

Parameters:

Type Name Description:

unsigned char *data A pointer to a memory
buffer where the data to be
transmitted is stored.

unsigned short size The size of the data to be
deposited in bytes. Note:
when the master asks the
slave to transmit, it is up to
the master to decide how
many bytes it wants to pull.
The application is responsi-
ble for depositing enough
data so that the master will
not starve. The amount of
data needed by the master is
application dependent.
CP Driver Library 37

ACCESS.bus (Slave Mode)

On-Chip Peripheral Drivers
A.3.3 acbs_rx()
Description: This function reads a specified number (or less) of

received bytes into a specified memory location.

Function: acbs_rx()

Return: unsigned int The number of bytes that
were actually read. Could be
less than the requested
number.

Parameters:

Type Name Description:

unsigned char *inbuf A pointer to the start
address of the buffer to
receive the data.

unsigned short size The number of bytes to be
read.
38 CP Driver Library

ACCESS.bus (Slave Mode)
A.3.4 acbs_rx_count()
Description: This function returns the number of bytes that can be cur-

rently read from the ACCESS.bus slave driver.

Function: acbs_rx_count()

Return: unsigned int The number of bytes that
can be currently read from
the UART driver.

Parameters: None.
CP Driver Library 39

Analog/Digital Converter (ADC)

On-Chip Peripheral Drivers
A.4 Analog/Digital Converter (ADC)

A.4.1 AdcInit()
Description: This function initializes the ADC peripheral and the ADC driver.

Function: AdcInit()

Return: void

Parameters:

Type Name Description:

boolean Diff Specifies operation in differen-
tial or single-ended mode.
TRUE is differential mode, and
FALSE is single-ended mode.

unsigned char Channel Specifies input channel in single-
ended mode, or input channel
pair in differential mode.

unsigned short PRef Specifies positive voltage refer-
ence. Valid values:
PREF_CFG_INTERNAL
PREF_CFG_VREFP
PREF_CFG_ADC0
PREF_CFG_ADC1

unsigned short NRef Specifies negative voltage refer-
ence. Valid values:
NREF_CFG_INTERNAL
NREF_CFG_ADC2
NREF_CFG_ADC3

boolean ExternalWakeup Specifies whether the ADC con-
version is initiated by an external
trigger. TRUE is an external trig-
ger, FALSE is a software trigger.
40 CP Driver Library

Analog/Digital Converter (ADC)
boolean TouchScreen Specifies if the ADC is being
used in a touchscreen applica-
tion. In a touchscreen applica-
tion, the ADC block is
configured to be in Pen Down
Detection mode at the end of
the initialization.

boolean Repeat When an external trigger is used,
specifies whether the trigger is
one-shot or retriggerable. TRUE
starts a conversion on every
ASYNC trigger. FALSE only
starts a conversion on the next
ASYNC trigger.

void (*adc_result_callback_p)(short *Result) A pointer to a function that will
be called every time a result is
available.

If the pointer is not used (set to
NULL), then the ADC interrupt
will not be generated at the end
of a conversion. The application
can read the conversion result by
calling the blocking function
AdcReadResult().
CP Driver Library 41

Analog/Digital Converter (ADC)

On-Chip Peripheral Drivers
A.4.2 AdcShutDown()

A.4.3 AdcTouchScreenConfig()

Description: This function shuts down the ADC block and disables the
ADC interrupt.

Function: AdcShutDown()

Return: void

Parameters: None.

Description: This function sets up the ADC to sample the appropriate coordi-
nate for the touchscreen application. After a set of coordinates
have been sampled, it is the responsibility of the application to
configure the ADC for Pen Down Detection mode.

Function: AdcTouchScreenConfig()

Return: void

Parameters:

Type Name Description:

unsigned short CoOrdinate Specifies which coordinate to sample
next.

Valid values:
SAMPLE_X
SAMPLE_Y
SAMPLE_Z
PEN_DOWN_DETECT
SAMPLE_Z_PRE_PENDOWN.
42 CP Driver Library

Analog/Digital Converter (ADC)
A.4.4 AdcStartConversion()

A.4.5 AdcReadResult()

Description: This function starts an ADC conversion or primes the
ADC to start a conversion on the next rigger event. If the
external trigger is not enabled, calling this function starts a
conversion. If the external trigger is enabled, this function
primes the ADC to start a conversion on the next ASYNC
trigger.

Function: AdcStartConversion()

Return: void

Parameters: None.

Description: This function reads the result after the ADC conversion
has finished. If during the ADC initialization, there was no
callback function provided to read the results from the
ADC, then this function can be used to read the results in
a busy waiting loop.

Function: AdcReadResult()

Return: short 12-bit ADC result.

Parameters: None.
CP Driver Library 43

Advanced Audio Interface (AAI)

On-Chip Peripheral Drivers
A.5 Advanced Audio Interface (AAI)

A.5.1 audio_init()
Description: This function configures a given memory or I/O zone according

to specified parameters.

Function: audio_init()

Return: void

Parameters:

Type Name Description:

audio_config_t *config Pointer to an audio
configuration structure.

dl_t *transmit_dl A pointer to data link
(circular buffer) control
structure to be used for
voice transmission (audio
output).

dl_t *receive_dl A pointer to data link
(circular buffer) control
structure to be used for
voice reception (audio
input).

void (*callback_p)(unsigned int) A pointer to a callback
function to be called when-
ever input voice samples
are written to the receive
data link circular buffer.
44 CP Driver Library

Advanced Audio Interface (AAI)
A.5.2 audio_set_control_bits()

A.5.3 audio_start()

A.5.4 audio_stop()

Description: This function specifies the number and contents of the
control bits that are appended to each transmitted word.
Typically, this is used by codecs for volume control.

Function: audio_set_control_bits()

Return: void

Parameters:

Type Name Description:

unsigned int n_bits The number of bits to be
appended (0-3).

unsigned char value The value or contents of the
control bits (0x0-0x7).

Description: This function starts the AAI and CVSD/PCM hardware.

Function: audio_start()

Return: void

Parameters: None.

Description: This function stops the AAI and CVSD/PCM hardware.

Function: audio_stop()

Return: void

Parameters: None.
CP Driver Library 45

Bus Interface Unit (BIU)

On-Chip Peripheral Drivers
A.6 Bus Interface Unit (BIU)

A.6.1 biu_config_zone()
Description: This function configures a given memory or I/O zone

according to specified parameters.

Function: biu_config_zone()

Return: void

Parameters:

Type Name Description:

unsigned int zone The zone id. One of ZONE0,
ZONE1, ZONE2, or IOZONE.

unsigned int ws Number of wait states to be
applied to this zone.

unsigned int hs Number of hold states to be
applied to this zone.

boolean fr A fast-read flag. If TRUE
fast-read mode will be
enabled for the zone.
Ignored for the I/O zone.
46 CP Driver Library

Bus Interface Unit (BIU)
A.6.2 biu_set_early_write()
Description: This function sets the early-write mode of the BIU.

