instaspin_foc
fast_obs_pm_cal.c
Go to the documentation of this file.
1 
7 
8 // **************************************************************************
9 
10 // solutions
11 #include "fast_obs.h"
12 
13 
14 // **************************************************************************
15 // the defines
16 
17 
18 // **************************************************************************
19 // the globals
20 
21 CAL_State_e gCalState = CAL_State_Idle;
22 
23 EST_State_e gEstState = EST_State_Idle;
24 
25 volatile bool gFlag_enableSys = true;
26 
27 volatile bool gFlag_runCal = false;
28 
29 volatile bool gFlag_runOnLine = false;
30 
31 volatile bool gFlag_enableForceAngle = true;
32 
34 
36 
38 
40 
42 
44 
45 volatile float_t gSpeed_Kp = 0.01;
46 
47 volatile float_t gSpeed_Ki = 0.001;
48 
49 volatile float_t gId_ref_A = 0.0;
50 
52 
53 uint16_t gCounter_speed = 0;
54 
56 
58 
60 
62 
64 
66 
68 
69 MATH_vec3 gOffsets_I_A = {0.0, 0.0, 0.0};
70 
71 MATH_vec3 gOffsets_V_V = {0.0, 0.0, 0.0};
72 
75 
78 
81 
84 
86 
89 
92 
95 
98 
101 
104 
105 #ifdef DRV8301_SPI
106 // Watch window interface to the 8301 SPI
107 DRV_SPI_8301_Vars_t gDrvSpi8301Vars;
108 #endif
109 
115 
116 // **************************************************************************
117 // the functions
118 
119 void main(void)
120 {
121  uint_least8_t estNumber = 0;
122 
123  // initialize the user parameters
124  USER_setParams(&gUserParams);
125 
126  // initialize the user parameters
127  USER_setParams_priv(&gUserParams);
128 
129  // initialize the driver
130  halHandle = HAL_init(&hal,sizeof(hal));
131 
132  // set the driver parameters
133  HAL_setParams(halHandle,&gUserParams);
134 
135  // initialize the calibrator
136  calHandle = CAL_init(&cal,sizeof(cal));
137 
138  // set the default calibrator parameters
139  CAL_setParams(calHandle,&gUserParams);
140 
141  // initialize the Clarke modules
142  clarkeHandle_I = CLARKE_init(&clarke_I,sizeof(clarke_I));
143  clarkeHandle_V = CLARKE_init(&clarke_V,sizeof(clarke_V));
144 
145  // set the Clarke parameters
146  setupClarke_I(clarkeHandle_I,gUserParams.numCurrentSensors);
147  setupClarke_V(clarkeHandle_V,gUserParams.numVoltageSensors);
148 
149  // initialize the estimator
150  estHandle = EST_initEst(estNumber);
151 
152  // set the default estimator parameters
153  EST_setParams(estHandle,&gUserParams);
156 
157  // initialize the inverse Park module
158  iparkHandle = IPARK_init(&ipark,sizeof(ipark));
159 
160  // initialize the Park module
161  parkHandle = PARK_init(&park,sizeof(park));
162 
163  // initialize the PI controllers
164  piHandle_Id = PI_init(&pi_Id, sizeof(pi_Id));
165  piHandle_Iq = PI_init(&pi_Iq, sizeof(pi_Iq));
166  piHandle_spd = PI_init(&pi_spd,sizeof(pi_spd));
167 
168  // setup the controllers
170 
171  // initialize the space vector generator module
172  svgenHandle = SVGEN_init(&svgen,sizeof(svgen));
173 
174  // initialize the CPU usage module
175  cpu_usageHandle = CPU_USAGE_init(&cpu_usage,sizeof(cpu_usage));
176  CPU_USAGE_setParams(cpu_usageHandle,
177  (uint32_t)USER_SYSTEM_FREQ_MHz * 1000000, // timer period, cnts
178  (uint32_t)USER_ISR_FREQ_Hz); // average over 1 second of ISRs
179 
180  // setup faults
