
© 2003 National Semiconductor Corporation www.national.com

National Semiconductor
Application Note

µ
C

/O
S

-II R
eal-T

im
e K

ern
el fo

r C
R

16C
-B

ased
 P

ro
d

u
cts

CompactRISC is a trademark of National Semiconductor Corporation.

µC/OS-II Real-Time Kernel for
CR16C-Based Products

1.0 Introduction
Previously, I’ve described the ports of both µC/OS and
µC/OS-II for National Semiconductor’s CR16B-based Com-
pactRISC™ microcontrollers. Recently, an updated version
of the core has been added to the CompactRISC™ family
— the CR16C — and µC/OS-II has been ported for its use.
The CR16C offers many new and improved features, includ-
ing:

Expanded memory addressing (up to 16M bytes)

Faster multiplication (only 4 cycles)
Several new instructions — for example, MACx instruc-
tions to support DSP filter loops

A new protected mode, including separate Supervisor
and User stacks. This can result in significant memory
savings in multitasking environments.

As with the CR16B, CR16C users will find that µC/OS-II
offers a better price/performance fit than most other third
party RTOSs. In this application note, I’ll describe the
µC/OS-II CR16C port, and how it works with the CR16C. I’ll
also provide some insights into getting your CR16C-µC/OS-
II project up and running. For a more thorough and detailed
description of µCµOS-II, see Jean Labrosse’s book
MicroC/OS-II, The Real-Time Kernel.

2.0 µC/OS-II Real-Time Operating System
As described in his book, µC/OS-II is a portable, ROMable,
scalable, preemptive, real-time, multitasking kernel that can
manage up to 63 tasks. µC/OS-II compares favorably in
performance with the other RTOSs available for the CR16C.
The execution times for every service provided by µC/OS-II
(except one) is both deterministic and constant. µC/OS-II
allows you to:

Create and manage up to 56 user tasks (8 additional re-
served by OS)

Create and manage binary, counting, and mutual exclu-
sion semaphores

Create and manage message mailboxes and queues

Create and manage event flags
Delay tasks for integral number of ticks

Lock and unlock the scheduler

Change the priority of tasks
Delete tasks

Suspend and resume tasks

3.0 What’s All This RTOS Stuff Anyway?
There’s no doubt that the most obvious question often left
unasked for fear of appearing ignorant is simply — what
exactly is an RTOS and how does it work? What a stupid
question!! I've no time to deal with such nonsense now. Just
kidding; this is an excellent question. Let’s start by defining
a few terms.

An Operating System or OS is a collection of software
designed to make the job of executing application programs
easier. When you hear the term operating system, you typi-
cally envision the Windows or UNIX software that runs your
PC or workstation. A typical OS comprises multiple layers,
each of which provides application programs with specific
services.

The shell is the visible portion of the OS that interacts with
users and gives the OS its distinctive personality. This layer
is most often associated with general-purpose operating
systems such as UNIX and Windows. Deriving its name
from early UNIX systems, this User Interface (UI) layer is a
simple program that interprets the user’s commands and
executes the requested tasks. Several varieties of shells
exist for the various flavors of UNIX. Though varying slightly
in their syntax, they all provide the user with essentially the
same services. For example under UNIX, the user types the
ls command to list the contents of the current directory.
The default shell for DOS was COMMAND.COM, and the
user types the dir command to do the same thing.

Following UNIX’s “nut” analogy, the kernel lies at the core
of an OS and is the most critical piece of software. The ker-
nel is that portion of an OS responsible for managing the
orderly execution of tasks and regulating the communica-
tion between tasks. It is this layer that we’re most con-
cerned about when talking about an embedded RTOS. The
most basic function of the kernel is context switching.

A real-time process is one in which the actions performed
(outputs) in response to the system’s inputs proceed in a
deterministic manner. That is, responses to events must be
generated within a prescribed time, and failure to do so may
result in unacceptable consequences. Contrast this with
non-real-time processes such as the batch processing used
on many large computer systems. Users submit jobs, or
programs, and the computer runs the job when it has time.
Most embedded control applications can be classified as
real-time.

Further differentiating real-time systems is the concept of
hard real-time and soft real-time systems. Perhaps the best
way to explain the difference is to look at an example of a
hard real-time system. Consider a system designed to mea-
sure the RMS power associated with each of the harmonics
present on a power line. If DSP (Digital Signal Processing)
techniques are employed (e.g. FFTs), it is mandatory that
the power line signal is sampled at consistently uniform
intervals. Also mandatory is that the FFT algorithm must
run through its complete loop, or “butterfly” (compute the
next output), during the interval between successive sam-
ples. In this case, therefore, it is essential that the designer

Jeffrey Wright

September 2003

www.national.com 2

knows with absolute certainty the latencies and delays
within the software and have complete control over the tim-
ing of the system’s outputs. A soft real-time system, on the
other hand, can tolerate a bit more uncertainty in its timing
relationships. A task may be scheduled to run at prescribed
intervals, but there may be slight variations in these inter-
vals that cannot always be predicted. Nonetheless, the use
of a soft real-time kernel is usually completely satisfactory
for most embedded applications.

A Real-Time Kernel or RTK will usually support multi-
tasking. Multitasking (or multiprogramming) is simply the
ability to run two or more independent tasks or programs
on one CPU at what appears to be the same time. While
not actually running concurrently (this would require multi-
ple processors), tasks are executed by the CPU in such a
manner as to appear to be running at the same time. For
example, a user could be entering data on a keyboard,
printing the results of a test, and reading an incoming mes-
sage on a display all at (apparently) the same time.

Another of a kernel’s basic responsibilities is scheduling.
Scheduling is simply deciding which task gets to run. Each
task must be given its fair share of CPU time, and it is the
kernel’s scheduler that determines what is fair. The method
employed by the kernel to decide which task gets to run
and at what time is its scheduling policy. Most real-time
kernels are priority-based, meaning the user assigns each
task a priority that reflects its relative importance in the
application. Tasks with higher priorities will always be given
control of the CPU in favor over lower priority tasks. Other
kernels follow a time-sharing policy that permits multiple
tasks to be equal in priority. Also called “round-robin”
scheduling, this scheduling policy gives each task control
of the CPU for a specific amount, or slice, of time, and each
equal priority task will run in turn. Still other kernels permit
both types of scheduling.

In addition to its scheduling policy, real-time kernels are fur-
ther differentiated by just when they give control to a higher
priority task. A preemptive kernel will always give control
to the highest priority task ready to run. If a higher priority
task is made ready by some external or internal event
(such as an interrupt), the kernel will suspend the current
lower priority task and allow the higher priority task to exe-
cute.

In contrast, tasks running under a non-preemptive kernel
must voluntarily relinquish control of the CPU to allow other
tasks to execute. Also called cooperative multitasking,
non-preemptive kernels are not as common in real-time
applications because of the inherently non-deterministic
nature of their scheduling. That is, although a higher prior-
ity task may be ready to run, the currently executing task
will continue to run until it decides to give control back to
the kernel. Consequently, the time that elapses once the
higher priority task has been made ready until it actually
gets control of the machine is uncertain. To summarize, the
preemptive kernel ensures that the more important or time-
critical tasks are performed first, while the non-preemptive
kernel relies upon the tasks themselves to cooperate in
sharing the CPU.

In a multiple-task application, the kernel’s scheduler
decides which task should run and at what time. When
another task needs to be executed, the kernel will perform
a context switch. A context switch saves the currently run-
ning task’s context (usually equivalent to the state of the
machine — i.e. the CPU’s registers) on its stack and
restores another task’s context (which had previously been
saved in its stack space) to the CPU’s registers. In this

manner, the new task begins execution from where it left
off, while the previous task sits poised for execution some-
time in the future.

Notice this is very similar to what happens during the han-
dling of an interrupt, except that each task will have its own
stack space — not shared by the other tasks. Understand-
ing this critical distinction is key. Remember that a task
thinks that it is the only program running on the CPU. When
it is interrupted or preempted, its context is saved just as
though it was interrupted, so that it can proceed where it
left off once it resumes control of the CPU. Figure 2 may
help illustrate the concept. Notice that each task has its
own stack space, and the OS is the gateway to the CPU.

A context switch may occur in a number of situations:

A task may call one of the kernel’s services, which in turn
makes a higher priority task ready to run. For example,
the task could “post” a semaphore by calling OSSem-
Post(), for which another, higher priority task is waiting.

A task might delay itself by calling the kernel service OS-
TimeDly(), in which case the next-highest priority task
ready to run will be given control of the CPU.

An interrupt may occur that makes a higher priority task
ready to run. For example, the interrupt might deposit a
message in an OS “mailbox” (with a call to OSMbox()),
for which a higher priority task is waiting. Upon exiting
the ISR, the kernel will return to the higher priority task
instead of the interrupted task.

3 www.national.com

4.0 OK, Why Should I Use an RTOS?
It’s certainly true that many or most applications can be
written without the support of an RTOS. If your embedded
programming background has not included experience with
RTOSs, you might be hesitant to jump right in. Actually, you
shouldn’t let it trouble you; once you gain a bit of experi-
ence with an RTOS you’re unlikely to ever want to go back.
Here are just a few reasons to consider using an RTOS in
your next project:

The job of writing application software is generally easier
using an RTOS, because the use of a kernel enforces
certain disciplines in how your code is structured. This
helps protect against writing wholly incoherent spaghetti
code, often characteristic of programs written without an
RTOS.

On larger projects employing multiple programmers,
having consistent APIs for kernel services and Inter-Pro-
cess Communications (IPCs) further enforce the disci-
pline of structure and modularity — leading to portability
and reusability.

While the illusion of concurrency can be created without
the use of an RTOS (though not always), it almost al-
ways results in a much more complex piece of software.

In addition to basic scheduling and context switching, a
real-time kernel typically provides other valuable servic-
es to applications such as:

– Time Delays — allowing tasks to delay themselves
for an integral number of system ticks. This allows
tasks to be scheduled at periodic intervals or simply
return control to the kernel when they have nothing to
do.

– System Time — the kernel maintains the master
clock, usable by tasks that need a consistent time-
base.

– Inter-Process Communication (IPC) — tasks may
communicate with each other by sharing messages
placed in mailboxes or queues managed by the ker-
nel.

– Synchronization — tasks may synchronize their ac-
tivities by using kernel-managed semaphores or
flags. That is, tasks may activate other tasks and co-
ordinate their activities by using kernel resources, in-
stead of relying upon global variables.

– Resource Protection — the kernel can protect sys-
tem resources (I/O devices, global variables/data
structures, etc.) by requiring tasks to acquire exclu-
sive access through a mutex or Mutual Exclusion
Semaphore.