Function: biu_set_early_write()

Return: void

Parameters:

Type Name Description:

boolean er Boolean flag to indicate the
early-write mode:

TRUE - early-write.
FALSE - late-write.
CP Driver Library 47

Controller Area Network (CAN)

On-Chip Peripheral Drivers
A.7 Controller Area Network (CAN)

A.7.1 can_init()
Description: Initializes the CAN hardware and CAN driver. After returning from

this function, the individual CAN message buffers are ready to be con-
figured for transmission and reception. Puts message buffers into
benign state and zeros all contents.

Function: can_init()

Return: void

Parameters:

Type Name Description:

unsigned int can_id Unit number of the CAN interface. For CP3000
devices with only one CAN unit, the unit num-
ber is 0.

can_config_t global_config Sets message buffers into locking mode, and
configures direction of data byte. Values ORed
together.

unsigned int bus_freq_ratio Sets CAN bus bit rate relative to CPU frequency.
Value is ratio (system freq)/(CAN bus freq). For
example, for a 12 MHz CPU and 50 KHz CAN
bus bit rate, bus_freq_ratio = 240.

unsigned short global_mask Sets standard message mask for message buffers
0-14, 1 indicates don't care for similar bit in ID1.
RTR bit is automatically masked when a remote
message is sent to ensure reception of response.

unsigned short global_mask_ext Sets standard message mask for message buffers
0-14, 1 indicates don't care for similar bit in ID0.
RTR bit is automatically masked when a remote
message is sent to ensure reception of response.

unsigned short basic_mask Sets standard message mask for message buffer
15, 1 indicates don't care for similar bit in ID1.
48 CP Driver Library

Controller Area Network (CAN)
unsigned short basic_mask_ext Sets standard message mask for message buffer
15, 1 indicates don't care for similar bit in ID0.

void (*mbuf_callback)
(unsigned short
mbuf_num,
unsigned short
cediag)

Callback function invoked whenever interrupt
on any message buffer is activated. Setting this to
a non-null value causes setup of interrupts for
this CAN block. A null value disables interrupts.

If the cediag parameter is 0, then the mbuf_num
parameter indicates which message buffer caused
the interrupt (which could be due to a receive or
transmit event).

If the cediag parameter is non-zero, cediag is a
copy of the CEDIAG register, which provides
detailed information about the error.
CP Driver Library 49

Controller Area Network (CAN)

On-Chip Peripheral Drivers
A.7.2 can_config_tx()
Description: Configure a message buffer to transmit a packet, any previous configu-

ration is completely overridden. There are five modes (see tx_type
parameter and can_tx_type_t).

Function: can_config_tx()

Return: unsigned int ERR_MBUF_BUSY if the buffer is busy already. To
force a new setup, call with TX_CANCEL first.

Parameters:

Type Name Description:

unsigned int can_id Unit number of the CAN interface. For CP3000
devices with only one CAN unit, the unit number is 0.

unsigned char mbuf_num Selects message buffer to set into this mode, 0-14.

unsigned long id The Message Identifier.

unsigned char *msg Pointer to an array of up to 8 bytes of payload.

unsigned int len Length of payload.

msg_type_t msg_type Normal or extended.

unsigned int priority The priority to set the message to.

can_tx_type_t tx_type SEND_DATA: Send a single data frame.

REMOTE_REQ: Send a remote frame and setup to
receive the response, user calls can_read_msg() to
retrieve the response from the message buffer.

RESPOND_TO_REMOTE: Loads the message
buffer with data, etc. and waits for a matching Remote
frame before transmitting.

SEND_THEN_RTR: Same as
RESPOND_TO_REMOTE but send the frame once
before waiting for an incoming Remote frame.

TX_CANCEL: Cancel any pending transmit or
RESPOND_TO_REMOTE setting.
50 CP Driver Library

Controller Area Network (CAN)
A.7.3 can_config_rx()
Description: Configure the message buffer to receive a Data Frame

only. Call can_read_msg() to retrieve the payload data
and details of message actually received.

Function: can_config_rx()

Return: unsigned int ERR_MBUF_BUSY if the
buffer is already busy, other-
wise zero.

Parameters:

Type Name Description:

unsigned int can_id Unit number of the CAN
interface. For CP3000
devices with only one CAN
unit, the unit number is 0.

unsigned char mbuf_num Selects message buffer to set
into this mode, 0-14.

unsigned long id The Message Identifier.

msg_type_t msg_type Normal or extended.
CP Driver Library 51

Controller Area Network (CAN)

On-Chip Peripheral Drivers
A.7.4 can_read_msg()
Description: Reads a message from the specified message buffer (0-14).

Function: can_read_msg()

Return: unsigned int Returns length of payload.

Parameters:

Type Name Description:

unsigned int can_id Unit number of the CAN
interface. For CP3000
devices with only one CAN
unit, the unit number is 0.

unsigned char mbuf_num Selects message buffer to
read, 0-14.

unsigned long *id The Message Identifier is
returned in this parameter.

unsigned char *msg Pointer to array of up to 8
bytes to write payload into
priority.

msg_type_t *msg_type Normal or extended is
returned in this pointer
parameter.

unsigned int *priority Pointer to the priority of the
message received.

unsigned short *tstamp Bit time stamp of message
reception is returned in this
pointer parameter.
52 CP Driver Library

Controller Area Network (CAN)
A.7.5 can_shutdown()
Description: Shuts down the CAN driver and specified CAN interface.

Also disables CAN interrupts. To use the specified CAN
interface subsequently, call can_init().

Function: can_shutdown()

Return: void

Parameters:

Type Name Description:

unsigned int can_id Unit number of the CAN
interface. For CP3000
devices with only one CAN
unit, the unit number is 0.
CP Driver Library 53

Flash Memory Interface

On-Chip Peripheral Drivers
A.8 Flash Memory Interface

A.8.1 FlashInit()
Description: This function initializes the flash memory timing registers

for the specified frequency.

Function: FlashInit()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

frequency_t Frequency Specifies the frequency.
Valid values:

FREQ_8MHz
FREQ_12MHz
FREQ_16MHz
FREQ_20MHz
FREQ_24Mhz
54 CP Driver Library

Flash Memory Interface
A.8.2 FlashGetPageSize()

A.8.3 FlashGetPageNum()

Description: This function returns the page size of the specified flash
memory.

Function: FlashGetPageSize()

Return: unsigned short The page size.

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

Description: This function returns the number of flash pages of the
specified flash memory.

Function: FlashGetPageNum()

Return: unsigned short The number of pages.

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA
CP Driver Library 55

Flash Memory Interface

On-Chip Peripheral Drivers
A.8.4 FlashGetStartAddress()
Description: This function returns the start address of the specified

flash memory.

Function: FlashGetStartAddress()

Return: unsigned long The start address.

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA
56 CP Driver Library

Flash Memory Interface
A.8.5 FlashInformationBlockRead()
Description: This function reads a specified number of words from a

location in Information Block 0, 1, or 2. Information
Block data is read through the register-based interface.
Only word read operations are supported, and the Offset
must be word-aligned (LSB = 0). The Type controls
whether Information Block 0 or 1 (FLASH_PROGRAM)
or Information Block 2 (FLASH_DATA) is accessed. The
Offset controls whether Information Block 0 (000h–
07Eh) or Block 1 (080h–0FEh) is accessed. The Offset
used to access Information Block 2 is 000h–07Eh.

