
LED DRIVER INSTRUCTIONS

INSTRUCTION SYNTAX

FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

ramp 0.6, 255

;Ramp up to full
scale over 0.6s

0000 1010 1111 1111

0A FF ramp time, PWM

Time is a positive constant
(0 to 0.484*PWM);
PWM is a positive or
negative constant (-255 to
255).
Note: time is rounded by assembler
if needed.

Output PWM with
increasing /
decreasing duty
cycle.

ramp 1.2,- 255

;Ramp down to zero
over 1.2s

0001 0101 1111 1111

15 FF

ld ra, 31
ld rb, 255
ramp ra, pre=0,+rb

;Ramp up to full
scale over 3.9s

1000 0100 0000 0001

84 01 ramp var1, prescale,
var2

Var1 is a variable (ra, rb,
rc, rd);
Prescale is a boolean
constant (pre=0 or pre=1);
Var2 is a variable (ra, rb,
rc, rd).

Output PWM with
increasing /
decreasing duty
cycle.

ld ra, 1
ld rb, 255
ramp ra, pre=0,-rb

;Ramp down to zero
over 0.12s

1000 0100 0001 0001 84 11

set_pwm PWM

PWM is a constant (0-255 or
0 - FFh).

Generate a
continuous PWM
output.

set_pwm 128

;Set PWM Duty-Cycle
to 50%

0100 0000 1000 0000 4080

set_pwm var1

Var1 is a variable (ra, rb,
rc, rd).

Generate a
continuous PWM
output.

ld rc, 128
set_pwm rc

;Set PWM Duty-Cycle
to 50%

1000 0100 0110 0010 8462

wait time

Time is a positive constant
(0 to 0.484).
Note: time is rounded by assembler
if needed.

Pause for some
time.

wait 0.25

;Wait 0.25 seconds

0110 0000 0000 0000 6000

LED MAPPING INSTRUCTIONS

INSTRUCTION SYNTAX

FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

mux_ld_start address

Address is a label which
specifies where to find the
first row.

Defines the start
address of the
mapping data table.

mux_ld_start row1

; The first row can be
found at the address
marked with ‘row1’

1001 1110 0000 0000

Assumed that “row1”
points to addr 00h.

9E00

mux_map_start address

Address is a label which
specifies where to find the
first row.

Defines the start
address of the
mapping data table
and sets the row
active.

mux_map_start row1

; The first row can be
found at the address
marked with ‘row1’

1001 1100 0000 0000

Assumed that “row1”
points to addr 00h.

9C00

mux_ld_end address

Address is a label which
specifies where to find the
last row.

Defines the end
address of the
mapping data table.

mux_ld_end row9

; The last row can be
found at the address
marked with ‘row9’

1001 1100 1000 1000

Assumed that “row9”
points to addr 08h.

9C88

mux_sel output

Output is a constant (0 to
9 or 16).

Connects one and
only one LED
output to an engine.

mux_sel 1

; D1 output will be
connected to the
engine.

1001 1101 0000 0001 9D01

mux_clr

Clears engine-to-
driver mapping.

mux_clr

1001 1101 0000 0000 9D00

mux_map_next Sets the next row
active in the
mapping table.

mux_map_next 1001 1101 1000 0000 9D80

mux_map_prev Sets the previous
row active in the
mapping table.

mux_map_prev 1001 1101 1100 0000 9DC0

mux_ld_next The index pointer
will be set to point
to the next row in
the mapping table.

mux_ld_next 1001 1101 1000 0001 9D81

mux_ld_prev The index pointer
will be set to point
to the previous
row in the
mapping table.

mux_ld_prev 1001 1101 1100 0001 9DC1

mux_ld_addr address

Address is a label which
specifies the row to which
the pointer is to be moved.

Sets the index
pointer to point the
mapping table row
defined by
address .

mux_ld_addr row2

; The index pointer
will be set to point
to the row labelled
with “row2”.

1001 1111 0000 0001

Assumed that “row2”
points to addr 01h.

9F01

mux_map_addr address

Address is a label which
specifies the row of the table
that will be set active.

Sets the index
pointer to point the
mapping table row
defined by
address and sets
the row active.

mux_map_addr row2

; The index pointer
will be set to point
to the row labelled
with “row2” and the
row will be set
active.

1001 1111 1000 0001

Assumed that “row2”
points to addr 01h.