5.0 CR16C and Real-Time Operating
Systems
The CR16C includes features specifically tailored for use
with RTOSs. For example:

The CR16C includes a new protected mode of operation
called the User mode. While operating in User mode,
tasks utilize their own unique program stacks, while all
exceptions (interrupts and traps) use the Supervisor
stack. This scheme helps to reduce RAM requirements
because task stacks do not need to include space for ex-
ceptions or potential interrupt nesting. Rather, each
task’s stack only needs to be sized to meet task-specific
demands, leaving all other kernel and interrupt-related
stack issues to the OS itself. Furthermore, while operat-
ing in User mode, tasks are prohibited from modifying
the CPU’s core registers, providing an additional mea-
sure of protection from ill-behaved tasks.

In addition to the User and Supervisor stacks, the
CR16C retains the legacy Interrupt stack, on which the
current Program Counter (PC) and Program Status Reg-
ister (PSR) are saved during an exception. While this
separate interrupt stack does complicate the kernel’s
task-switching process, it also reduces memory require-
ments in a multitasking system running in the default Su-
pervisor mode.

6.0 CR16C and Embedded Applications
In addition to its support for RTOSs, the CR16C was specif-
ically designed for use in embedded environments. That is,
despite technically being a RISC machine with an instruc-
tion set architecture tailored to support High-Level Lan-
guages — it’s a General Purpose Register (GPR) machine
with an orthogonal (nearly) instruction set — it also
includes features normally found only in CISC machines.
These features include:

PUSH and POP Instructions — allow up to 8 registers
(9 if the return address register RA is included) to be
pushed to/popped from the stack at a time. Interrupt la-
tency is a critically important metric in real-time systems.
Minimizing this, as well as other latencies, is a deliberate
design goal for embedded architectures. The greater the
time that interrupts are disabled, the less sensitive the
system is to real-time events. The CR16C’s PUSH and
POP instructions help minimize this numb time, because
on ISR entry the scratch registers (R0..R6) and the re-
turn address register (RA) can be saved on the stack in
just one PUSH instruction (PUSH$7, R0, (RA)) consum-
ing only 10 clock cycles. Should a context switch be indi-
cated, the remaining safe registers (R7..R13) can be
saved in only 11 additional cycles.
Atomic (Non-Interruptible) Bit Operations — bit
(Boolean) operations are fundamental to embedded ap-
plications. Testing or changing the state of a bit in mem-
ory can result in mysterious behavior if the process can
be interrupted. For example, on a RISC machine, a bit-
set operation would proceed as:

LOADW flags, R0

ORW $BIT2SET, R0

STORW R0, flags

If this sequence were interrupted prior to the STORW in-
struction, the Interrupt Service Routine (ISR) (or another
task made ready by the ISR) could alter the same bit.
This would normally be undesirable, and could be the
cause of unpredictable or even catastrophic behavior. To

www.national.com 4

avoid these unpleasant consequences, the CR16C pro-
vides non-interruptible or atomic bit operations through
its TBIT, SBIT, and CBIT instructions.

Fast MUL/MAC Instructions — a fast multiply instruc-
tion can be extremely useful in a wide range of embed-
ded applications. On many RISC machines, the lack of a
multiply instruction means that all but the simplest multi-
ply operations (x2, x4, etc.) must be emulated in soft-
ware, which makes them unacceptably slow. The
CR16C can multiply two 16-bit signed integers to gener-
ate a 32-bit product in just 4 cycles. The CR16C also in-
cludes powerful new MAC (Multiply-Accumulate)
instructions, capable of multiplying two 16-bit integers
and adding the product to a 32-bit sum. It also supports
Q15 (16-bit signed fractions) format.

7.0 CR16C and µC/OS-II
Unlike the other RTOSs available for the CR16C, this
µC/OS-II port supports both User and Supervisor operating
modes, as well as interrupt nesting. Each of these options
(and a few others) are defined by the user at build time,
which provides the user with a great deal of flexibility.
Figure 1 through Figure 3 will help resonate some under-
standing of the fundamental principles behind µC/OS-II.
Figure 1 shows how µµC/OS-II initializes a task’s context
on its program stack. When creating a task, µC/OS-II initial-
izes the task’s stack frame with certain required parame-
ters to ensure correct operation once the task gains control
of the CPU. For example, every task begins with interrupts
enabled (both locally and globally), and its stack frame is
defined as type Initial. (The frame type is a new field added
with the CR16C port to ensure that the most efficient mac-
ros are used within the kernel’s context switch routines.) In
addition, the initialization routine allows the user to pass an
argument to the task for application-specific purposes.
Note that the stacking order differs between the two
modes. This is done to achieve maximum efficiency during
context switching, but is invisible to the application.

Figure 1. Task’s Stack Frame as Initialized by OSTaskCreate()

COS001

Top of Stack

R7 = 7

User Mode

R6 = 6

R1 = 1

R0 = 0

RA H = E

RA L = E

R13 H = D

R13 L = D

R12 H = C

R12 L = C

R11 = B

R10 = A

R9 = 9

R8 = 8

R5 = 5

R4 = 4

R3 = 3

R2 = pdata

PC[31..16]

PC[15..0]

Context Type = Initial

PSR = 0A08h*

RA H = E

Supervisor Mode

RA L = E

R6 = 6

R5 = 5

R4 = 4

R3 = 3

R2 = pdata

PC[31..16]

PC[15..0]

Context Type = Initial

PSR = 0A00h*

SP + 42

SP + 40

SP + 38

SP + 36

SP + 34

SP + 32

SP + 30

SP + 28

SP + 26

SP + 24

SP + 22

SP + 20

SP + 18

SP + 16

SP + 14

SP + 12

SP + 10

SP + 8

SP + 6

SP + 2

SP + 4

R1 = 1

R0 = 0

R7 = 7

R13 H = D

R13 L = D

R12 H = C

R12 L = C

R11 = B

R10 = A

R9 = 9

R8 = 8

Task
Address

Task
Address

* Initial stack frame has global interrupts enabled.
 U bit (bit 3) is set in User mode, clear in Supervisor mode.

5 www.national.com

Figure 2 shows how µC/OS-II manages the tasks running
under it. Note that each task has its own unique environ-
ment, comprising its own stack space and register set.
Only one of these tasks may control the CPU’s registers at
any one time, and it is the kernel’s scheduler that decides
which task has that control. The kernel maintains a Task

Control Block (TCB) for each task. These TCBs are singly
linked and hold task-specific data used by the kernel to
manage each task.

Figure 2. Multiple Tasks Managed by µC/OS-II (Supervisor mode)

COS002

RA H

Task A's Top of Stack

Task A's TCB

Task A's
Context

Memory

CPU

RA L

R6

R5

R4

R3

R2

PC[31..16]

PC[15..0]

Context Type

PSR

R1

R0

R7

R13 H

R13 L

R12 H

R12 L

R11

R10

R9

R8

Task A's SP

Priority

RA H

Task B's Top of Stack

uC/OS-II

Task B's TCB

Task B's
Context

RA L

R6

R5

R4

R3

R2

PC[31..16]

PC[15..0]

Context Type

PSR

R1

R0

R7

R13 H

R13 L

R12 H

R12 L

R11

R10

R9

R8

Task B's SP

Priority

RA H

Task N's Top of Stack

Task N's
Context

RA L

R6

R5

R4

R3

R2

PC[31..16]

PC[15..0]

Context Type

PSR

R1

R0

R7

R13 H

R13 L

R12 H

R12 L

R11

R10

R9

R8

Task N's TCB

Task N's SP

Priority

CR16C Registers

Current Context

R7

R6

R5

R4

R3

R2

R1

R0

RA

R13

R12

R11

R10

R9

R8

SP

PC (23..1)

PSR

www.national.com 6

Figure 3 shows the sequence of events that occur during a
context switch, in which a lower priority task is preempted
by a higher one. In the case shown, Task A is the current
owner of the CPU and has called the OS’s service
OSTimeDly() (this sequence would be identical for any
OS service call that resulted in a context switch). Upon
completion of the OSTimeDly() service, the OS calls its
scheduler to determine whether to return CPU control to
the calling task (Task A) or to preempt this task and give
control of the CPU to another task that is higher in priority
and ready to run. In this case, the scheduler has deter-
mined that Task B should run next, so it invokes the ker-
nel’s context switch routine via the OS_TASK_SW() macro.
This port assigns the SVC trap to µC/OS-II for this purpose.
The context switch then proceeds as follows:

1. The _PUSHSAFE_ (Supervisor mode) or _SAVESAFE_
(User mode) macro saves all of the CPU’s safe registers
on Task A’s program stack (there is no need to save the
scratch registers because, by convention, the caller will
have already saved those it requires).

2. The Program Status Register (PSR) which was saved on
the Interrupt stack during the trap is retrieved and placed
on Task A’s program stack.

3. The Program Counter (PC) is also retrieved from the In-
terrupt stack, incremented (because, unlike an interrupt,

a trap does not increment the PC), and placed on Task
A’s program stack.

4. Task A’s context is defined as type Task (indicating that
the kernel only needs to do a partial restore when the
task next runs).

5. The CPU’s SP register is saved in Task A’s Task Control
Block (TCB).

6. Task B’s stack pointer is copied from its TCB into the
CPU’s SP register.

7. Task B’s context type is retrieved from the top of its
stack.

8. Task B’s PC is read from its stack and written to the In-
terrupt stack.

9. Task B’s PSR is read from its stack and written to the In-
terrupt stack.

10.As indicated by Task B’s context type (which in this case
happens to be type Task), a partial (Supervisor mode) or
complete (User mode) restore is performed using the
macro _POPSAFE_ (Supervisor mode) or
RESTOREALL (User mode).

11.Finally, the kernel returns to Task B through a RETX in-
struction.