Function: FlashInformationBlockRead()

Return: unsigned short The number of words read.

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned short Offset The byte offset to the first
source word.

unsigned short *Data A pointer to a buffer of
words to store the data read
from the Information
Block.

unsigned short Size Number of words to read.
CP Driver Library 57

Flash Memory Interface

On-Chip Peripheral Drivers
A.8.6 FlashInformationBlockWrite()
Description: This function writes a specified number of words to a

location in Information Block 1 or 2. Writing is only
allowed when global write protection is disabled and the
write enable bit is set for the sector which contains the
word to be written. Information Block 0 cannot be written
by the CPU. Information Block data is written through the
register-based interface. Only word write operations are
supported, and the Offset must be word-aligned (LSB =
0). The Type controls whether Information Block 1
(FLASH_PROGRAM) or Information Block 2
(FLASH_DATA) is accessed. The Offset is 080h–0FEh
for Information Block 1 or 000h–07Eh for Information
Block 2.

Function: FlashInformationBlockWrite()

Return: unsigned short The number of words writ-
ten.

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned short Offset The byte offset to the first
destination word.

unsigned short *Data A pointer to a buffer of
words holding the data to be
written to the Information
Block.

unsigned short Size Number of words to write.
58 CP Driver Library

Flash Memory Interface
A.8.7 FlashInformationBlockErase()
Description: Erases an Information Block and the corresponding Main

Block. Page erase is not supported for Information Blocks.

Function: FlashInformationBlockErase()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned short Offset Any Offset within the Infor-
mation Block.

unsigned char Data Any data (don’t care).
CP Driver Library 59

Flash Memory Interface

On-Chip Peripheral Drivers
A.8.8 FlashRead()
Description: This function reads a specified number of byte from either

flash memory. The Type controls whether flash program
or flash data memory is accessed. The Offset is added to
the flash memory base address.

Function: FlashRead()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned long Offset The byte offset to the first
source byte.

unsigned short Size Number of bytes to read.

unsigned char *Data A pointer to a buffer of
bytes to store the data read
from the flash memory.
60 CP Driver Library

Flash Memory Interface
A.8.9 FlashPageProgramSafe()
Description: This function provides a generalized mechanism to write

to the flash memory Main Blocks. It assumes that the data
to be written is not necessarly aligned on a page boundary.
The write cycle implies that an erase operation has taken
place prior to programming. The following algorithm is
used:

a) Locate a place to save a page of data.
c) Erase it to allow a later writting operation.
b) Copy the current page to save area.
d) Erase current page.
e) Write current page with data from saved and new data
(which allows partial page writes).

Temporary storage is allocated from the heap. If the
request fails, the last page of the Main Block is used.

Function: FlashPageProgramSafe()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned long Offset The byte offset to the first
destination byte.

unsigned short Size Number of bytes to pro-
gram.

unsigned char *InBuf Buffer containing data to
program to flash.
CP Driver Library 61

Flash Memory Interface

On-Chip Peripheral Drivers
A.8.10 FlashPageProgram()
Description: This function always writes one page of data. The data is obtained

from an input buffer (InBuf) and a reference buffer (RefBuf). The
Size specifies the number of bytes from a page offset up to the end
of the page and therefore must not exceed the page size. The page
offset is calculated from the specified offset with the specified Main
Block(s). The algorithm used here is complicated by the fact that
the size of the modified data is not always exactly a page. Because
the whole page must be written, the page must be saved to the ref-
erence buffer, the page is erased, and then the page is written with
the saved and modified data. The page must be saved and erased
before this function is called.

Writing is only allowed when global write protection is disabled.
Writing by the CPU is only allowed when the write enable bit is set
for the sector which contains the word to be written. The CPU can-
not write the Boot Area. Only word-wide write access to word-
aligned addresses is supported.

Function: FlashPageProgram()

Return: void

Parameters:

memory_t Type Specifies the flash memory. Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned long Offset The byte offset to the first modified destination byte.

unsigned short Size Number of bytes to modify.

unsigned char *RefBuf A reference buffer where the old contents of the
page to write have been saved. Possibly null, if the
whole page is being written.

unsigned char *InBuf A buffer containing the new data to be written.
62 CP Driver Library

Flash Memory Interface
A.8.11 FlashEraseAll()
Description: This function clears all of the specified flash memory,

which sets every byte to FFh.

Function: FlashEraseAll()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA
CP Driver Library 63

Flash Memory Interface

On-Chip Peripheral Drivers
A.8.12 FlashPageErase()
Description: A flash erase operation sets all of the bits in the erased

region. Pages of a main block can be individually erased if
their write enable bits are set. Each page in Main Blocks 0
and 1 consists of 1024 bytes (512 words). Each page in
Main Block 2 consists of 512 bytes (256 words).

Function: FlashPageErase()

Return: void

Parameters:

memory_t Type Specifies the flash memory.
Valid values:

FLASH_PROGRAM
FLASH_DATA

unsigned long Address Address of the page to erase
64 CP Driver Library

Interrupt Control Unit (ICU)
A.9 Interrupt Control Unit (ICU)

A.9.1 icu_init()

A.9.2 icu_mask()

Description: This function initializes the ICU hardware. It masks all
interrupts.

Function: icu_init()

Return: void

Parameters: None.

Description: This function masks a single interrupt specified by its IRQ
number.

Function: icu_mask()

Return: void

Parameters:

Type Name Description:

unsigned int irq The IRQ number of the
interrupt to be masked.
CP Driver Library 65

Interrupt Control Unit (ICU)

On-Chip Peripheral Drivers
A.9.3 icu_unmask()
Description: This function unmasks a single interrupt specified by its

IRQ number.

Function: icu_unmask()

Return: void

Parameters:

Type Name Description:

unsigned int irq The IRQ number of the
interrupt to be unmasked.
66 CP Driver Library

Multi-Function Timer (MFT)
A.10 Multi-Function Timer (MFT)

A.10.1 mft_init()
Description: This function initializes the MFT hardware to generate a

clock tick every specified period of time.

Function: mft_init()

Return: void

Parameters:

Type Name Description:

const int mode Selects the mode of opera-
tion.

const int ClockTick1 Mode 1:
The high/low pulse width.

Mode 3:
The required length of
period between clock ticks
in milliseconds for timer I.

const int ClockTick2 Modes 1 and 3:
The required length of
period between clock ticks
in milliseconds for timer II.

const int ClockTick3 Mode 1:
The high/low pulse width.

Mode 3:
Unused.
CP Driver Library 67

Multi-Function Timer (MFT)

On-Chip Peripheral Drivers
A.10.2 mft_delay()
Description: This function loads an MFT counter with the specified

delay count, waits for the counter to underflow, then
returns.

Function: mft_delay()

Return: void

Parameters:

Type Name Description:

const int mode Selects the mode of opera-
tion.

const int Channel Selects channel 1 or 2.

unsigned short Dly Specifies delay count.
68 CP Driver Library

Microwire Interface
A.11 Microwire Interface

A.11.1 mw_init()
Description: This function initializes the Microwire hardware and the

Microwire driver. After returning from this function the
Microwire interface is ready to transmit and receive data.