181  HAL_setupFaults(halHandle);
182 
183  // initialize the interrupt vector table
184  HAL_initIntVectorTable(halHandle);
185 
186  // enable the ADC interrupts
187  HAL_enableAdcInts(halHandle);
188 
189  // enable global interrupts
190  HAL_enableGlobalInts(halHandle);
191 
192  // enable debug interrupts
193  HAL_enableDebugInt(halHandle);
194 
195  // disable the PWM
196  HAL_disablePwm(halHandle);
197 
198 #ifdef DRV8301_SPI
199  // turn on the DRV8301 if present
200  HAL_enableDrv(halHandle);
201  // initialize the DRV8301 interface
202  HAL_setupDrvSpi(halHandle,&gDrvSpi8301Vars);
203 #endif
204 
205  // Waiting for enable system flag to be set
206  while(!gFlag_enableSys);
207 
208  // loop while the enable system flag is true
209  while(gFlag_enableSys)
210  {
211  // set custom speed controller gains
212  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
213 
214  // enable or disable force angle
216 
217  if((gFlag_runOnLine) && (!gFlag_runCal))
218  {
219  // disable the calibrator
220  CAL_disable(calHandle);
221 
222  // enable the estimator
224 
225  // enable the PWM
226  HAL_enablePwm(halHandle);
227  }
228  else if(gFlag_runCal)
229  {
230  // enable the calibrator
231  CAL_setFlag_enableAdcOffset(calHandle,true);
232 
233  // enable the calibrator
234  CAL_enable(calHandle);
235 
236  // disable the estimator
238 
239  // enable the PWM
240  HAL_enablePwm(halHandle);
241  }
242  else
243  {
244  // disable the calibrator
245  CAL_disable(calHandle);
246 
247  // disable the estimator
249 
250  // disable the PWM
251  HAL_disablePwm(halHandle);
252 
253  // clear integral outputs of the controllers
254  PI_setUi(piHandle_Id,0.0);
255  PI_setUi(piHandle_Iq,0.0);
256  PI_setUi(piHandle_spd,0.0);
257 
258  // clear current references
259  gId_ref_A = 0.0;
260  gIq_ref_A = 0.0;
261  }
262 
263  // update the estimator state
265 
266  // update the calibrator state
267  if(CAL_updateState(calHandle))
268  {
269  CAL_State_e calState = CAL_getState(calHandle);
270 
271  if(calState == CAL_State_Done)
272  {
273  // update the ADC offset values
274  gOffsets_I_A.value[0] = CAL_getOffsetValue_I(calHandle,0);
275  gOffsets_I_A.value[1] = CAL_getOffsetValue_I(calHandle,1);
276  gOffsets_I_A.value[2] = CAL_getOffsetValue_I(calHandle,2);
277  gOffsets_V_V.value[0] = CAL_getOffsetValue_V(calHandle,0);
278  gOffsets_V_V.value[1] = CAL_getOffsetValue_V(calHandle,1);
279  gOffsets_V_V.value[2] = CAL_getOffsetValue_V(calHandle,2);
280 
281  // clear the flag
282  gFlag_runCal = false;
283  }
284  }
285 
286  // update the global variables
288 
289  // update CPU usage
290  updateCPUusage();
291 
292 #ifdef DRV8301_SPI
293  HAL_writeDrvData(halHandle,&gDrvSpi8301Vars);
294 
295  HAL_readDrvData(halHandle,&gDrvSpi8301Vars);
296 #endif
297 
298  } // end of while() loop
299 
300  // disable the PWM
301  HAL_disablePwm(halHandle);
302 
303 } // end of main() function
304 
305 
306 interrupt void mainISR(void)
307 {
308  uint32_t timer1Cnt;
309  float_t angleDelta_rad;
310  float_t angleWithDelay_rad;
311  MATH_vec2 Idq_A;
312  float_t outMax_V;
313  MATH_vec2 phasor;
314  MATH_vec2 Vab_out_V;
315  MATH_vec2 Vdq_out_V;
316  HAL_AdcData_t AdcDataWithOffset;
317 