Figure 3. Context Switch (task level)

COS003

RA H

Top of Task B's
Program Stack

Top of Task A's
Program Stack

RA L

R6

R5

R4

R3

R2

PC[31..16]

PC[15..0]

Ctx Type = Task

PSR

R1

R0

R7

R13 H

POPALL

RETX

R13 L

R12 H

R12 L

R11

R10

R9

R8

10

7

SP

OSTCBHighRdy

Task B

CR16C CPU
Registers

Task B's TCB

PSR

Interrupt Stack

PC[31..16]

PC[15..0]

9

SP

I SP

PC

PSR

11

Top of Interrupt
Stack after OSCtxSw()

2

RA H

RA L

R7

R13 H

R13 L

R12 H

R12 L

R11

R10

R9

R8

PSR

PC[31..16]

PC[15..0] +1

Ctx Type = Task

4

PUSHSAFE

1

SP

OSTCBCur

Task A

Task A's TCB
After _PUSHSAFE_ (or _SAVESAFE_)

5 6

3

8

7 www.national.com

Again, why must the PC be incremented in step #3 above?
In contrast with interrupts, certain traps on the CR16C sus-
pend the current instruction. That is, interrupts are only
acknowledged following the completion of the current
instruction (except for interrupts occurring during MULx
instructions), so the saved Program Counter will point to
the instruction following the instruction during which the
interrupt occurred. On the other hand, most traps (with the
“exception” of the TRC and DBG traps) suspend the current
instruction and save the address of the trap instruction
itself on the Interrupt stack. Because µC/OS-II invokes its
task-level context switch routine through the SVC trap, the
value of the PC saved on the interrupt stack must be incre-
mented to point to the following instruction. Otherwise, we
would be “caught in a trap”, as it were. Refer to Appendix A
for the task-level, context switch routine.

8.0 Interrupt Service Routines (ISRs)
Porting an OS requires a detailed understanding of how a
compiler handles ISRs. Upon entry to any interrupt handler,
the compiler must generally save only those registers it
needs to use within the handler, pushing them onto the cur-
rent stack. In Supervisor mode, this is the interrupted task’s
stack, while in User mode this is the system stack. How-
ever, if the ISR makes a call to a function, the compiler
must also save any/all of the remaining scratch registers
(R0..R6), as well as the return address register RA. This
must be done because, by convention, any function may
freely clobber any of these non-safe or scratch registers (a
function is only responsible for saving the safe registers it
uses; i.e. R7..R13). Moreover, at the extreme, if an ISR is
lengthy or written with too much complexity, the compiler
may also be forced to save and utilize one (or more) of the
safe registers as well. Consider for example the subtleties
of the following, deceptively simple ISR:

void BadISR (void)

{

UWORD temp;

temp = INTERRUPT_REGISTER; // Read (and clear) interrupt pending flag

if (temp & THIS_FLAG) // THIS_FLAG set?

DoThis(); // YES – DoThis stuff...

if (temp & THAT_FLAG) // THAT_FLAG set?

DoThat(); // YES – DoThat stuff...

}

www.national.com 8

Notice the local variable temp — it is used across a func-
tion call (in this scenario, the pending bit is cleared auto-
matically just by reading the register). Here’s what the
compiler spits out:

\ BadISR:

239 {

\ 000000 F001 PUSH $8, R0, (RA)

240 UWORD temp;

241

242 temp = INTERRUPT_REGISTER;

\ 000002 7F8988FF LOADW 0xffff88, R7

243

244 if (temp & THIS_FLAG)

\ 000006 0706 TBIT $0, R7

\ 000008 9310 BFC `??BadISR_0`:S

245

246 DoThis();

\ 00000A BAL (RA), DoThis

247

248 if (temp & THAT_FLAG)

\ `??BadISR_0`:

\ 00000E 1706 TBIT $1, R7

\ 000010 9310 BFC `??BadISR_1`:S

249

250 DoThat();

\ 000012 BAL (RA), DoThat

251 }

\ `??BadISR_1`:

\ 000016 F002 POP $8, R0, (RA)

\ 000018 0300 RETX

252

Do you see why the compiler had to use one of the avail-
able safe registers (R7) in this example? Again, this is a
consequence of the fact that a called function may freely
destroy any scratch register (R0..R6), so the local variable
must be placed in a safe register.

Operating in User mode further complicates matters,
because in User mode the registers are saved on the
Supervisor stack — not on the interrupted task’s stack. If
the ISR uses any OS service (i.e. it is an “OS-aware” ISR),
this requires that they be saved again on the interrupted
task’s stack.

9 www.national.com

Given these and other uncertainties, a decision was made
to abandon the method implemented for the CR16B port
and always return to an interrupted task through the ISR
itself. This is simply due to the fact that while in 99% of the
cases the compiler will stack registers in a uniform and
consistent manner on entry to an ISR, the compiler will
occasionally stray from this uniformity and demonstrate its
capricious and unpredictable nature — as evidenced by
crashed programs! This approach, while slightly slower,
ensures a consistently correct context-switch mechanism,
even when the compiler is making unusual optimizations in
register usage.

Consequently, the previous restrictions placed upon the
user when writing OS-aware ISRs (those that call any OS
service) are significantly reduced. However, OS-aware
ISRs must still be formatted in a manner consistent with
Listing 1 below. (See Appendix C for the OSSaveCon-
text() listing, which is the routine defined for
SAVE_CONTEXT()).

9.0 µC/OS-II and Interrupt Service
Routines (ISRs)
Under µC/OS-II, you may write all of your ISRs in C. A con-
text switch occurring from within an ISR proceeds in only a
slightly different manner from the task level. When a task is
interrupted by a properly formatted, OS-aware interrupt,
code inserted by the compiler saves the scratch registers
(R0..R6) and the return address register (RA) on the stack.
Before executing any ISR instructions, the user must call

SAVE_CONTEXT(). This routine is used in both modes of
operation and hides certain mode-related details from the
user. For example, the routine increments the kernel’s nest-
ing counter and saves the balance of the task's context to
its stack (but not if this is a nested interrupt!). If the kernel
has been built to support interrupt nesting, the routine also
checks the current nesting level to determine whether it
needs to save the context at all. This is important because
a task’s context only needs to be saved once (because no
context switch may occur from within a nested interrupt).
The placement of this call at the start of your OS-aware
ISR is mandatory to ensure that the interrupted task’s con-
text is properly saved in the event that the ISR results in a
task switch.

Upon completion of the interrupt code, the ISR must call
µC/OS-II’s OSIntExit() routine. This OS function first
decrements the interrupt nesting counter to determine
whether a task switch is possible. If all interrupts have com-
pleted (OSIntNesting == 0), OSIntExit() calls the
kernel’s scheduler which determines whether to return to
the interrupted task (though the ISR), or to a higher priority
task made ready to run (presumably by the ISR itself). If a
context switch is indicated, the kernel calls the port-specific
OSIntCtxSw() function, which is a slightly modified ver-
sion of the task-based context switch routine OSCtxSw().
This interrupt-level context switch routine is listed in Appen-
dix B. Note that the PC is not incremented, because this
routine is invoked through a call, not a trap.

void UserISR (void)

{

UBYTE i;

SAVE_CONTEXT() // This OS macro saves user's context (mode dependent)

INTREG |= INT_CLEAR; // Clear interrupt

ISRCode… // Do ISR stuff here…

OSServiceXY(); // An OS service is called (e.g. OSSemPost, etc.)

OSIntExit(); // This is the OS's ISR exit function

RESTORE_CONTEXT() // Restore interrupted task's context

}

Listing 1. Example of OS-Aware ISR Under µC/OS-II

www.national.com 10

In addition, if your application requires interrupt nesting,
you must include the conditional code shown in Listing 2. In
Supervisor mode, the USE_SYSTEM_STK() macro swaps
out the current stack pointer and replaces it with a global,
system stack pointer. This must be done before re-enabling
interrupts, so that any enabled interrupt occurring during
the ISR will use this system stack, not the task’s stack. Oth-

erwise, each and every task in your application would have
to include additional space on its stack to accommodate
each potential level of interrupt nesting. As you can imag-
ine, this would greatly increase RAM requirements. Note
that this macro is not used in User mode, because all
exceptions use the system stack.

void UserISR (void)

{

UBYTE i;

SAVE_CONTEXT() // This OS macro saves user's context (mode dependent)

INTREG |= INT_CLEAR; // Clear interrupt

#ifdef OS_NEST_EN // If nesting is desired, do this ...

#ifdef USER_MODE

#else

USE_SYSTEM_STK() // In Supervisor mode, switch to System stack

// (used by nested interrupts)

#endif

ENABLE_INTERRUPTS(); // Re-enable Global interrupts

#endif

ISRCode… // Do ISR stuff here…

OSServiceXY(); // An OS service is called (e.g. OSSemPost, etc.)

#ifdef OS_NEST_EN

OS_ENTER_CRITICAL(); // If nesting was enabled, disable before call to OS

DISABLE_INTERRUPTS();

#ifdef USER_MODE

#else

USE_TASK_STK() // Supervisor mode: switch back to Task's stack

#endif

OS_EXIT_CRITICAL();

#endif

// This is the OS's ISR exit function

OSIntExit();

RESTORE_CONTEXT() // Restore interrupted task's context

}

Listing 2. Example of OS-Aware ISR Under µC/OS-II Using Nested Interrupts

11 www.national.com

10.0 How Do I Write My Application Under
µC/OS-II?
Writing an application to run under µC/OS-II should pro-
ceed as follows:

10.1 Define Your Tasks (Processes)
Tasks running under a multitasking kernel should be written
in one of two ways:

A non-returning forever loop. For example:

void Task (void *)

{

DoInitStuff();

while (1){ // this is a long, long time...

do this;

do that;

do the other thing;

call OS service (); // e.g. OSTimeDelay, OSSemPend, etc.

}

}

A task that deletes itself after running. For example:

void Task (void *)

{

do this;

do that;

do the other thing;

call OS service (); // e.g. OSTimeDelay, OSSemPend, etc.

OSTaskDelete(); // Ask the OS to delete the task

}

www.national.com 12

As a simple example, consider the ADCTask in Listing 3.
While it is running (has control of the CPU), it is either:

Reading, formatting, and displaying the results of the last
A/D conversion

Delaying itself by calling the OS service OSTimeDly()

Interrupted by the system tick (or another interrupt) and
perhaps preempted

/*%%%

; NAME: ADCTask Reads the ADC 10 times per second and displays the averaged

; results. Written to run under µC/OS-II.

;

; PARAMETERS: data Optional parameter passed to task upon creation.

;

; CALLS: ADCInit, OSTimeDly, ReadADC, DisplayPuts, Int2Str

;

; RETURNED: Does not return.