Function: mw_init()

Return: void

Parameters:

Type Name Description:

boolean master_mode A boolean value that determines
whether the Microwire interface
should be configured to master
mode or slave mode.

unsigned int divisor A number that specifies the clock
rate used by the Microwire interface
when in master mode. This number
actually specifies the ratio between
the system main clock and the clock
that will be used by the Microwire
interface. The larger the number,
the slower the Microwire clock.
Only even numbers in the range 2-
256 are acceptable. Any other value
will be truncated. This argument is
ignored in slave mode.

void (*callback_p)(void) A pointer to a void function with no
arguments that will be called when a
transmit request is completed,
receive request is completed, or
transmit/receive request is com-
pleted.
CP Driver Library 69

Microwire Interface

On-Chip Peripheral Drivers
A.11.2 mw_tx()

A.11.3 mw_rx()

Description: This function transmits a specified number (or less) of
bytes starting from a specified memory location.

Function: mw_tx()

Return: void

Parameters:

Type Name Description:

unsigned char *buf A pointer to a buffer that
contains the data to be
transmitted.

unsigned int size The number of bytes to be
transmitted.

Description: This function reads a specified number (or less) of
received bytes into a specified memory location.

Function: mw_rx()

Return: void

Parameters:

Type Name Description:

unsigned char *buf A pointer to the start
address of the buffer to
receive the data.

unsigned int size The number of bytes to be
read.
70 CP Driver Library

Microwire Interface
A.11.4 mw_tx_rx()
Description: This function transmits a specified number of bytes and

receives the same amount of bytes at the same time.

Function: mw_tx_rx()

Return: void

Parameters:

Type Name Description:

unsigned char *rxbuf A pointer to the start
address of the buffer to
receive the data.

unsigned char *txbuf A pointer to a buffer that
contains the data to be
transmitted.

unsigned int size The number of bytes to be
transmitted and received.
CP Driver Library 71

System Configuration

On-Chip Peripheral Drivers
A.12 System Configuration

A.12.1 SYSCFGEnableIoExpansion()
Description: This function enables the BIU IO expansion zone that is

used for external I/O. Note that in IRE mode, I/O expan-
sion is disabled by default, and therefore it is necessary to
call this function.

Function: SYSCFGEnableIoExpansion()

Return: void

Parameters: None.
72 CP Driver Library

System Timer
A.13 System Timer

A.13.1 timer_init()
Description: This function initializes the TWM hardware and the timer

driver, specifically the wakeup list.

Function: timer_init()

Return: void

Parameters: None.
CP Driver Library 73

System Timer

On-Chip Peripheral Drivers
A.13.2 timer_set_wakeup()
Description: This function sets up a wakeup call. It does this by insert-

ing an entry to the wakeup list.

Function: timer_set_wakeup()

Return: int A handle to be used for this
wakeup call for further ref-
erences (e.g., if the wakeup
call is to be cancelled later).
In practice, this is the index
of the wakeup call in the
wakeup list.

Parameters:

Type Name Description:

void (* func)(void) A pointer to a function that
will be called when the time
expires.

unsigned int clock_ticks The number of clocks ticks
to elapse before the time
expires.

boolean repeat A flag that specifies whether
this is a repetitive wakeup
call or a one-time wakeup
call. If FALSE, there will be
a one-time wakeup call and
then the wakeup entry will
be invalidated. If TRUE, the
time count will restart auto-
matically when the time
expires.
74 CP Driver Library

System Timer
A.13.3 timer_clear_wakeup()

A.13.4 timer_wakeup_check()

Description: This function deactivate a specified wakeup call.

Function: timer_clear_wakeup()

Return: void

Parameters:

Type Name Description:

int index The wakeup call handle
(index).

Description: This function scans the wakeup list, increments time
counts, and calls the wakeup function for any entry that
expires.

Function: timer_clear_wakeup()

Return: void

Parameters: None.
CP Driver Library 75

System Timer

On-Chip Peripheral Drivers
A.13.5 timer_wait()
Description: This function provides a wait (delay) service. It delays the

execution of the program for a give number of ticks.

Note: The implementation is different between the OS
and OS-less versions. In the OS version, the current task is
delayed for the required number of clock ticks (but other
tasks may run in the mean time). In the OS-less version,
there is a busy wait which is implemented by polling a flag
that will become TRUE after the required number of clock
ticks.

Function: timer_wait()

Return: boolean Indicates whether the wait
was completed successfully.

Parameters:

Type Name Description:

unsigned int ticks The number of clock ticks
to wait/delay.
76 CP Driver Library

Triple Clock and Reset
A.14 Triple Clock and Reset

A.14.1 TCRSetClock()

A.14.2 TCRPllEnable()

Description: This function sets the frequency of the system’s main
clock.

Function: TCRSetClock()

Return: void

Parameters:

Type Name Description:

freq_t freq The required frequency.
This is a value that has sev-
eral possible values for dif-
ferent clock frequencies.

Description: This function enables the on-chip PLL. It also selects the
PLL output to be used as input for the high frequency
clock generator (should this be separated from PLL).

Function: TCRPllEnable()

Return: void

Parameters: None.
CP Driver Library 77

Triple Clock and Reset

On-Chip Peripheral Drivers
A.14.3 TCRPllDisable()
Description: This function disables the on-chip PLL.

Function: TCRPllDisable()

Return: void

Parameters: None.
78 CP Driver Library

Timer Watchdog Module (TWM)
A.15 Timer Watchdog Module (TWM)

A.15.1 twm_init()

A.15.2 wd_init()

Description: This function initializes the TWM peripheral and the TWM
driver.

Function: twm_init()

Return: void

Parameters:

Type Name Description:

unsigned int tick_period The length of the clock tick
generated by the timing
module in milliseconds.

void (*tick_callback_p)(void) A pointer to a function that
will be called on every clock
tick.

Description: This function initializes Watchdog.

Function: wd_init()

Return: void

Parameters:

Type Name Description:

unsigned char ticks This is the number of clock ticks
the Watchdog counter will be
loaded with. The Watchdog will
count down and unless wd_restart
is called early enough, it will reach
zero and reset the CPU.
CP Driver Library 79

Timer Watchdog Module (TWM)

On-Chip Peripheral Drivers
A.15.3 wd_restart()
Description: This function restarts the Watchdog. This causes the

Watchdog counter to be reloaded with the original value
that was assigned to it and start the countdown again. If
this is not done early enough, the Watchdog Error signal
will be triggered, and that will reset the CPU.

Function: wd_restart()

Return: void

Parameters: None.
80 CP Driver Library

UART Interface (Interrupt Mode)
A.16 UART Interface (Interrupt Mode)

A.16.1 usart_init()
Description: This function initializes the UART hardware and the UART driver.

After this function returns, the UART is ready to transmit and
receive data.