318  // read the timer 1 value and update the CPU usage module
319  timer1Cnt = HAL_readTimerCnt(halHandle,1);
320  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
321 
322  // acknowledge the ADC interrupt
323  HAL_acqAdcInt(halHandle,ADC_IntNumber_6);
324 
325  // read the ADC data with offsets
326  HAL_readAdcDataWithOffsets(halHandle,&AdcDataWithOffset);
327 
328  // remove offsets
329  gAdcData.I_A.value[0] = AdcDataWithOffset.I_A.value[0] - gOffsets_I_A.value[0];
330  gAdcData.I_A.value[1] = AdcDataWithOffset.I_A.value[1] - gOffsets_I_A.value[1];
331  gAdcData.I_A.value[2] = AdcDataWithOffset.I_A.value[2] - gOffsets_I_A.value[2];
332  gAdcData.V_V.value[0] = AdcDataWithOffset.V_V.value[0] - gOffsets_V_V.value[0];
333  gAdcData.V_V.value[1] = AdcDataWithOffset.V_V.value[1] - gOffsets_V_V.value[1];
334  gAdcData.V_V.value[2] = AdcDataWithOffset.V_V.value[2] - gOffsets_V_V.value[2];
335  gAdcData.dcBus_V = AdcDataWithOffset.dcBus_V;
336 
337  // if enabled, run the calibrator
338  if(CAL_isEnabled(calHandle))
339  {
340  // run the calibrator
341  CAL_run(calHandle,&AdcDataWithOffset);
342  }
343 
344  // if enabled, run the estimator
346  {
347  // run Clarke transform on current
348  CLARKE_run(clarkeHandle_I,&(gAdcData.I_A),&(gEstInputData.Iab_A));
349 
350  // run Clarke transform on voltage
351  CLARKE_run(clarkeHandle_V,&(gAdcData.V_V),&(gEstInputData.Vab_V));
352 
353  // store the input data into a buffer
354  gEstInputData.dcBus_V = gAdcData.dcBus_V;
355  gEstInputData.speed_ref_Hz = gSpeed_ref_Hz;
356 
357  // run the estimator
358  EST_run(estHandle,&gEstInputData,&gEstOutputData);
359 
360  // run the speed controller
361  if(++gCounter_speed >= gUserParams.numCtrlTicksPerSpeedTick)
362  {
363  gCounter_speed = 0;
364 
365  PI_run_series(piHandle_spd,gEstInputData.speed_ref_Hz,gEstOutputData.fm_lp_rps * MATH_ONE_OVER_TWO_PI,0.0,&gIq_ref_A);
366  }
367 
368  // get Idq, reutilizing a Park transform used inside the estimator. This is optional, user's Park works as well
369  EST_getIdq_A(estHandle,&Idq_A);
370 
371  // run the Id controller
372  PI_run_series(piHandle_Id,gId_ref_A,Idq_A.value[0],0.0,&(Vdq_out_V.value[0]));
373 
374  // calculate Iq controller limits, and run Iq controller using fast RTS function, callable assembly
375  outMax_V = sqrt_fastRTS((gUserParams.maxVsMag_V * gUserParams.maxVsMag_V) - (Vdq_out_V.value[0] * Vdq_out_V.value[0]));
376  PI_setMinMax(piHandle_Iq,-outMax_V,outMax_V);
377  PI_run_series(piHandle_Iq,gIq_ref_A,Idq_A.value[1],0.0,&(Vdq_out_V.value[1]));
378 
379  // compute angle with delay compensation
380  angleDelta_rad = gUserParams.angleDelayed_sf_sec * gEstOutputData.fm_lp_rps;
381  angleWithDelay_rad = MATH_incrAngle(gEstOutputData.angle_rad, angleDelta_rad);
382 
383  // compute the sin/cos phasor using fast RTS function, callable assembly
384  sincos_fastRTS(angleWithDelay_rad, &(phasor.value[1]), &(phasor.value[0]));
385 
386  // set the phasor in the inverse Park transform
387  IPARK_setPhasor(iparkHandle,&phasor);
388 
389  // run the inverse Park module
390  IPARK_run(iparkHandle,&Vdq_out_V,&Vab_out_V);
391 
392  // setup the space vector generator (SVGEN) module
393  SVGEN_setup(svgenHandle,gEstOutputData.oneOverDcBus_invV);
394 