%%%*/

void ADCTask (void *data)

{

TPB_T *tpb; // Allocate pointer to Task Parameter Block

RESULT_T *res; // Allocate pointer to Results member of TPB

tpb = &AdcTPB; // Assign pointer to the ADC TPB

res = tpb->Results; // Assign pointer to Results structure

ADCInit (0x00, 0x25); // Initialize the ADC

while(1){ // Run forever

OSTimeDly (ONESEC/10); // Take readings every 100 ms

res->Output[0] = ADC_Value;

// Save value in results structure

DisplayPuts(0, 10, Int2Str ((UWORD)ReadADC(), ADC_Value));

// Display converted results

}

}

Listing 3. Example of Task Written Under µC/OS-II

13 www.national.com

10.2 Allocate a System Timer to Provide the OS
Tick, and Write an ISR That Calls OSTickISR()
All RTOSs require a periodic system interrupt or tick to per-
form its services. For example, user tasks may delay them-
selves by an integral number of OS system ticks by calling
the OS service OSTimeDly(). Additionally, many µC/OS-
II services provide a timeout facility to prevent tasks from
waiting forever for an unavailable service. And finally, dur-
ing every OS tick ISR, the kernel calls its scheduler to
determine whether a higher priority task is ready to run.
The system tick rate is application driven, but would most
generally lie in the 5 ms to 100 ms range. Increasing the
frequency of the system tick will increase OS overhead and
reduce the available task time. Typically, a Worst Case Exe-
cution Time (WCET) analysis should be done on your
application to determine the optimum system tick rate.

In the previous port, the user was responsible for writing
the OS’s tick handler. In the CR16C port, the tick handler
has been integrated with the kernel. However, the user
must still allocate a system timer and configure it for the
desired interrupt rate. Additionally, you must write the ISR
for this timer and format it as shown in Listing 4. The choice
of timer is completely application driven. If available, I sug-
gest that you use the Idle Timer (T0) found on many of the
CR16-based microcontrollers. Generally, the Idle timer
interrupt will be higher in priority than most or all other
peripherals in a device. If an Idle timer is not available, you
can use any other available timer, such as the MFT (Multi-
Function Timer) or VTU (Versatile Timer Unit). Try to
choose a timer with the highest possible interrupt priority.
Whichever timer you use, you must model its ISR on the
example shown in Listing 4.

/*%%

; NAME: OS_TickISR uC/OS-II time tick interrupt. Since this ISR uses an

; OS service, it may cause another (higher priority) task to be made

; ready. Therefore, we must use the OS-defined macros SAVE_CONTEXT

; and RESTORE_CONTEXT prior to doing anything else. If we allow

; nested interrupts, we must also use the macro ENABLE_INTERRUPTS.

;

; PARAMETERS: N/A

;

; CALLS: SAVE_CONTEXT, OSTickISRHandler, OSIntExit, RESTORE_CONTEXT

;

; RETURNED: N/A

%%*/

#ifdef __ICCCR16C__

__interrupt void OS_TickISR (void)

#else

#pragma interrupt (OS_TickISR)

void OS_TickISR (void)

#endif

{

#if OS_TIMER == TWM

// UBYTE i;

#endif

SAVE_CONTEXT() /* You must use this macro to save user context. It */

/* the details of incrementing the nesting counter. */

#if OS_TIMER == TWM

// i = T0CSR; /* Clear interrupt */

T0CSR; /* Clear interrupt */

#elif OS_TIMER == MFTX

T1ICLR = 0x0f; /* Clear interrupt */

www.national.com 14

#elif OS_TIMER == VTUA

INTPND = 0x0003;

#elif OS_TIMER == VTUB

INTPND = 0x0030;

#elif OS_TIMER == VTUC

INTPND = 0x0300;

#elif OS_TIMER == VTUD

INTPND = 0x3000;

#endif

OSTickISR(); /* This is the call to the default OS tick handler */

OSIntExit(); /* This is the OS's ISR exit function */

RESTORE_CONTEXT() /* This OS macro restores interrupted task's context */

}

Listing 4. Example of an OS TImer ISR

15 www.national.com

10.3 Make Certain Your Application Doesn’t Use
the CR16’s SVC Trap!
The SVC trap is assigned to µC/OS-II, for task-level context
switching:

#define OS_TASK_SW()_excp_(5)

10.4 Insert Vectors for µC/OS-II and the OS Tick
ISR in the Interrupt Dispatch Table
For example, see Listing 5 below, where I’m using the vec-
tor assigned to the Idle timer interrupt (IRQ31).

#ifdef __ICCCR16C__

/* IAR */

#pragma constseg=DISPATCH_TBL

const DISPATCH_TBL_T _dispatch_table = {

#else /* NATIONAL */

void (*const _FAR _dispatch_table[])() = {

#endif

itrap0, /* NULL pointer */

itrap1, /* Vector 1 Non Maskable */

itrap2,

itrap3,

itrap4,

OSCtxSw, /* OS Supervisor Call */

itrap6, /* Divide by zero trap */

itrap7,

itrap8,

itrap9,

itrap10, /* Undefined Opcode trap */

itrap11,

itrap12, /* Illegal Address trap */

itrap13,

itrap14,

itrap15,

/*-------------------------------------*/

irq0, /* IRQ0 = vector #16 RESERVED */

irq0, /* FLASH = vector #17 */

irq0, /* MIWU3 */

irq0, /* MIWU2 */

irq0, /* MIWU1 */

irq0, /* MIWU0 */

// irq0, /* /CTS */

www.national.com 16

UARTFlowISR, /* /CTS */

UARTTxISR, /* UTx = IRQ7 */

irq0, /* MWIRE */

VTUDisr, /* VTUD = IRQ9 */

VTUCisr, /* VTUC = IRQ10 */

VTUBisr, /* VTUB = IRQ11 */

VTUAisr, /* VTUA = IRQ12 */

#if OS_TIMER == MFTX

OS_TickISR, /* IRQ13 Vector 29 */

OS_TickISR, /* IRQ14 */

#else

MFT1isr2,

MFT1isr1,

#endif

AcbIsr, /* Access.Bus == IRQ15 */

CvsdISR, /* IRQ16 = PCM/CVSD */

UARTRxISR, /* IRQ17 */

CodecISR, /* AAI */

CAN0ISR, /* IRQ19 */

irq0, /* IRQ20 = DMA3 */

irq0, /* DMA2 */

UARTDMATxISR, /* DMA1 (UART Tx) */

UARTDMARxISR, /* DMA0 (UART Rx) */

irq0, /* USB */

irq0, /* BTooth LLC5 */

irq0, /* BTooth LLC4 */

irq0, /* BTooth LLC3 */

irq0, /* BTooth LLC2 */

irq0, /* BTooth LLC1 */

#if RTX_KERNEL > 0

bt_llc0_isr, /* BTooth LLC0 */

#else

irq0, /* IRQ30 */

#endif

#if OS_TIMER == TWM

OS_TickISR /* IRQ31 Vector 47 */

#else

irq0 /* IRQ31 */

#endif

};

Listing 5. Adding the SVC Trap and OSTickISR Vectors to the Interrupt Dispatch Table

17 www.national.com

10.5 Create All Your Semaphores, Event Flags,
Mailboxes, Queues, etc.
Your main() routine is usually where basic hardware ini-
tializations should occur. It is also where you should initial-
ize the OS. An example of a main() routine is shown in
Listing 6.

/*%%

; FILENAME: main.c

;

; PURPOSE: LMX5100 Test Program. Designed for the CR16C-based LMX5100.

; Runs under uC/OS-II.

;

; AUTHOR(S): Jeffrey Wright

;

; REVISION HISTORY: Initial - 8/14/2001

%%*/

#define MAIN_GLOBALS

#include "includes.h"

/*****************************

Starting point MAIN

*****************************/

void main (void)

{

OS_ENTER_CRITICAL(); /* Block interrupts (just to be sure) */

IENAM0 = 0; /* Ensure all interrupt sources are disabled */

IENAM1 = 0;

PRSFC &= 0xf0; /* Set HF clock prescaler for 12 MHz */

PRSSC = SLCLK_PRE; /* Set prescaler for 50 kHz slow clock */

#ifdef EXTOSC /* If using external 32 kHz, select it for slow clock */

CRCTRL |= BIT0;

PMCSR |= BIT0;

#endif

BCFG = 0x04; /* Late Write (2 cycles), core bus observability */

SZCFG0 = 0x0880; /* No holds, no waits, not a single luxury */

SZCFG1 = 0x0880; /* Ditto… */

IOCFG = 0x0680;

MainFlags = 0; /* Various task/error flags */

OSInit(); /* Initialize operating system */

/* Create necessary OS semaphores */

www.national.com 18

KeySem = OSSemCreate(1);

/* Create the Shell task */

OSTaskCreate (BShell,

#ifdef USECOM1 /* Compile to use either com1 or com2 */

(void*)1,

#else

(void*)2,

#endif

(void *)&ShellStk[SHELL_STK_SIZE], SHELL_PRIORITY);

OS_EXIT_CRITICAL();

ENABLE_INTERRUPTS();

OSTimerInit(); /* Initialize the OS time-base */

OSStart(); /* Start multitasking */

}

Listing 6. Initializing µC/OS-II in a main() Function

19 www.national.com

10.6 Allocate Stack Space for Your Tasks
As mentioned earlier, the CR16C has three distinct stack
spaces:

A User stack located at the USP register. Actually, while
running, it is the SP (R15) that points to the current Top
of Stack (TOS). The USP is copied to the SP during the
switch to User mode. This stack space is used by the
compiler to:

– Allocate any required local variables not in registers

– Pass arguments incapable of being passed in regis-
ters R2, R3, R4, and R5

– Save any scratch registers before calling a subrou-
tine, or save any used safe registers after being called

An Interrupt stack located at the ISP core register. This
stack is used by the interrupt hardware to save the Pro-
gram Counter (PC) and Program Status Register (PSR)
in response to an exception (interrupt or trap). Because
the interrupt stack is only used to hold these two regis-
ters, unless you enable nested interrupts, it only needs
to be three words deep. However, if you do permit inter-
rupts to be nested, you must increase this stack depth by
three words for each potential additional nesting level.

A System stack located at the SP (again, usually R15)
register. This stack space is used during all exceptions
to save any required registers. Following reset, this is the
default stack pointer.

The necessary stack space for a task is allocated by defin-
ing an array of type UWORD. For example:

#define TASK_STK_SIZE 66

// Size of task's user stack in WORDs

UWORD TaskStack[TASK_STK_SIZE];

// Task’s user stack

The size of each of your task’s stacks should be based on:

The 22 words (44 bytes) needed for its context
Any additional requirements imposed by function argu-
ments, local variables, and worst-case function nesting

Any additional, unnecessary saving of registers done by
the compiler on entry to the task. National’s compiler is
more intelligent than IAR’s in that it recognizes that if a
function never returns, none of its registers need to be
saved

No consideration needs to be given for nested interrupts,
because they use a separate stack.