Function: usart_init()

Return: void

Parameters:

Type Name Description:

unsigned int usart_num The unit number of the UART to be
initialized. If the CP3000 device has
only one UART, the unit number is 0.

bitrate_t bitrate The required communication bit rate.
Check the bitrate_t type for sup-
ported bit rates.

flow_control_t flow_control Indicates what type of flow control is
to be used. Check the flow_control_t
type for flow control types. Note:
software flow control is not yet sup-
ported.

void (*rx_callback)(void) An optional pointer. This function
will automatically be called when data
is received unless the pointer is
NULL. This function should be as
short as possible as it is called from
the UART receive interrupt handler.
CP Driver Library 81

UART Interface (Interrupt Mode)

On-Chip Peripheral Drivers
A.16.2 usart_shutdown()
Description: This function shuts down the specified UART and releases

its resources.

Function: usart_shutdown()

Return: void

Parameters:

Type Name Description:

unsigned int usart_num The unit number of the
UART to be shut down. If
the CP3000 device has only
one UART, the unit number
is 0.
82 CP Driver Library

UART Interface (Interrupt Mode)
A.16.3 usart_tx()
Description: This function transmits a specified number (or less) of

bytes starting from a specified memory location.

Function: usart_tx()

Return: unsigned int The number of bytes that
were actually transmitted.
Could be less than the
requested number.

Parameters:

Type Name Description:

unsigned int usart_num The unit number of the
UART to be used. If the
CP3000 device has only one
UART, the unit number is 0.

unsigned char *data A pointer to the start
address of the data to be
transmitted.

unsigned int size The number of bytes to be
transmitted.
CP Driver Library 83

UART Interface (Interrupt Mode)

On-Chip Peripheral Drivers
A.16.4 usart_rx()
Description: This function reads a specified number (or less) of

received bytes into a specified memory location.

Function: usart_rx()

Return: unsigned int The number of bytes that
were actually read. Could be
less than the requested
number.

Parameters:

Type Name Description:

unsigned int usart_num The unit number of the
UART to be used. If the
CP3000 device has only one
UART, the unit number is 0.

unsigned char *data A pointer to the start
address of the buffer to
receive the data.

unsigned int size The number of bytes to be
read.
84 CP Driver Library

UART Interface (Interrupt Mode)
A.16.5 usart_rx_count()
Description: This function returns the number of bytes that can be cur-

rently read from the UART driver.

Function: usart_rx_count()

Return: unsigned int The number of bytes that
can be currently read from
the UART driver.

Parameters:

Type Name Description:

unsigned int usart_num The unit number of the
UART to be used. If the
CP3000 device has only one
UART, the unit number is 0.
CP Driver Library 85

UART Interface (DMA Mode)

On-Chip Peripheral Drivers
A.17 UART Interface (DMA Mode)

A.17.1 usart_dma_init()
Description: This function initializes the UART according to the

required bit rate. It initializes DMA channels 0 for UART
receive and channel 1 for UART transmit.

Function: usart_dma_init()

Return: The number of bytes that
were actually transmitted.
Could be less than the
requested number.

Parameters:

Type Name Description:

bitrate_t bitrate The required communica-
tion bit rate. Check the
bitrate_t type for supported
bit rates.

flow_control_t flow_control Indicates what type of flow
control is to be used. Check
the flow_control_t type for
flow control types. Note:
software flow control is not
yet supported.

void (*rx_callback)(void) An optional pointer. This
function will automatically
be called when data is
received unless the pointer
is NULL. This function
should be as short as possi-
ble as it is called from an
interrupt handler.
86 CP Driver Library

UART Interface (DMA Mode)
A.17.2 usart_dma_tx()
Description: This function transmits a specified number (or less) of

bytes starting from a specified memory location.

Function: usart_dma_tx()

Return: unsigned int The number of bytes that
were actually transmitted.
Could be less than the
requested number.

Parameters:

Type Name Description:

unsigned char *data A pointer to the start
address of the data to be
transmitted.

unsigned int size The number of bytes to be
transmitted.
CP Driver Library 87

UART Interface (DMA Mode)

On-Chip Peripheral Drivers
A.17.3 usart_dma_rx()

A.17.4 usart_dma_rx_count()

Description: This function reads a specified number (or less) of
received bytes into a specified memory location.

Function: usart_dma_rx()

Return: unsigned int The number of bytes that
were actually read. Could be
less than the requested num-
ber.

Parameters:

Type Name Description:

unsigned char *data A pointer to the start
address of the buffer to
receive the data.

unsigned int size The number of bytes to be
read.

Description: This function returns the number of bytes that can be cur-
rently read from the UART-DMA driver

Function: usart_rx_count()

Return: unsigned int The number of bytes that
can be currently read from
the UART-DMA driver.

Parameters: None.
88 CP Driver Library

Universal Serial Bus (USB)
A.18 Universal Serial Bus (USB)

A.18.1 usb_init()
Description: This function takes the device automatically through the

enumeration and configuration process with the host. Sub-
sequent calls to usb_rx_data() and usb_tx_data() per-
form operations at the transfer level, i.e., data transfers
smaller or greater than the device maximum packet size.
The descriptors required for the enumeration process are
configured by constructing the necessary structures in a
header file (descrpt.h). The driver is capable of working in
a simple blocking (synchronous) mode or in a more flexi-
ble non-blocking (asynchronous) mode.

Function: usb_init()

Return: boolean Returns TRUE unless the
USB module cannot be
detected or the PLL has not
been enabled.

Parameters:

Type Name Description:

usb_init_info_t *usbinitinfo Initialization information
from user.
CP Driver Library 89

Universal Serial Bus (USB)

On-Chip Peripheral Drivers
A.18.2 usb_shutdown()

A.18.3 node_resume()

Description: Detaches node from USB bus and shuts down the USB
controller and driver.

Function: usb_shutdown()

Return: void

Parameters: None.

Description: Sends resume signal on the USB bus, if in the Suspend
state.

Function: node_resume()

Return: boolean Returns TRUE if request
was successful, otherwise
returns FALSE.

Parameters:

Type Name Description:

uint8 ucState Valid values:

SIGNAL_RESUME
GO_OPERATIONAL
90 CP Driver Library

Universal Serial Bus (USB)
A.18.4 get_node_status()

A.18.5 handle_std_usb_request()

Description: Returns the current USB state of the node.

Function: get_node_status()

Return: usb_node_stat_t The current USB state of
the node.

Parameters: None.

Description: Selects and calls the relevant routine to handle standard
USB requests received.

Function: handle_std_usb_request()

Return: void

Parameters:

Type Name Description:

usb_request_t USBRequest Structure for holding stan-
dard device request data.
CP Driver Library 91

Versatile Timer Unit (VTU)

On-Chip Peripheral Drivers
A.19 Versatile Timer Unit (VTU)

A.19.1 vtu_init()
Description: Initializes a specified VTU channel. This function can also be called to

update a VTU configuration (e.g. modulating the PWM values).

Mode 0 (low power): all VTU timers are stopped.

Mode 1 (dual 8-bit PWM): sets the duty and period registers for two
8-bit PWM timers in a single VTU channel.

Mode 2 (single 16-bit PWM): sets the duty and period registers for one
16-bit PWM timer in a single VTU channel.