395  // run the space vector generator (SVGEN) module
396  SVGEN_run(svgenHandle,&Vab_out_V,&(gPwmData.Vabc_pu));
397  }
398  else
399  {
400  // create PWM data
401  gPwmData.Vabc_pu.value[0] = 0.0;
402  gPwmData.Vabc_pu.value[1] = 0.0;
403  gPwmData.Vabc_pu.value[2] = 0.0;
404  }
405 
406  // write the PWM compare values
407  HAL_writePwmData(halHandle,&gPwmData);
408 
409  // read the timer 1 value and update the CPU usage module
410  timer1Cnt = HAL_readTimerCnt(halHandle,1);
411  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
412 
413  // run the CPU usage module
414  CPU_USAGE_run(cpu_usageHandle);
415 
416  return;
417 } // end of mainISR() function
418 
419 
420 void setupClarke_I(CLARKE_Handle handle,const uint_least8_t numCurrentSensors)
421 {
422  float_t alpha_sf,beta_sf;
423 
424  // initialize the Clarke transform module for current
425  if(numCurrentSensors == 3)
426  {
427  alpha_sf = MATH_ONE_OVER_THREE;
428  beta_sf = MATH_ONE_OVER_SQRT_THREE;
429  }
430  else if(numCurrentSensors == 2)
431  {
432  alpha_sf = 1.0;
433  beta_sf = MATH_ONE_OVER_SQRT_THREE;
434  }
435  else
436  {
437  alpha_sf = 0.0;
438  beta_sf = 0.0;
439  }
440 
441  // set the parameters
442  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
443  CLARKE_setNumSensors(handle,numCurrentSensors);
444 
445  return;
446 } // end of setupClarke_I() function
447 
448 
449 void setupClarke_V(CLARKE_Handle handle,const uint_least8_t numVoltageSensors)
450 {
451  float_t alpha_sf,beta_sf;
452 
453  // initialize the Clarke transform module for voltage
454  if(numVoltageSensors == 3)
455  {
456  alpha_sf = MATH_ONE_OVER_THREE;
457  beta_sf = MATH_ONE_OVER_SQRT_THREE;
458  }
459  else
460  {
461  alpha_sf = 0.0;
462  beta_sf = 0.0;
463  }
464 
465  // set the parameters
466  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
467  CLARKE_setNumSensors(handle,numVoltageSensors);
468 
469  return;
470 } // end of setupClarke_V() function
471 
472 
474 {
475  float_t Ls_d_H = gUserParams.motor_Ls_d_H;
476  float_t Ls_q_H = gUserParams.motor_Ls_q_H;
477  float_t Rs_d_Ohm = gUserParams.motor_Rs_d_Ohm;
478  float_t Rs_q_Ohm = gUserParams.motor_Rs_q_Ohm;
479  float_t RdoverLd_rps = Rs_d_Ohm / Ls_d_H;
480  float_t RqoverLq_rps = Rs_q_Ohm / Ls_q_H;
481  float_t BWc_rps = gUserParams.BWc_rps;
482  float_t currentCtrlPeriod_sec = (float_t)gUserParams.numCtrlTicksPerCurrentTick / gUserParams.ctrlFreq_Hz;
483  float_t outMax_V = gUserParams.Vd_sf * gUserParams.maxVsMag_V;
484 
485  float_t Kp_Id = Ls_d_H * BWc_rps;
486  float_t Ki_Id = RdoverLd_rps * currentCtrlPeriod_sec;
487 
488  float_t Kp_Iq = Ls_q_H * BWc_rps;
489  float_t Ki_Iq = RqoverLq_rps * currentCtrlPeriod_sec;
490 
491  // set the Id controller
492  PI_setGains(piHandle_Id,Kp_Id,Ki_Id);
493  PI_setUi(piHandle_Id,0.0);
494  PI_setRefValue(piHandle_Id,0.0);
495  PI_setFbackValue(piHandle_Id,0.0);
496  PI_setFfwdValue(piHandle_Id,0.0);
497  PI_setMinMax(piHandle_Id,-outMax_V,outMax_V);
498 
499  // set the Iq controller
500  PI_setGains(piHandle_Iq,Kp_Iq,Ki_Iq);
501  PI_setUi(piHandle_Iq,0.0);
502  PI_setRefValue(piHandle_Iq,0.0);
503  PI_setFbackValue(piHandle_Iq,0.0);
504  PI_setFfwdValue(piHandle_Iq,0.0);
505  PI_setMinMax(piHandle_Iq,0.0,0.0);