The total amount of RAM required by an application run-
ning under µC/OS-II may be roughly estimated by the fol-
lowing equation:

RAM Required: 200

+ (1 + OS_NUM_TASKS) × 44)

+ OS_MAX_EVENTS × 8

+ OS_MAX_QS × 12

+ SUM (each task’s User stack size)

+ SUM (each message queue's size)

+ OS_IDLE_TASK_STK_SIZE

Obviously, you should carefully examine your application’s
stack usage during development to arrive at final numbers.

www.national.com 20

10.7 Allocate Stack Space for OSIdleTask()
The minimum stack size will be 24 words (48 bytes), but
may increase if you include an idle task hook routine in
your application. I usually start out with a stack size of 40
words and reduce this number during development as indi-
cated.

#define OS_IDLE_TASK_STK_SIZE 40 // Idle task stack size (WORDs)

#define OS_IDLE_TASK_STK_TOP 40 // idle user task top of stack

10.8 Allocate Stack Space for the System Stack
As stated above, the System stack is used during all excep-
tions while in User mode and for all nested interrupts while
in Supervisor mode. You must ensure that sufficient space
is provided to accommodate all system needs, including
interrupt nesting. If you are using the NSC tool chain, this
space is allocated in the output SECTIONS area of the
linker definition file used by all projects. For example:

SECTIONS {

.SysStk (NOLOAD) ALIGN(2) INTO(data_mem): {. += 100;}

.IntStk (NOLOAD) ALIGN(2) INTO(data_mem): {. += 24;}

}

__SYSSTK_START = ADDR(.SysStk) + SIZEOF(.SysStk);

__INTSTK_START = ADDR(.IntStk) + SIZEOF(.IntStk);

_USER_CODE_START = 0x0000;

If you are using the IAR tool chain, this space is allocated
using the following commands within the extended linker
command file:

-D_SYSSTK_SIZE=240 /* USED BY SUPERVISOR */

-D_INTSTK_SIZE=12 /* USED BY SUPERVISOR */

-Z(DATA)ISTACK+_INTSTK_SIZE,CSTACK+_SYSSTK_SIZE#EC000-EE800

10.9 Define OS Parameter OS_MAX_TASKS
This is the total number of tasks you need to create or want
the OS to manage. This and all other application-specific
parameters are located in OS_CFG.H.

#define OS_MAX_TASKS 11 // Number of tasks in your application

21 www.national.com

10.10 Define OS Parameters OS_MAX_EVENTS, OS_MAX_QS, OS_MAX_FLAGS, and
OS_MAX_MEM_PART
These numbers are obviously application driven, but must
always be greater than zero. An Event Control Block (ECB)
is required for each semaphore, event flag, queue, and
mailbox you create.

#define OS_MAX_EVENTS 2 // Max. number of event control blocks in your

// application

#define OS_MAX_QS 1 // Max. num queue control blocks in your application

#define OS_MAX_FLAGS 1 // Max. number of Event Flag Groups in your application

#define OS_MAX_MEM_PART 1 // Max. number of memory partitions

10.11 Further Configure the OS for the Desired Services

#define OS_TASK_STAT_EN 0 // Enable (1) or Disable(0) the statistics task

#define OS_TASK_STAT_STK_SIZE 50 // Statistics task stack size

#define OS_ARG_CHK_EN 0 // Enable (1) or Disable (0) argument checking

#define OS_CPU_HOOKS_EN 1 // uC/OS-II hooks are found in the processor port

// files

/* ----------------------- EVENT FLAGS ------------------------ */

#define OS_FLAG_EN 0 // code generation for EVENT FLAGS

#define OS_FLAG_WAIT_CLR_EN 0 // Include code for Wait on Clear EVENT FLAGS

#define OS_FLAG_ACCEPT_EN 0 // Include code for OSFlagAccept()

#define OS_FLAG_DEL_EN 0 // Include code for OSFlagDel()

#define OS_FLAG_QUERY_EN 0 // Include code for OSFlagQuery()

/* -------------------- MESSAGE MAILBOXES --------------------- */

#define OS_MBOX_EN 0 // code generation for MAILBOXES

#define OS_MBOX_ACCEPT_EN 0 // Include code for OSMboxAccept()

#define OS_MBOX_DEL_EN 0 // Include code for OSMboxDel()

#define OS_MBOX_POST_EN 0 // Include code for OSMboxPost()

#define OS_MBOX_POST_OPT_EN 0 // Include code for OSMboxPostOpt()

#define OS_MBOX_QUERY_EN 0 // Include code for OSMboxQuery()

/* --------------------- MEMORY MANAGEMENT -------------------- */

#define OS_MEM_EN 0 // Code generation for MEMORY MANAGER

#define OS_MEM_QUERY_EN 0 // Include code for OSMemQuery()

/* ---------------- MUTUAL EXCLUSION SEMAPHORES --------------- */

#define OS_MUTEX_EN 0 // code generation for MUTEX

#define OS_MUTEX_ACCEPT_EN 0 // Include code for OSMutexAccept()

#define OS_MUTEX_DEL_EN 0 // Include code for OSMutexDel()

#define OS_MUTEX_QUERY_EN 0 // Include code for OSMutexQuery()

/* ---------------------- MESSAGE QUEUES ---------------------- */

#define OS_Q_EN 0 // code generation for QUEUES

#define OS_Q_ACCEPT_EN 0 // Include code for OSQAccept()

#define OS_Q_DEL_EN 0 // Include code for OSQDel()

#define OS_Q_FLUSH_EN 0 // Include code for OSQFlush()

#define OS_Q_POST_EN 0 // Include code for OSQPost()

#define OS_Q_POST_FRONT_EN 0 // Include code for OSQPostFront()

#define OS_Q_POST_OPT_EN 0 // Include code for OSQPostOpt()

www.national.com 22

#define OS_Q_QUERY_EN 0 // Include code for OSQQuery()

/* ------------------------ SEMAPHORES ------------------------ */

#define OS_SEM_EN 1 // code generation for SEMAPHORES

#define OS_SEM_ACCEPT_EN 0 // Include code for OSSemAccept()

#define OS_SEM_DEL_EN 0 // Include code for OSSemDel()

#define OS_SEM_QUERY_EN 0 // Include code for OSSemQuery()

/* --------------------- TASK MANAGEMENT ---------------------- */

#define OS_TASK_CHANGE_PRIO_EN0 // Include code for OSTaskChangePrio()

#define OS_TASK_CREATE_EN 1 // Include code for OSTaskCreate()

#define OS_TASK_CREATE_EXT_EN 0 // Include code for OSTaskCreateExt()

#define OS_TASK_DEL_EN 1 // Include code for OSTaskDel()

#define OS_TASK_SUSPEND_EN 0 // Include code for OSTaskSuspend() and

// OSTaskResume()

#define OS_TASK_QUERY_EN 0 // Include code for OSTaskQuery()

/* --------------------- TIME MANAGEMENT ---------------------- */

#define OS_TIME_DLY_HMSM_EN 0 // Include code for OSTimeDlyHMSM()

#define OS_TIME_DLY_RESUME_EN 1 // Include code for OSTimeDlyResume()

#define OS_TIME_GET_SET_EN 1 // Include code for OSTimeGet() and OSTimeSet()

/* ---------------------- MISCELLANEOUS ----------------------- */

#define OS_SCHED_LOCK_EN 1 // Include code for OSSchedLock() and

// OSSchedUnlock()

#define OS_TICKS_PER_SEC 200 // Set the number of ticks in one second

23 www.national.com

10.12 Call µC/OS-II’s Initialization Routine OSIn-
it()

This OS routine initializes all of the kernel’s linked lists and
required parameters.

10.13 Create at Least One Task
The first task should usually be created from within your
main() function. This first task would generally then cre-
ate any additional tasks (obviously, many variations on this
theme are possible). µC/OS-II allows tasks to be created
using two slightly different methods. The first is backward
compatible with µC/OS and uses its original OSTaskCre-
ate() routine with the following arguments:

UBYTE OSTaskCreate (void (*task)(void *pd), // ptr to task entry

void *pdata, // ptr to passed data (simulates CALL)

void *pstk, // ptr to task’s top of user stack

UBYTE prio); // task’s priority

The new, expanded task create routine allows for the inclu-
sion of optional task-specific data and extensions:

#if OS_TASK_CREATE_EXT_EN

INT8U OSTaskCreateExt(void (*task)(void *pd), // ptr to tasks entry

void *pdata, // ptr to optional environment data

OS_STK *ptos, // ptr to task’s Top Of Stack

INT8U prio, // task’s priority

INT16U id, // task’s ID

OS_STK *pbos, // ptr to task’s Bottom Of Stack

INT32U stk_size, // task’s stack size

void *pext, // pointer to optional TCB extension

INT16U opt) // pointer to optional task-specific info

#endif

10.14 Finally, Call OSStart() to Begin Multitask-
ing
Now, you simply pray that you’ve done everything correctly
— simple!

www.national.com 24

11.0 Performance Numbers for µC/OS-II
on the CR16C
The performance of any RTOS is affected by a number of
different factors, not the least of which is the architecture of
the machine on which it is running. As described earlier,
the CR16C’s instruction set architecture is tuned to achieve
both high performance and good code density. Although
these are most often conflicting demands, on the CR16C
they reach a well-balanced compromise. The cycle timing
of most of µC/OS-II’s services are naturally compiler and
compiler-option dependent, and they may vary slightly.
Because the CR16C’s instruction cycle is equivalent to the
system clock (this would be your oscillator frequency if
operating without the internal PLL, or, if using the PLL, this
is your derived system clock rate), the cycle count can be

easily translated into real time by multiplying with your
oscillator’s period. In a typical application, the CR16C
achieves average CPI figures (Cycles Per Instruction) in
the 1.6 to 1.8 range. Altogether, this results in extremely
low OS overhead and plenty of CPU time for user tasks.

Figure 9 illustrates the nominal OS overhead associated
with a context switch from the task level. Task A calls the
µC/OS-II service OSTimeDly(), at which point the task is
suspended until the desired delay expires. As shown in the
diagram, the total nominal delay incurred by the application
when using this kernel service is about 250 cycles for
Supervisor mode or 313 cycles for User mode. This means
that once Task A calls the OS, the highest priority task
ready to run (Task B in the diagram) gains control of the
CPU in about 10.4 or 13.1 microseconds at 24 MHz.