Function: vtu_init()

Return: void

Parameters:

Type Name Description:

const int Channel Selects the VTU channel being initialized.

const int VTUmode Selects the mode of operation.

const int Count Initializes the COUNT register in the VTU channel.

const int Duty Mode 1: Duty7:0 specifies the duty cycle value for the
8-bit PWM timer 1. Duty15:8 specifies the duty cycle
value for the 8-bit PWM timer 2. Period7:0 specifies
the period value for the 8-bit PWM timer 1.
Period15:8 specifies the period value for the 8-bit
PWM timer 2.

Mode 2: Duty15:0 specifies the duty cycle value for
the 16-bit PWM timer. Period15:0 specifies the
period value for the 16-bit PWM timer.

const int Period

const int Prescaler Prescaler counter value.
92 CP Driver Library

Board-Level Peripheral Drivers
 B

B.1 Summary of Board-Level Peripheral
Driver Functions

Table B-1 lists the board-level (off-chip) peripheral driver functions.

Table B-1. Board-Level Peripheral Driver Functions

Module Function Call Section Page Description

CFI-
Compli-
ant
External
Flash
Memory
Interface

CfiFlashGetNumBlocks() B.2.1 95 Returns number of blocks
in external flash memory.

CfiFlashReadReset() B.2.2 95 Places external flash mem-
ory in Read mode.

CfiFlashAutoSelect() B.2.3 96

Reads the electronic signa-
ture of the device, the
manufacturer code, or the
protection level of a block.

CfiFlashPageErase() B.2.4 97 Erases external flash
memory blocks.

CfiFlashEraseAll() B.2.5 98 Erases entire external
flash memory.

CfiFlashProgram() B.2.6 99 Programs external flash
memory.

CfiFlashQueryGet() B.2.7 100
Reads a section of CFI
information from a flash
device in query mode.

CfiFlashReadQuery() B.2.8 101

Puts a flash device into
query mode, and reads the
specified flash informa-
tion.

CfiFlashBlock() B.2.9 102 Build an array using the
specified block offsets.
CP Driver Library 93

Summary of Board-Level Peripheral Driver Func-

Board-Level Peripheral Drivers
Codec

codec_init() B.3.1 103 Initializes the codec driver.

codec_set_volume() B.3.2 104 Sets the volume level on
the codec output.

codec_adjust_volume() B.3.3 104 Adjusts the volume level
on the codec output.

codec_start() B.3.4 105 Starts the codec.

codec_stop() B.3.5 105 Stops the codec.

EEPROM

eep_init() B.4.1 106
Initializes communication
with the EEPROM over
the ACCESS.bus interface.

eep_buf_read() B.4.2 107 Reads from EEPROM.

eep_buf_write() B.4.3 108 Writes to the EEPROM.

eep_total_size() B.4.4 108 Returns EEPROM size.

LEDs

led_init() B.5.1 109 Initializes the LEDs.

led_set_all() B.5.2 109 Sets the binary LEDs.

led_set() B.5.3 110 Turns on one LED.

led_clear() B.5.4 110 Turns off one LED.

led_toggle() B.5.5 111 Toggles one LED.

DIP
Switches switch_on() B.6.1 112 Returns the boolean value

of a specified switch.

Table B-1. Board-Level Peripheral Driver Functions (Continued)

Module Function Call Section Page Description
94 CP Driver Library

CFI-Compliant Flash Interface
B.2 CFI-Compliant Flash Interface

B.2.1 CfiFlashGetNumBlocks()

B.2.2 CfiFlashReadReset()

Description: This function returns the number of blocks in a CFI-com-
pliant external flash memory, as indicated in the global
variable NUM_BLOCKS.

Function: CfiFlashGetNumBlocks()

Return: int Number of flash blocks

Parameters: None.

Description: This function places the flash in the Read mode described
in the data sheet. In this mode, the flash can be read as
normal memory. All of the other functions leave the flash
in the Read mode, so this is not strictly necessary. It is pro-
vided for completeness.

A wait of 10 us is required if the command is called during
a program or erase instruction. This is included here to
guarantee correct operation. The functions in this library
call this function if they suspect an error during program-
ming or erasing, so that the 10 us pause is included. Other-
wise, they use the single instruction technique for
increased speed.

Function: CfiFlashReadReset()

Return: void

Parameters: None.
CP Driver Library 95

CFI-Compliant Flash Interface

Board-Level Peripheral Drivers
B.2.3 CfiFlashAutoSelect()
Description: This function can be used to read the electronic signature of the

device, the manufacturer code, or the protection level of a block.

Function: CfiFlashAutoSelect()

Return: int When iFunc is >= 0, the function returns
CFI_FLASH_BLOCK_PROTECTED if the block is
protected (0001h) or
CFI_FLASH_BLOCK_UNPROTECTED if it is
unprotected (0000h). See the Auto Select command in
the data sheet for further information.

When iFunc is
CFI_FLASH_READ_MANUFACTURER, the func-
tion returns the manufacturer’s code. The manufacturer
code for ST is 0020h.

When iFunc is CFI_FLASH_READ_DEVICE_CODE
the function returns the Device Code. The device codes
for the parts are:

M29F160BT 22CCh
M29F160BB 224Bh
M29W160BT 22C4h
M29W160BB 2249h
M29W160DT 22C4h
M29W160DB 2249h
When iFunc is invalid, the function returns
FLASH_BLOCK_INVALID (-5).

Parameters:

Type Name Description:

int iFunc Must be set either to the Read Signature values or to the
block number. The header file defines the values for
reading the Signature.
96 CP Driver Library

CFI-Compliant Flash Interface
B.2.4 CfiFlashPageErase()
Description: This function erases up to NumBlocks in the flash. The blocks can be

listed in any order. The function does not return until the blocks are
erased. If any blocks are protected or invalid, none of the blocks are
erased. During the Erase Cycle the Data Toggle Flow Chart of the
Data Sheet is followed. The polling bit DQ7 is not used.

Function: CfiFlashPageErase()

Return: int The function returns the following conditions:

CFI_FLASH_SUCCESS
CFI_FLASH_TOO_MANY_BLOCKS
CFI_FLASH_MPU_TOO_SLOW
CFI_FLASH_WRONG_TYPE
CFI_FLASH_ERASE_FAIL

The user's array Block[] is used to report errors on the
specified blocks. If a time-out occurs because the
MPU is too slow, then the blocks in Block[] which are
not erased are overwritten with
CFI_FLASH_BLOCK_NOT_ERASED (FFh) and
the function returns
CFI_FLASH_MPU_TOO_SLOW. If an error occurs
during the erasing of the blocks, the function returns
CFI_FLASH_ERASE_FAIL. If both errors occur,
then the function will set the Block[] array to
CFI_FLASH_BLOCK_NOT_ERASED for the
unerased blocks. It will return
CFI_FLASH_ERASE_FAIL even though the
CFI_FLASH_MPU_TOO_SLOW has also occurred.

Parameters:

Type Name Description:

unsigned char NumBlocks The number of blocks in the array Block[].

unsigned char Block[] Array containing the blocks to be erased.
CP Driver Library 97

CFI-Compliant Flash Interface

Board-Level Peripheral Drivers
B.2.5 CfiFlashEraseAll()
Description: This function can be used to erase the whole flash chip, if no blocks

are protected. If any blocks are protected, then nothing is erased.