506 
507  // set the speed controller
508  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
509  PI_setUi(piHandle_spd,0.0);
510  PI_setRefValue(piHandle_spd,0.0);
511  PI_setFbackValue(piHandle_spd,0.0);
512  PI_setFfwdValue(piHandle_spd,0.0);
513  PI_setMinMax(piHandle_spd,-gUserParams.maxCurrent_A,gUserParams.maxCurrent_A);
514 
515  return;
516 } // end of setupCurrentControllers() function
517 
518 
520 {
521  // get the states
522  gCalState = CAL_getState(calHandle);
523  gEstState = EST_getState(estHandle);
524 
525  // get the speed estimate
526  gSpeed_Hz = EST_getFe_Hz(estHandle);
527 
528  // get the torque estimate
529  gTorque_Nm = EST_computeTorque_Nm(estHandle);
530 
531  // get the stator resistance
532  gRs_Ohm = EST_getRs_Ohm(estHandle);
533 
534  // get the stator inductance in the direct coordinate direction
535  gLs_d_H = EST_getLs_d_H(estHandle);
536 
537  // get the stator inductance in the quadrature coordinate direction
538  gLs_q_H = EST_getLs_q_H(estHandle);
539 
540  // get the flux, Wb
541  gFlux_Wb = EST_getFlux_Wb(estHandle);
542 
543  return;
544 } // end of updateGlobalVariables_motor() function
545 
546 
547 void updateCPUusage(void)
548 {
549  uint32_t minDeltaCntObserved = CPU_USAGE_getMinDeltaCntObserved(cpu_usageHandle);
550  uint32_t avgDeltaCntObserved = CPU_USAGE_getAvgDeltaCntObserved(cpu_usageHandle);
551  uint32_t maxDeltaCntObserved = CPU_USAGE_getMaxDeltaCntObserved(cpu_usageHandle);
552  uint16_t pwmPeriod = HAL_readPwmPeriod(halHandle,PWM_Number_1);
553  float_t cpu_usage_den = (float_t)pwmPeriod * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK * 2.0;
554 
555  // calculate the minimum cpu usage percentage
556  gCpuUsagePercentageMin = (float_t)minDeltaCntObserved / cpu_usage_den * 100.0;
557 
558  // calculate the average cpu usage percentage
559  gCpuUsagePercentageAvg = (float_t)avgDeltaCntObserved / cpu_usage_den * 100.0;
560 
561  // calculate the maximum cpu usage percentage
562  gCpuUsagePercentageMax = (float_t)maxDeltaCntObserved / cpu_usage_den * 100.0;
563 
564  return;
565 } // end of updateCPUusage() function
566 
567 
568 // end of file
569 
CPU_USAGE_Obj cpu_usage
#define USER_SYSTEM_FREQ_MHz
CLOCKS & TIMERS.
Definition: user.h:140
float_t gSpeed_Hz
EST_State_e gEstState
Global variable for the estimator state.
float_t angleDelayed_sf_sec
void EST_setFlag_enableForceAngle(EST_Handle handle, const bool state)
static void CAL_enable(CAL_Handle handle)
IPARK_Handle IPARK_init(void *pMemory, const size_t numBytes)
#define MATH_ONE_OVER_TWO_PI
volatile bool gFlag_runOnLine
CLARKE_Obj clarke_V
the voltage Clarke transform object
void HAL_enableGlobalInts(HAL_Handle handle)
void HAL_enableAdcInts(HAL_Handle handle)
float_t EST_getFlux_Wb(EST_Handle handle)
void updateGlobalVariables_motor(EST_Handle estHandle)
Updates the global motor variables.
static void PI_setFfwdValue(PI_Handle handle, const _iq ffwdValue)
MATH_vec3 Vabc_pu
static void HAL_readAdcDataWithOffsets(HAL_Handle handle, HAL_AdcData_t *pAdcData)
static void CAL_run(CAL_Handle handle, const HAL_AdcData_t *pAdcData)
MATH_vec3 gOffsets_V_V
float_t gLs_d_H
Global variable for the stator inductance in the direct coordinate direction, Henry.