Figure 4. Context Switch Overhead

COS004

Task A Calls OSTimeDly() Task A Delayed Until Time Expires

~250/313 Cycles
(~10.4/13.1 µs @ 24 MHz)

uC/OS-II: OSTimeDly()

uC/OS-II: OSSched()

uC/OS-II: OSCtxSw()

Task B is Next Highest
Priority Task

~61 Cycles

~79 Cycles

~110/173 Cycles

Task B Ready to Run

Supervisor/User Mode

Task B Running

Task A Running

25 www.national.com

Another important RTOS performance index is that of inter-
rupt response. What interrupt latency, response, and recov-
ery times will I have to allow for under µC/OS-II? As you
can see in Figure 5, interrupt response suffers by 75 to 125
additional cycles under µC/OS-II, depending on protection
mode and interrupt nesting.

Figure 5. Interrupt Latency, Response, and Recovery Overhead Due to µC/OS-II

25 Cycles

COS005

Task A

Interrupt Call/Return

Save/Restore Task A's
Scratch Registers and RA

Remainder of Context Switch
Save/Restore Task A's
Safe Registers

ISR

13 Cycles

11 Cycles

39/47 Cycles Supervisor Mode

82/89 Cycles

56 Cycles

ISR Executes

User Mode

32/38 Cycles

72/79 Cycles

75 Cycles

13 Cycles

5 Cycles

Interrupt

Typical Interrupt
Response TIme

Worst-Case Interrupt Latency
Due to Kernel Service
OSTaskChangePrior()

SAVE_CONTEXT()
(non-nested/nested)

OSIntEnter()

RESTORE_CONTEXT()
(non-nested/nested)

OSIntExit()

Supervisor Mode

User Mode

RETX Instruction

Resume Task A

www.national.com 26

12.0 Porting µC/OS-II for the CR16C
µC/OS-II V2.70 was ported for use on the CR16C using
both National Semiconductor’s CR16C CompactRISC
Toolset Version 3.1 and IAR’s C/EC++ Compiler for CR16C
V1.13A/W32 (1.13.1.3). National’s compiler was invoked
using the following options:

-Os -g -z -n -S

The complete source code for the CR16C port of µC/OS-II
is available on National Semiconductor’s web site.

13.0 Summary
µC/OS-II can be tuned to have both the smallest footprint
and the lowest RAM utilization. This makes µC/OS-II a very
attractive choice for many embedded applications. In addi-
tion, µC/OS-II’s performance compares quite favorably with
other RTOSs. Given these two factors, you may want to
consider including µC/OS-II in your next design.

14.0 Resources
MicroC/OS-II, The Real-Time Kernel

Jean J. Labrosse

CMP Books, 2002

ISBN 1-57820-103-9

CompactRISC CR16C Programmers Reference Manual

National Semiconductor Corporation

Part Number: 424521772-101

December 2000

CompactRISC C Compiler Reference Manual

National Semiconductor Corporation

Part Number: 424521772-002

December 2000

Jean J. Labrosse

M I C R I U M , I N C .

949 Crestview Circle

Weston, FL 33327

U.S.A.

phone: +1 954 217 2036

fax: +1 954 217 2037

web: www.Micrium.com

www.uCOS-II.com

e-mail: Jean.Labrosse@Micrium.com

27 www.national.com

Appendix A: Context Switch Invoked From Task Level
// ***

// NAME: OSCtxSw Performs a context switch from the task level

//

// Notes: 1) To minimize Task switching overhead, three distinct stack frame

// types are utilized. This technique leverages the fact that

// only the SAFE regs need be saved prior to a context switch

// invoked from the task level, because the calling task will have

// necessarily saved any/all scratch registers it is using. This

// is in contrast with the stack frame used for interrupts, since

// we return via the ISR.

//

// 2) Upon entry...

//

// OSTCBCur points to the current task's OS_TCB

// OSTCBHighRdy points to the OS_TCB of the task to resume

//

// 3) The Interrupt stack (@ISP) looks as follows:

//

// ISP->PSR of current task

// +2 Address of OS_TASK_SW() instruction

//

// ***

OSCtxSw: // This is the svc trap handler used to

// access the OS

#if USER_MODE > 0

SAVESAFE // 27 Only the SAFE registers need saved here

// since we've arrived here via a call to an

// OS service.

#else

PUSHSAFE // 13

#endif

#if USER_MODE > 0

sprd usp,(r7,r6) // 1 Get user's TOS

addd $-8,(r7,r6) // 1 Adjust for saving user's PC and PSR

lprd (r7,r6),usp // 4 Update user's TOS

movd (r7,r6),(r12) // 1 Save new TOS for writing to task's TCB

sprd isp,(r9,r8) // 1 point to system stack area

loadd 0(r9,r8),(r4,r3) // 3 get user's PC

addd $1,(r4,r3) // 1 adjust PC to return to next instruction

loadw 4(r9,r8),r5 // 2 get user's PSW

movw $FRAME_TASK,r2 // 1 Indicate Task-level type of stack frame

www.national.com 28

stormp $4 // 5 put user's PC and PSW on its user stack

loadd OSTCBCur,(r1,r0) // 3 save program stack pointer in task's TCB

stord (r12),0(r1,r0) // 3

#else

sprd isp,(r9,r8) // 1 point to system stack area

loadd 0(r9,r8),(r1,r0) // 3 get user's PC

addd $1,(r1,r0) // 1 adjust PC to return to next instruction

loadw 4(r9,r8),r2 // 2 get user's PSW

push $3,r0 // 4 put user's PC and PSW on its user stack

movw $FRAME_TASK,r0 // 1 Indicate Task-level type of stack frame

push $1,r0 // 2

loadd OSTCBCur,(r1,r0) // 3 save program stack pointer in task's TCB

stord (sp),0(r1,r0) // 3

loadd OSStkPtr,(sp) // 3 In SUPERVISOR mode, switch back to System

// stack for any stack usage by the kernel

#endif

bal (ra), OSTaskSwHook // 6

loadb OSPrioHighRdy,r0 // 2 Update Current Priority

storb r0,OSPrioCur // 2

loadd OSTCBHighRdy,(r1,r0)// 3 Get TCB of highest priority task ready to

// run

stord (r1,r0),OSTCBCur // 3

#if USER_MODE > 0

loadd 0(r1,r0),(r1,r0) // 3 load new pgm stack pointer

// SP = OSTCBHighRdy->OSTCBStkPtr

loadmp $4 // 6 Get the frame type, PC and PSW from

// user's stack

stord (r4,r3),0(r9,r8) // 3 put task's PC on Interrupt Stack

storw r5,4(r9,r8) // 2 put user's PSW on Interrupt Stack

// Determine the restore method commensurate

// with frame type

cmpw $FRAME_TASK,r2 // 1 Task type? - only safe restore

beq _TFrameTASK // 1,3

#else

// Method0 has switched in the user's stack

// for push/pop

loadd 0(r1,r0),(sp) // 3 load new pgm stack pointer

29 www.national.com

// SP = OSTCBHighRdy->OSTCBStkPtr

pop $1,r3 // 3 Get the frame type

pop $3,r0 // 5 pop the PC, PSW, and frame type from

// user's stack

stord (r1,r0),0(r9,r8) // 3 put task's PC into Interrupt Stack

storw r2,4(r9,r8) // 2 put user's PSW into Interrupt Stack

// Jump to restore method commensurate with

// frame type

cmpw $FRAME_TASK,r3 // 1 Task type? - only safe restore needed...

beq _TFrameTASK // 1,3

cmpw $FRAME_INIT,r3 // 1 INIT type? - a complete restore is

// indicated.

beq _TFrameINIT // 1,3

#endif

_TFrameINT: // Frame type INTerrupt (this task was

// preempted during an OS-aware ISR)

#if USER_MODE > 0

RESTOREALL // 42 In USER mode, both types INT and INIT

// come here. We must always do a complete

loadd OSStkPtr,(sp) // 3 restore. Reset System SP

retx // 5 return to the task

#else

popret RA // 5? In Supervisor mode, we return to the ISR

#endif

// (see INT type above)

#if USER_MODE > 0

#else

_TFrameINIT: // Frame Type initial

POPALL // 24

retx // 5 return to task

#endif

_TFrameTASK: // Frame type TASK (this task was preempted

// following a call to an OS service)

#if USER_MODE > 0

RESTORESAFE // 26 Restore safe registers only and return

// to task

#else

POPSAFE // 15 Pop the safe regs and return to the task

#endif

retx // 5

www.national.com 30

Appendix B: Context Switch Invoked From Interrupt Level
// ***

// NAME: OSIntCtxSw Performs a context switch from within an ISR

//

// Notes: 1) Previous versions relied upon a known, consistent stack frame

// upon entry. Due to uncertainties arising from various factors

// (compiler optimization, volatile local var's, etc.), I decided

// to abandon this technique and always return via the ISR. While

// this does introduce additional, variable delays, it is the only

// method guaranteed to avoid these potential sources of error...

//

// 2) Upon entry...

//

// OSTCBCur points to the current task's OS_TCB

// OSTCBHighRdy points to the OS_TCB of the task to resume

//

// ***

OSIntCtxSw:

#if USER_MODE > 0

sprd usp,(r7,r6) // 1 Get user's TOS

addd $-8,(r7,r6) // 1 Adjust for saving user's PC and PSR

lprd (r7,r6),usp // 4 Save new user's TOS

movd (r7,r6),(r12) // 1 Save this for later update of user's TCB

sprd isp,(r9,r8) // 1 point to system stack area

loadd 0(r9,r8),(r4,r3) // 3 get user's PC

loadw 4(r9,r8),r5 // 2 get user's PSW

movw $FRAME_INT,r2 // 1 Indicate Interrupt-level type of stack

// frame

stormp $4 // 5 put user's PC and PSW on its user stack

loadd OSTCBCur,(r1,r0) // 3 save program stack pointer in task's TCB

stord (r12),0(r1,r0) // 3

#else

sprd isp,(r9,r8) // 1 point to system stack area

loadd 0(r9,r8),(r1,r0) // 3 get user's PC

loadw 4(r9,r8),r2 // 2 get user's PSW

push $3,r0 // 4 put user's PC and PSW on its user stack

movw $FRAME_INT,r0 // 1 Indicate Interrupt-level type of stack

// frame

push $1,r0 // 2

31 www.national.com

loadd OSTCBCur,(r1,r0) // 3 SP = OSTCBCur->OSTCBStkPtr

stord (sp),0(r1,r0) // 3

loadd OSStkPtr,(sp) // 3 In SUPERVISOR mode, switch back to System

// stack for any stack usage by the kernel

#endif

bal (ra), OSTaskSwHook // 6

loadb OSPrioHighRdy,r0 // 2 OSPrioCur = OSPrioHighRdy

storb r0,OSPrioCur // 2

loadd OSTCBHighRdy,(r1,r0)// 3 Get TCB of highest priority task ready

// to run

stord (r1,r0),OSTCBCur // 3

#if USER_MODE > 0

// Method1 must use load/store instructions

// to avoid using the user's stack (in case

// of NMI)

loadd 0(r1,r0),(r1,r0) // 3 load new pgm stack pointer

// SP = OSTCBHighRdy->OSTCBStkPtr//

loadmp $4 // 6 Get the frame type, PC and PSW from

// user's stack

stord (r4,r3),0(r9,r8) // 3 put task's PC into Interrupt Stack

storw r5,4(r9,r8) // 2 put user's PSW into Interrupt Stack

// Jump to restore method commensurate with

// frame type

cmpw $FRAME_TASK,r2 // 1 Task Type - only safe restore

beq _IFrameTASK // 1, 3

#else

loadd 0(r1,r0),(sp) // 3 load new pgm stack pointer

// SP = OSTCBHighRdy->OSTCBStkPtr

pop $1,r3 // 3 Get the frame type

pop $3,r0 // 5 pop the PC and PSW from user's stack

stord (r1,r0),0(r9,r8) // 3 put task's PC into Interrupt Stack

storw r2,4(r9,r8) // 2 put user's PSW into Interrupt Stack

cmpw $FRAME_TASK,r3 // 1 Task type - only safe restore

beq _IFrameTASK // 1, 3

cmpw $FRAME_INIT,r3 // 1 Init Type - complete restore

beq _IFrameINIT // 1, 3

#endif

www.national.com 32

_IFrameINT: // Interrupt Frame Type...