Function: CfiFlashEraseAll()

Return: int On success the function returns
CFI_FLASH_SUCCESS. If a block is protected, then
the function returns the number of the block and no
blocks are erased. If the erase algorithms fails then
the function returns CFI_FLASH_ERASE_FAIL. If
the wrong type of flash is detected then
CFI_FLASH_WRONG_TYPE is returned.

Parameters:

Type Name Description:

unsigned char *ucResults ucResults is a pointer to an array where the results
will be stored. If ucResults == NULL, then no results
are stored. Otherwise, the results are written to the
array if an error occurs. The array is left unchanged if
the function returns CFI_FLASH_SUCCESS. The
errors written to the array are:
CFI_FLASH_BLOCK_ERASED if the block
erased correctly, or
CFI_FLASH_BLOCK_ERASE_FAILURE if the
block failed to erase.
98 CP Driver Library

CFI-Compliant Flash Interface
B.2.6 CfiFlashProgram()
Description: This function is used to program an array into the flash. It does not

erase the flash first and may fail if the block(s) are not erased first.

Function: CfiFlashProgram()

Return: int The function returns the following conditions:

CFI_FLASH_SUCCESS
CFI_FLASH_PROGRAM_FAIL
CFI_FLASH_OFFSET_OUT_OF_RANGE
CFI_FLASH_WRONG_TYPE

On success the function returns
CFI_FLASH_SUCCESS.

If a programming failure occurs, the function returns
CFI_FLASH_PROGRAM_FAIL. If the address range
to be programmed exceeds the address range of the
flash device, the function returns
CFI_FLASH_OFFSET_OUT_OF_RANGE and
nothing is programmed. If the wrong type of flash is
detected, then CFI_FLASH_WRONG_TYPE is
returned and nothing is programmed. If part of the
address range to be programmed falls within a pro-
tected block, the function returns the number of the
first protected block encountered and nothing is pro-
grammed.

Parameters:

Type Name Description:

unsigned long ulOff Word offset into the flash memory to be programmed.

size_t NumWords The number of words in the array.

void *Array Pointer to the array to be programmed.
CP Driver Library 99

CFI-Compliant Flash Interface

Board-Level Peripheral Drivers
B.2.7 CfiFlashQueryGet()
Description: CFI information relative to the flash part are contained in

various sections (see data sheet for details). This routine
reads a single section once the part is in query mode. The
section address buffer pointer and size are provided to
read the specified data.

Function: CfiFlashQueryGet()

Return: void

Parameters:

Type Name Description:

uint baseAddr Base address of the flash
memory device.

uint16 *ptr Pointer to buffer to receive
flash data.

uint size Number of bytes to be read.
100 CP Driver Library

CFI-Compliant Flash Interface
B.2.8 CfiFlashReadQuery()
Description: Put the flash device into query mode, and read the speci-

fied flash information.

Function: CfiFlashReadQuery()

Return: int A return code indicating
results.

Parameters:

Type Name Description:

query_t query A type of query correspond-
ing to the info area (see data
sheet).

uint16 *resultBuf Pointer to a buffer for
receiving the section data.
CP Driver Library 101

CFI-Compliant Flash Interface

Board-Level Peripheral Drivers
B.2.9 CfiFlashBlock()
Description: Build an array using the block offsets.

Function: CfiFlashBlock()

Return: int 0 indicates success.
-1 indicates a failure for an
address specified below the
base.

Parameters:

Type Name Description:

uint8 *address Memory address where the
array of blocks starts.

uint32 numBlock Number of blocks in the
resulting array.

uint8 *result Pointer to the array.
102 CP Driver Library

Codec
B.3 Codec

B.3.1 codec_init()
Description: This function initializes the codec driver.

Function: codec_init()

Return: void

Parameters:

Type Name Description:

dl_t *xmt_dl A pointer to data link (circular
buffer) control structure for
voice transmit (audio output).

dl_t *rcv_dl A pointer to data link (circular
buffer) control structure for
voice reception (audio input).

void (*rx_callback_p)(unsigned int) A pointer to a callback function
that is called whenever input
voice samples are written to the
receive data link circular buffer.

audio_conv_t conv Indicates type of conversion for
the CVSD/PCM conversion
block on both transmit and
recive paths. This optional con-
version may complement the
codec functionality when audio
encoding formats other than the
codec’s have to be used by the
application. Valid values are:

NOCVSDCONV
CVSD2ULAW
CVSD2ALAW
CVSD2LINEARPCM
CP Driver Library 103

Codec

Board-Level Peripheral Drivers
B.3.2 codec_set_volume()

B.3.3 codec_adjust_volume()

Description: This function sets the volume level on the codec output.

Function: codec_set_volume()

Return: void

Parameters:

Type Name Description:

unsigned int volume A value in the range of 0-7,
in which 0 is low volume
and 7 is high volume.

Description: This function adjusts the volume level on the codec out-
put.

Function: codec_adjust_volume()

Return: void

Parameters:

Type Name Description:

int delta A value to be added to the
current volume level. This
number can be positive (to
increase volume) or negative
(to decrease volume). The
volume level will remain in
the range of 0-7.
104 CP Driver Library

Codec
B.3.4 codec_start()

B.3.5 codec_stop()

Description: This function starts the codec.

Function: codec_start()

Return: void

Parameters: None.

Description: This function stops the codec.

Function: codec_stop()

Return: void

Parameters: None.
CP Driver Library 105

EEPROM

Board-Level Peripheral Drivers
B.4 EEPROM

B.4.1 eep_init()
Description: This function initializes the communication with the

EEPROM over the ACCESS.bus interface.

Function: eep_init()

Return: void

Parameters: None.
106 CP Driver Library

EEPROM
B.4.2 eep_buf_read()
Description: This function reads a specified number of bytes from the

EEPROM.

Function: eep_buf_read()

Return: void

Parameters:

Type Name Description:

unsigned short address The address (offset) inside
the EEPROM from which
data should be read.

unsigned char *buf A pointer to a data buffer to
which the EEPROM con-
tents should be copied.

unsigned int len The number of bytes to be
read.
CP Driver Library 107

EEPROM

Board-Level Peripheral Drivers
B.4.3 eep_buf_write()

B.4.4 eep_total_size()

Description: This function writes a specified number of bytes to the
EEPROM.

Function: eep_buf_write()

Return: void

Parameters:

Type Name Description:

unsigned short address The address (offset) inside
the EEPROM to which data
should be written.

unsigned char *buf A pointer to a data buffer
containing the data to be
written to the EEPROM.

unsigned int len The number of bytes to be
written.

Description: This function returns the total size of the EEPROM
device.

Function: eep_total_size()

Return: unsigned short The EEPROM size in bytes.

Parameters: None.
108 CP Driver Library

LEDs
B.5 LEDs

B.5.1 led_init()

B.5.2 led_set_all()

Description: This function initializes the LED hardware.

Function: led_init()

Return: void

Parameters: None.

Description: This function sets the three binary LEDs in one shot.

Function: led_set_all()

Return: void

Parameters:

Type Name Description:

unsigned short mask A bit mask representing the
binary values of all three
LEDs.