float_t motor_Rs_d_Ohm
HAL_Obj hal
the hardware abstraction layer object
CLARKE_Obj clarke_I
the current Clarke transform object
static void HAL_writePwmData(HAL_Handle handle, HAL_PwmData_t *pPwmData)
float_t BWc_rps
_iq value[3]
struct _EST_Obj_ * EST_Handle
float_t maxCurrent_A
void HAL_writeDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
static void PI_setUi(PI_Handle handle, const _iq Ui)
float_t gCpuUsagePercentageMin
static void HAL_acqAdcInt(HAL_Handle handle, const ADC_IntNumber_e intNumber)
float_t motor_Rs_q_Ohm
static void CAL_setFlag_enableAdcOffset(CAL_Handle handle, const bool value)
uint_least8_t numCurrentSensors
bool EST_isEnabled(EST_Handle handle)
float_t gCpuUsagePercentageMax
EST_OutputData_t gEstOutputData
void CAL_setParams(CAL_Handle handle, const USER_Params *pUserParams)
volatile float_t gSpeed_Ki
CAL_State_e gCalState
void EST_setParams(EST_Handle handle, USER_Params *pUserParams)
static void SVGEN_run(SVGEN_Handle handle, const MATH_vec2 *pVab, MATH_vec3 *pT)
float_t gIq_ref_A
static uint32_t CPU_USAGE_getAvgDeltaCntObserved(CPU_USAGE_Handle handle)
uint_least16_t numCtrlTicksPerCurrentTick
#define MATH_ONE_OVER_THREE
void USER_setParams(USER_Params *pUserParams)
Sets the user parameter values.
void setupClarke_V(CLARKE_Handle handle, const uint_least8_t numVoltageSensors)
Sets the number of voltage sensors.
float_t EST_computeTorque_Nm(EST_Handle handle)
float_t speed_ref_Hz
volatile bool gFlag_runCal
static void CLARKE_setScaleFactors(CLARKE_Handle handle, const _iq alpha_sf, const _iq beta_sf)
IPARK_Obj ipark
the inverse Park transform object
CAL_State_e
void EST_enable(EST_Handle handle)
float_t maxVsMag_V
void HAL_setupFaults(HAL_Handle handle)
float_t EST_getLs_d_H(EST_Handle handle)
void EST_setFlag_enableRsRecalc(EST_Handle handle, const bool state)
PI_Handle piHandle_spd
the handle for the speed PI controller
USER_Params gUserParams
The user parameters.
void EST_getIdq_A(EST_Handle handle, MATH_vec2 *pIdq_A)
static void HAL_enablePwm(HAL_Handle handle)
EST_State_e
void HAL_enableDrv(HAL_Handle handle)
_iq value[2]
MATH_vec3 gOffsets_I_A
EST_Handle EST_initEst(const uint_least8_t estNumber)
volatile float_t gSpeed_Kp
PI_Handle PI_init(void *pMemory, const size_t numBytes)
void HAL_setupDrvSpi(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
float_t gSpeed_ref_Hz
CLARKE_Handle clarkeHandle_I
the handle for the current Clarke transform
uint_least8_t numVoltageSensors
float_t EST_getLs_q_H(EST_Handle handle)
void HAL_enableDebugInt(HAL_Handle handle)
CPU_USAGE_Handle cpu_usageHandle
CLARKE_Handle CLARKE_init(void *pMemory, const size_t numBytes)
float_t oneOverDcBus_invV
void sincos_fastRTS(float_t angle_rad, float_t *pSin, float_t *pCos)
Calculates sine and cosine in a single function call, using callable assembly, fast RTS...
CAL_Obj cal
the calibrator object
static void IPARK_run(IPARK_Handle handle, const MATH_vec2 *pInVec, MATH_vec2 *pOutVec)
EST_State_e EST_getState(EST_Handle handle)
static void CAL_disable(CAL_Handle handle)
void setupClarke_I(CLARKE_Handle handle, const uint_least8_t numCurrentSensors)
Sets the number of current sensors.