#if USER_MODE > 0

RESTOREALL // 42 macro - restore all registers

loadd OSStkPtr,(sp) // 3 Reset System SP

retx // 5 return to highest priority task

#else

popret RA // 5? return via the ISR

#endif

#if USER_MODE > 0

#else

_IFrameINIT: // Initial Frame Type

POPALL // 24 macro - restore all registers

retx // 5 return to highest priority task

#endif

_IFrameTASK: // Task Frame type...

#if USER_MODE > 0

RESTORESAFE // 26 macro - restore safe registers

#else

POPSAFE // 15 macro - restore safe registers

#endif

retx // 5 return to highest priority task

33 www.national.com

Appendix C: Save Task’s Context from within an ISR
// ***

// NAME: OSSaveContext Saves task's context from within an ISR

//

// The task's partially saved (by the isr) stack frame will typically look as follows

// upon entry:

//

// Offset SUPERVISOR MODE USER MODE

// ------ --------------- ---------------

// +16 RA(hi) N/A (these regs were pushed to the system stack)

// +14 RA(lo)

// +12 r6

// +10 r5

// +8 r4

// +6 r3

// +4 r2

// +2 r1

// (sp)+0 r0

//

// HOWEVER, due to uncertainties accompanying compiler optimization levels, ISR

// construction, etc., the context may appear different than above.

//

// After the balance of the context is saved, the task's stack frame will look as follows

// (typical):

//

// Offset SUPERVISOR MODE USER MODE

// ------ --------------- ---------------

//

// +42 RA(hi) r7 (High memory)

// +40 RA(lo) r6

// +38 r6 r1

// +36 r5 r0

// +34 r4 RA(hi)

// +32 r3 RA(lo)

// +30 r2 r13(hi)

// +28 r1 r13(lo)

// +26 r0 r12(hi)

// +24 r7 r12(lo)

// +22 r13(hi) r11

// +20 r13(lo) r10

// +18 r12(hi) r9

// +16 r12(lo) r8

// +14 r11 r5

// +12 r10 r4

// +10 r9 r3

// +8 r8 r2

// +6 PSR PSR

// +4 task address(hi) task address(hi)

www.national.com 34

// +2 task address(lo) task address(lo)

// (sp)+0 Frame Type = INT Frame type = INT (Low memory)

//

// ***

OSSaveContext:

#if OS_NEST_EN > 0

push $1,r0 // 2 If nesting is supported, we must always

// increment the nest counter upon entry to

// an OS-aware ISR, as well as in ALL

loadb OSIntNesting,r0 // 4 non OS-aware ISR's that allow nesting

// (since another interrupting "OS-aware" ISR

addb $1,r0 // 1 may invoke a ctx sw)

storb r0,OSIntNesting // 5

cmpb $1,r0 // 1 Nested interrupt??

bne _ISaveExit1 // 1 YES - no need to save context..goto EXIT

pop $1,r0 // 3 NO, we must save context.

#endif

#if USER_MODE > 0

push RA // 3 Save the return address (ra) from

// interrupted task's context. In USER mode,

// all regs must be written to the

SAVEALL // 46 the task's stack, despite the fact that

// they've already been pushed to the

// supervisor's stack!!

#if OS_NEST_EN == 0

loadb OSIntNesting,r0 // 5 If nesting is disabled, increment the nest

// counter

addb $1,r0 // 1 (Even if nesting is disabled, the nest

// counter is decremented in OSIntExit).

storb r0,OSIntNesting // 4

#endif

popret RA // return to ISR

#else

push $1,r7 // In SUPERVISOR mode, save remaining SAFE

// registers (excluding RA, since it was

push $8,r8 // saved at entry to ISR)

#if OS_NEST_EN == 0

loadb OSIntNesting,r0 // 5 Increment the nesting counter..

addb $1,r0 // 1 (Even if nesting is disabled, the nesting

storb r0,OSIntNesting // counter is decremented in OSIntExit).

#endif

35 www.national.com

jump (RA) // Return to the ISR

#endif

_ISaveExit1:

pop $1,r0 // No context save required..

jump (RA)

www.national.com 36

Appendix D: Context Initialization
/*

**

* INITIALIZE A TASK'S STACK

*

* Description: This function is called by either OSTaskCreate() or OSTaskCreateExt()

* to initialize the stack frame of the task being created. This

* function is highly processor specific.

*

* Arguments: task is a pointer to the task code

*

* pdata is a pointer to a user supplied data area that

* will be passed to the task when the task first

* executes.

*

* ptos is a pointer to the top of stack. It is assumed

* that 'ptos' points to a 'free' entry on the task

* stack. Since stack growth is from High to Low

* Mem on the CR16B, 'ptos' must contain the HIGHEST

* valid address of the stack.

*

* opt specifies options that can be used to alter the

* behavior of OSTaskStkInit().

* (See ucos_ii.h for task options.)

*

* Returns: Always returns the location of the new top-of-stack' once the

* processor registers have been placed on the stack in the proper

* order.

*

* Note(s): Interrupts are enabled when your task starts executing. You can

* change this by setting the PSR to 0x0800 instead. In this case,

* interrupts would be disabled upon task startup. The application code

* would be responsible for enabling interrupts at the beginning of the

* task code. ** NOTE THAT IN THIS CASE, YOU WILL ALSO NEED TO modify

* OSTaskIdle() and OSTaskStat() so that they enable interrupts.

* Failure to do this will make your system crash!

*

**

*/

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U opt)

{

ULONG *stk;

OS_STK *ptr;

37 www.national.com

#ifdef __ICCCR16C__

/* We must be specific with IAR since function pointers*/

typedef void (** PTASK)(void *); /* may not be cast to ULONG without a shift!!*/

PTASK ptask;

#endif

opt = opt; /* 'opt' is not used, prevent warning */

stk = (ULONG *)ptos; /* Get Top of Stack word pointer */

#if USER_MODE > 0

--stk = (ULONG)0x00070006; / R7,R6 = 7,6 */

--stk = (ULONG)0x00010000; / R1,R0 = 1,0 */

--stk = (ULONG)0x000E000E; / R14H/L (RA) = 14,14 */

--stk = (ULONG)0x000D000D; / R13 = 13,13 */

--stk = (ULONG)0x000C000C; / R12 = 12,12 */

--stk = (ULONG)0x000B000A; / R11,R10 = 11,10 */

--stk = (ULONG)0x00090008; / R9,R8 = 9,8 */

--stk = (ULONG)0x00050004; / R5,R4 = 5,4 */

--stk = (ULONG)pdata; / R3,R2 = passed pointer */

#else

--stk = (ULONG)0x000E000E; / R14H/L (RA) = 14,14 */

--stk = (ULONG)0x00060005; / R6,R5 = 6,5 */

ptr = (OS_STK*)(void*)stk;/* Set WORD pointer to next slot */

--ptr = (UWORD)0x0004; / R4 = 4 */

stk = (ULONG*)(void*)ptr; /* Set ULONG pointer to next spot */

--stk = (ULONG)pdata; / R3,R2 = passed pointer */

--stk = (ULONG)0x00010000; / R1,R0 = 1,0 */

ptr = (OS_STK*)(void*)stk;/* Set WORD pointer to next slot */

--ptr = (UWORD)0x0007; / R4 = 4 */

stk = (ULONG*)(void*)ptr; /* Set ULONG pointer to next spot */

--stk = (ULONG)0x000D000D; / R13 = 0 */

--stk = (ULONG)0x000C000C; / R12 = 0 */

--stk = (ULONG)0x000B000A; / R11,R10 = 0 */

--stk = (ULONG)0x00090008; / R9,R8 = 0 */

#endif

ptr = (OS_STK*)(void*)stk;

www.national.com 38

#if USER_MODE > 0

--ptr = (UWORD)0x0a08; / Initialize PSR with ints enabled and */

/* USER mode */

#else

--ptr = (UWORD)0x0a00; / Initialize PSR with ints enabled and */

/* SUPERVISOR mode */

#endif

#ifdef __ICCCR16C__

ptask = (PTASK)ptr; /* Set pointer to next spot */

--ptask = task; / Put Task's address on top of stack */

ptr = (OS_STK*)ptask;

#else

stk = (ULONG*)(void*)ptr; /* Set pointer to next spot */

--stk = (ULONG)task; / Put Task's address on top of stack */

ptr = (OS_STK*)(void*)stk;

#endif

--ptr = FRAME_INIT; / Define the initial Frame type as Interrupt*/

/* to ensure a full restore... */

return ((OS_STK *)ptr); /* This will be the Task's initial SP value */

}

39 www.national.com

Appendix E: µC/OS-II Macros
/***

* uC/OS-II

* CR16C-Specific Kernel macros

* File: os_cpu.h

* By: Jeffrey Wright

***/

#ifndef CR16CCH

#define CR16CCH

#ifdef OS_CPU_GLOBALS

#define OS_CPU_EXT

#else

#define OS_CPU_EXT extern

#endif

/* Task's Stack frames may come in these */

/* flavors... */

#define FRAME_INIT 1 /* Initial frame type */

#define FRAME_TASK 2 /* After task calls OS service */

#define FRAME_INT 3 /* After task is interrupted */

#ifdef __ICCCR16C__

#include <intrinsics.h>

#include <string.h>

#else

#include <asm.h>

#endif

/*

**

* FUNCTION PROTOTYPES

* (Compiler Specific ISR prototypes)