Bit 0: Red
Bit 1: Green
Bit 2: Yellow
0 = Off, 1 = On
CP Driver Library 109

LEDs

Board-Level Peripheral Drivers
B.5.3 led_set()

B.5.4 led_clear()

Description: This function turns on one LED.

Function: led_set()

Return: void

Parameters:

Type Name Description:

unsigned int position Specifies which LED should
be turned on.

0: Red
1: Green
2: Yellow

Description: This function turns off one LED.

Function: led_clear()

Return: void

Parameters:

Type Name Description:

unsigned int position Specifies which LED should
be turned off.

0: Red
1: Green
2: Yellow
110 CP Driver Library

LEDs
B.5.5 led_toggle()
Description: This function toggles one LED.

Function: led_toggle()

Return: void

Parameters:

Type Name Description:

unsigned int position Specifies which LED should
be toggled.

0: Red
1: Green
2: Yellow
CP Driver Library 111

DIP Switches

Board-Level Peripheral Drivers
B.6 DIP Switches

B.6.1 switch_on()
Description: This function returns the boolean value of a specified

switch.

Function: switch_on()

Return: boolean Boolean value of a switch.
TRUE = ON
FALSE = OFF

Parameters:

Type Name Description:

unsigned int switch_num The logical number of the
switch on the board.

Note: on each board logical
switch numbers are
assigned. These do not nec-
essarily match the physical
switch number, so a physical
to logical mapping scheme
is provided for each board.
Logical switch numbers
allow an application to use
one logical switch number
across all boards.
112 CP Driver Library

CP Driver Library 113

Notes

National Semiconductor
Europe

Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208

English Tel: +44 (0) 870 24 0 2171

Francais Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific
Customer Response Group
Tel: 65-254-4466
Fax: 65-250-4466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

National Semiconductor
2900 Semiconductor Drive
PO Box 58090
Santa Clara, CA 95052

Tel: 1-800-272-9959
Fax: 1-800-737-7018

Visit our Web site at:
www.national.com

For more information, send
Email to:
support@nsc.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right,
at any time without notice, to change said circuitry or specifications.

	Overview
	Using the Driver Library
	2.1 Driver Library Header Files
	2.2 Library Contents

	Accessing I/O Registers
	Data Link Mechanism
	Interrupts
	On-Chip Peripheral Drivers
	A.1 Summary of On-Chip Peripheral Driver Functions
	A.2 ACCESS.bus (Master Mode)
	A.2.1 acbm_init()
	A.2.2 acbm_tx()
	A.2.3 acbm_rx()

	A.3 ACCESS.bus (Slave Mode)
	A.3.1 acbs_init()
	A.3.2 acbs_tx()
	A.3.3 acbs_rx()
	A.3.4 acbs_rx_count()

	A.4 Analog/Digital Converter (ADC)
	A.4.1 AdcInit()
	A.4.2 AdcShutDown()
	A.4.3 AdcTouchScreenConfig()
	A.4.4 AdcStartConversion()
	A.4.5 AdcReadResult()

	A.5 Advanced Audio Interface (AAI)
	A.5.1 audio_init()
	A.5.2 audio_set_control_bits()
	A.5.3 audio_start()
	A.5.4 audio_stop()

	A.6 Bus Interface Unit (BIU)
	A.6.1 biu_config_zone()
	A.6.2 biu_set_early_write()

	A.7 Controller Area Network (CAN)
	A.7.1 can_init()
	A.7.2 can_config_tx()
	A.7.3 can_config_rx()
	A.7.4 can_read_msg()
	A.7.5 can_shutdown()

	A.8 Flash Memory Interface
	A.8.1 FlashInit()
	A.8.2 FlashGetPageSize()
	A.8.3 FlashGetPageNum()
	A.8.4 FlashGetStartAddress()
	A.8.5 FlashInformationBlockRead()
	A.8.6 FlashInformationBlockWrite()
	A.8.7 FlashInformationBlockErase()
	A.8.8 FlashRead()
	A.8.9 FlashPageProgramSafe()
	A.8.10 FlashPageProgram()
	A.8.11 FlashEraseAll()
	A.8.12 FlashPageErase()

	A.9 Interrupt Control Unit (ICU)
	A.9.1 icu_init()
	A.9.2 icu_mask()
	A.9.3 icu_unmask()

	A.10 Multi-Function Timer (MFT)
	A.10.1 mft_init()
	A.10.2 mft_delay()

	A.11 Microwire Interface
	A.11.1 mw_init()
	A.11.2 mw_tx()
	A.11.3 mw_rx()
	A.11.4 mw_tx_rx()

	A.12 System Configuration
	A.12.1 SYSCFGEnableIoExpansion()

	A.13 System Timer
	A.13.1 timer_init()
	A.13.2 timer_set_wakeup()
	A.13.3 timer_clear_wakeup()
	A.13.4 timer_wakeup_check()
	A.13.5 timer_wait()

	A.14 Triple Clock and Reset
	A.14.1 TCRSetClock()
	A.14.2 TCRPllEnable()
	A.14.3 TCRPllDisable()

	A.15 Timer Watchdog Module (TWM)
	A.15.1 twm_init()
	A.15.2 wd_init()
	A.15.3 wd_restart()

	A.16 UART Interface (Interrupt Mode)
	A.16.1 usart_init()
	A.16.2 usart_shutdown()
	A.16.3 usart_tx()
	A.16.4 usart_rx()
	A.16.5 usart_rx_count()

	A.17 UART Interface (DMA Mode)
	A.17.1 usart_dma_init()
	A.17.2 usart_dma_tx()
	A.17.3 usart_dma_rx()
	A.17.4 usart_dma_rx_count()

	A.18 Universal Serial Bus (USB)
	A.18.1 usb_init()
	A.18.2 usb_shutdown()
	A.18.3 node_resume()
	A.18.4 get_node_status()
	A.18.5 handle_std_usb_request()

	A.19 Versatile Timer Unit (VTU)
	A.19.1 vtu_init()

	Board-Level Peripheral Drivers
	B.1 Summary of Board-Level Peripheral Driver Functions
	B.2 CFI-Compliant Flash Interface
	B.2.1 CfiFlashGetNumBlocks()
	B.2.2 CfiFlashReadReset()
	B.2.3 CfiFlashAutoSelect()
	B.2.4 CfiFlashPageErase()
	B.2.5 CfiFlashEraseAll()
	B.2.6 CfiFlashProgram()
	B.2.7 CfiFlashQueryGet()
	B.2.8 CfiFlashReadQuery()
	B.2.9 CfiFlashBlock()

	B.3 Codec
	B.3.1 codec_init()
	B.3.2 codec_set_volume()
	B.3.3 codec_adjust_volume()
	B.3.4 codec_start()
	B.3.5 codec_stop()

	B.4 EEPROM
	B.4.1 eep_init()
	B.4.2 eep_buf_read()
	B.4.3 eep_buf_write()
	B.4.4 eep_total_size()

	B.5 LEDs
	B.5.1 led_init()
	B.5.2 led_set_all()
	B.5.3 led_set()
	B.5.4 led_clear()
	B.5.5 led_toggle()

	B.6 DIP Switches
	B.6.1 switch_on()