9F81

BRANCH INSTRUCTIONS

INSTRUCTION SYNTAX

FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

rst

Resets program
counter and start
the program
again.

rst

0000 0000 0000 0000

0000

branch loopcount,
address

Loopcount is a constant
(0 to 63);
Address is a label which
specifies the offset.

Repeat a section of

code.

branch 20, loop1

; define loop for 20
times

1010 1010 0000 0000

Assumed that “loop1”
points to addr 00h.

AA00

branch var1, address

Var1 is a variable (ra, rb,
rc, rd);
Address is a label which
specifies the offset.

Repeat a section of
code.

ld ra, 20
branch ra, loop1

; define loop for 20
times

1000 0110 0000 0000

Assumed that “loop1”
points to addr 00h.

8600

int Causes an
interrupt.

int 1100 0100 0000 0000 C400

end interrupt, reset

Interrupt (i) is an
optional flag. Reset (r) is
an optional flag.

End program
execution.

end i

; End program
execution and send an
interrupt.

1101 0000 0000 0000 D000

trigger
w{source1|source2...}

Source is the source of the
trigger (1, 2, 3, e).

Wait a trigger. trigger w{1}

;Wait a
trigger from the
engine 1.

1110 0000 1000 0000 E080

trigger
s{target1|target2...}

Target is the target of the
trigger (1, 2, 3, e).

Send a trigger. trigger s{1}

;Send a
trigger to the engine
1.

1110 0000 0000 0010 E002

jne var1, var2,
address

Var1 is a variable (ra, rb,
rc, rd);
Var2 is a variable (ra, rb,
rc, rd);
Address is a label which
specifies the offset.

Jump if not equal.

jne ra, rb, flash

;Jump to ‘flash’ if
A != B.

1000 1000 0010 0001

Assumed that offset = 2.

8821

jl var1, var2,
address

Var1 is a variable (ra, rb,
rc, rd);
Var2 is a variable (ra, rb,
rc, rd);
Address is a label which
specifies the offset.

Jump if less.

jl ra, rb, flash

;Jump to ‘flash’ if
A < B.

1000 1010 0001 0001

Assumed that offset = 1

8A11

INSTRUCTION SYNTAX

FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

jge var1, var2,
address

Var1 is a variable (ra, rb,
rc, rd);
Var2 is a variable (ra, rb,
rc, rd);
Address is a label which
specifies the offset.

Jump if greater or
equal.

jge ra, rb, flash

;Jump to ‘flash’ if A
>= B.

1000 1100 0001
0001

Assumed that offset = 1.

8C11

je var1, var2,
address

Var1 is a variable (ra, rb,
rc, rd);
Var2 is a variable (ra, rb,
rc, rd);
Address is a label which
specifies the offset.

Jump if equal.

je ra, rb, flash

;Jump to ‘flash’ if A
= B.

1000 1110 0001
0001

Assumed that offset = 1.

8E11

DATA TRANSFER AND ARITHMETIC INSTRUCTIONS

INSTRUCTION SYNTAX

FUNCTION EXAMPLE 16-BIT ASSEMBLED

BIT SEQUENCE

ASSEMBLED

CODE HEX

ld var, value

Var is a variable (ra, rb, rc);
Value is a constant (0 to
255 or 0 to FFh).

Assigns a value to
a variable.

ld ra, 10

;Variable A = 10.

1001 0000 0000 1010 900A

add var, value

Var is a variable (ra, rb, rc);
Value is a constant (0 to
255 or 0 to FFh).

Add the 8-bit value
to the variable
value.

add ra, 30

;A = A + 30.

1001 0001 0001 1110 911E

add var1, var2, var3

Var1 is a variable (ra, rb,
rc);
Var2 is a variable (ra, rb,
rc, rd);
Var3 is a variable (ra, rb,
rc, rd);

Add the value of
var3 to the value of
var2 and store the
result in var1.

add ra, rc, rd

;A = C + D.

1001 0011 0000 1011 930B

sub var, value

Var is a variable (ra, rb, rc);
Value is a constant (0 to
255 or 0 to FFh).

Subtract the 8-bit
value from the
variable value.

sub ra, 30

;A = A - 30.

1001 0010 0001 1110 921E

sub var1, var2, var3

Var1 is a variable (ra, rb,
rc);
Var2 is a variable (ra, rb,
rc, rd);
Var3 is a variable (ra, rb,
rc, rd);

Subtract the value
of var3 from the
value of var2 and
store the result in
var1.

sub ra, rc, rd

;A = C - D

1001 0011 0001 1011 931B