**

*/

#ifdef __ICCCR16C__

__trap void OSCtxSw(void);

#else

void OSCtxSw(void);

#endif

void OSTickISRHandler(void); /* This is the generic tick handler called by*/

/* the app */

void OSTIMER_EN(void); /* This is an extern declaration, filled by */

/* the app */

void OSSaveContext(void); /* These are required since IAR's inline */

void OSRestoreContext(void); /* assbly support is inadequate.. */

www.national.com 40

void OSUseSysStk(void);

void OSUseTaskStk(void);

void OSStartHighRdy(void);

void OSIntCtxSw(void);

/***

* DATA TYPES

* (Compiler Specific)

***/

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U; /* Unsigned 8 bit quantity */

typedef signed char INT8S; /* Signed 8 bit quantity */

typedef unsigned short INT16U; /* Unsigned 16 bit quantity */

typedef short INT16S; /* Signed 16 bit quantity */

typedef unsigned long INT32U; /* Unsigned 32 bit quantity */

typedef signed long INT32S; /* Signed 32 bit quantity */

typedef float FP32; /* Single precision floating point */

typedef double FP64; /* Double precision floating point */

/***

* Legacy DATA TYPES

* (Included for legacy code)

***/

#define BYTE INT8S /* Define data types for backward */

#define UBYTE INT8U /* compatibility to uC/OS V1.xx. */

#define WORD INT16S /* Not actually needed for uC/OS-II. */

#define UWORD INT16U

#define LONG INT32S

#define ULONG INT32U

#define UCHAR char

typedef volatile INT8U VUBYTE; /* Volatile Unsigned 8 bit quantity */

typedef volatile INT16U VUWORD; /* Volatile Unsigned 16 bit quantity */

typedef volatile INT32U VULONG; /* Volatile Unsigned 32 bit quantity */

#define OS_STK_GROWTH 1 /* Stack grows from HIGH to LOW memory */

typedef INT16U OS_STK; /* Each stack entry is 16-bit wide */

OS_CPU_EXT ULONG OSStkPtr; /* Used in SUPERVISOR MODE on the CR16C */

/***

* uC/OS-II allows two methods of Disabling/Enabling interrupts:

*

* Method #1: Disable/Enable interrupts using simple instructions. After critical

* section, interrupts will be enabled even if they were disabled before

* entering the critical section. You MUST change the constant in

* OS_CPU_A.ASM, function OSIntCtxSw() from 10 to 8.

*

41 www.national.com

* Method #2: Disable/Enable interrupts by preserving the state of interrupts. In

* other words, if interrupts were disabled before entering the critical

* section, they will be disabled when leaving the critical section.

* You MUST change the constant in OS_CPU_A.ASM, function OSIntCtxSw()

* from 8 to 10.

***/

#ifdef __ICCCR16C__ /* IAR version... */

#define OS_ENTER_CRITICAL() __disable_interrupt()

#define OS_EXIT_CRITICAL() __enable_interrupt()

#define ENABLE_INTERRUPTS() __set_PSR_I_bit()

#define DISABLE_INTERRUPTS() __clear_PSR_I_bit()

#define OS_TASK_SW() __raise_exception(5)

/* This invokes the svc trap as a system call*/

#define __ASS__ asm

#else /* NSC */

#define OS_ENTER_CRITICAL() _di_() /* Disable interrupts */

#define OS_EXIT_CRITICAL() _ei_() /* Enable interrupts */

#define ENABLE_INTERRUPTS() set_i_bit()

#define DISABLE_INTERRUPTS() clear_i_bit()

#define OS_TASK_SW() _excp_(5) /* This uses the svc trap as a system call */

#define __ASS__ __asm__

#endif

/*

**

* CONTEXT SAVE/RESTORE MACROS

**

*/

/*

* NOTE:

* Due to the IAR comiler's inadequate inline assembler support, assembler subroutines

* are now utilized inplace of the previous version's use of inline assembler macros.

* This increases overhead by a few additional cycles, but is nonetheless unavoidable.

* Furthermore, to maintain consistency between the two, the NSC port now also utilizes

* this method.

*/

#define USE_SYSTEM_STK() OSUseSysStk();

#define USE_TASK_STK() OSUseTaskStk();

#define SAVE_CONTEXT() OSSaveContext();

#define RESTORE_CONTEXT() OSRestoreContext();

#endif

www.national.com 42

Appendix F: Assembly Macros
// Task stack frames come in these flavors...

#define FRAME_INIT 1 // Initial

#define FRAME_TASK 2 // After task calls an OS service

#define FRAME_INT 3 // After task is interrupted

// ************** For use with SUPERVISOR mode kernels ****************

#ifdef __ACR16C__

_USE_USER_STACK_ MACRO

#else

.macro _USE_TASK_STACK_

#endif

stord (sp),OSStkPtr // Save System SP for use by nested interrupts

loadd OSTCBCur:_SIZE,(r1,r0)

loadd 0(r1,r0),(sp)

#ifdef __ACR16C__

ENDM

#else

.endm

#endif

#ifdef __ACR16C__

_USE_SYSTEM_STACK_ MACRO

#else

.macro _USE_SYSTEM_STACK_

#endif

loadd OSTCBCur,(r1,r0)

stord (sp),0(r1,r0)

loadd OSStkPtr,(sp)

#ifdef __ACR16C__

ENDM

#else

.endm

#endif

// ************** ALTERNATE METHOD USING STORMP/LOADMP INSTRUCTIONS...

#ifdef __ACR16C__

SAVESAFE MACRO

#else

.macro _SAVESAFE_

#endif

push $1,r7 // 2 Save R7

sprd usp,(r7,r6) // 1 Get user's TOS

addd $-22,(r7,r6) // 1 Adjust ptr to save

lprd (r7,r6),usp // 4 Load new user TOS

movd (r12),(r3,r2) // 1 Copy remaining regs to

43 www.national.com

movd (r13),(r5,r4) // 1

stormp $8 // 9 Save R12,13,8,9,10,11

pop $1,r2 // 3 Reload R7

movd (ra),(r4,r3) // 1 Copy r14

stormp $3 // 4 Save R7,r14

#ifdef __ACR16C__

ENDM // 27 cycles

#else

.endm

#endif

#ifdef __ACR16C__

RESTORESAFE MACRO

#else

.macro _RESTORESAFE_

#endif

loadmp $8 // 10 Load R12,13,8,9,10,11

movd (r3,r2),(r12) // 1 Copy remaining regs to

movd (r5,r4),(r13) // 1 default for saving

loadmp $3 // 5 Load R7,r14

movw r2,r7 // 1 Copy R7

movd (r4,r3),(ra) // 1 Copy Ra

lprd (r1,r0),usp // 4 Load new user TOS

loadd OSStkPtr,(sp) // 3 Reset System SP

#ifdef __ACR16C__

ENDM // 26 cycles

#else

.endm

#endif

#ifdef __ACR16C__

SAVEALL MACRO

#else

.macro _SAVEALL_

#endif

push $2,r6 // 4 Save user's R6,7

loadd OSStkPtr,(r7,r6) // 3 context...we must save the ra of the

// isr first!!

addd $-4,(r7,r6) // 1

loadd 0(r7,r6),(ra) // 3

sprd usp,(r7,r6) // 1 Get user's TOS

addd $-36,(r7,r6) // 1 Adjust ptr to new TOS

lprd (r7,r6),usp // 4 Load new user TOS

stormp $8 // 9 Save R2,3,4,5,8,9,10,11

movd (r12),(r3,r2) // 1 Copy R12,13,14,0,1

movd (r13),(r5,r4) // 1 to permit storing

movd (ra),(r9,r8) // 1

movd (r1,r0),(r11,r10) // 1

stormp $8 // 9 Save R12,13,14,0,1

www.national.com 44

pop $2,r2 // 4 Restore user's R6,7

stormp $2 // 3 Save R6,7

#ifdef __ACR16C__

ENDM // 46 cycles

#else

.endm

#endif

#ifdef __ACR16C__

RESTOREALL MACRO

#else

.macro _RESTOREALL_

#endif

addd $32,(r1,r0) // 1 Adjust ptr for R6,7

loadmp $2 // 4 Load R6 and R7

movd (r3,r2),(r7,r6) // 1 Copy R6,R7

lprd (r1,r0),usp // 4 Load new user TOS

addd $-20,(r1,r0) // 1 Adjust pointer for next group

loadmp $8 // 10 Load R12,13,14,0,1

movd (r3,r2),(r12) // 1 Copy remaining regs to

movd (r5,r4),(r13) // 1

movd (r9,r8),(ra) // 1

push $2,r10 // 3 Save R1,R0

addd $-32,(r1,r0) // 1 Adjust pointer for next group

loadmp $8 // 10 Load R2,3,4,5,8,9,10,11

pop $2,r0 // 4 Get R1,R0

#ifdef__ACR16C__

ENDM // 42 cycles

#else

.endm

#endif

// ************** For use with SUPERVISOR mode kernels ****************

#ifdef __ACR16C__

POPALL MACRO

#else

.macro _POPALL_

#endif

pop $8,r8 // 10

pop $1,r7 // 3

pop $7,r0,RA // 11

#ifdef __ACR16C__

ENDM // 24 cycles

#else

.endm

#endif

45 www.national.com

#ifdef __ACR16C__

PUSHSAFE MACRO

#else

.macro _PUSHSAFE_

#endif

push $1,r7 // 2

push $8,r8,RA // 11

#ifdef __ACR16C__

ENDM // 13

#else

.endm

#endif

#ifdef __ACR16C__

POPSAFE MACRO

#else

.macro _POPSAFE_

#endif

pop $8,r8,RA // 12

pop $1,r7 // 3

#ifdef __ACR16C__

ENDM

#else

.endm

#endif

National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959

National Semiconductor
EuropeCustomer
Support Center

Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208

English Tel: +44 (0) 870 24 0 2171

Francais Tel: +33 (0) 1 41 91 8790

National Semiconductor
Japan Customer
Support Center
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560

National Semiconductor
Asia Pacific Customer
Support Center
Email: ap.support@nsc.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specification.

µ
C

/O
S

-I
I R

ea
l-

T
im

e
K

er
n

el
 f

o
r

C
R

16
C

-B
as

ed
 P

ro
d

u
ct

s

www.national.com

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be rea-
sonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

Notes