HAL_DacData_t gDacData
Defines the DAC data.
PI_Handle piHandle_Iq
the handle for the Iq PI controller
float_t gLs_q_H
Global variable for the stator inductance in the quadrature coordinate direction, Henry...
EST_InputData_t gEstInputData
PARK_Obj park
the Park transform object
interrupt void mainISR(void)
The main interrupt service (ISR) routine.
EST_Handle estHandle
the handle for the estimator
static uint32_t HAL_readTimerCnt(HAL_Handle handle, const uint_least8_t timerNumber)
void main(void)
static _iq CAL_getOffsetValue_V(CAL_Handle handle, const uint_least8_t sensorNumber)
static void CLARKE_setNumSensors(CLARKE_Handle handle, const uint_least8_t numSensors)
float_t EST_getRs_Ohm(EST_Handle handle)
uint_least16_t numCtrlTicksPerSpeedTick
void CPU_USAGE_setParams(CPU_USAGE_Handle handle, const uint32_t timerPeriod_cnts, const uint32_t numDeltaCntsAvg)
CAL_Handle calHandle
the handle for the calibrator
#define USER_ISR_FREQ_Hz
Defines the Interrupt Service Routine (ISR) frequency, Hz.
Definition: user.h:173
static void IPARK_setPhasor(IPARK_Handle handle, const MATH_vec2 *pPhasor)
CPU_USAGE_Handle CPU_USAGE_init(void *pMemory, const size_t numBytes)
static void HAL_disablePwm(HAL_Handle handle)
HAL_Handle HAL_init(void *pMemory, const size_t numBytes)
static void CLARKE_run(CLARKE_Handle handle, const MATH_vec3 *pInVec, MATH_vec2 *pOutVec)
static uint32_t CPU_USAGE_getMaxDeltaCntObserved(CPU_USAGE_Handle handle)
HAL_Handle halHandle
the handle for the hardware abstraction layer
void updateCPUusage(void)
Updates CPU usage.
static CAL_State_e CAL_getState(CAL_Handle handle)
PI_Obj pi_Id
the Id PI controller object
float_t gFlux_Wb
Global variable for the rotor flux estimate, Wb.
MATH_vec2 Iab_A
uint_least32_t ctrlFreq_Hz
PI_Handle piHandle_Id
the handle for the Id PI controller
CAL_Handle CAL_init(void *pMemory, const size_t numBytes)
void SVGEN_setup(SVGEN_Handle svgenHandle)
static void PI_setMinMax(PI_Handle handle, const _iq outMin, const _iq outMax)
static void PI_setRefValue(PI_Handle handle, const _iq refValue)
static void CPU_USAGE_updateCnts(CPU_USAGE_Handle handle, const uint32_t cnt)
void setupControllers(void)
Setups the controllers.
float_t sqrt_fastRTS(float_t x)
Calculates square root using callable assembly, fast RTS.
volatile bool gFlag_enableSys
Global flag to enable/disable the system.
CLARKE_Handle clarkeHandle_V
the handle for the voltage Clarke transform
float_t gCpuUsagePercentageAvg
MATH_vec2 Vab_V
static uint32_t CPU_USAGE_getMinDeltaCntObserved(CPU_USAGE_Handle handle)
#define MATH_ONE_OVER_SQRT_THREE
static void HAL_initIntVectorTable(HAL_Handle handle)
static float_t MATH_incrAngle(const float_t angle_rad, const float_t angleDelta_rad)
PARK_Handle PARK_init(void *pMemory, const size_t numBytes)
static void PI_setFbackValue(PI_Handle handle, const _iq fbackValue)
PI_Obj pi_Iq
the Iq PI controller object
static uint16_t HAL_readPwmPeriod(HAL_Handle handle, const PWM_Number_e pwmNumber)
volatile bool gFlag_enableForceAngle
HAL_PwmData_t gPwmData
Defines the PWM data.
uint16_t gCounter_speed
bool EST_updateState(EST_Handle handle, const _iq Id_target_pu)
void EST_disable(EST_Handle handle)
float_t gRs_Ohm
PARK_Handle parkHandle
the handle for the Park object
static _iq CAL_getOffsetValue_I(CAL_Handle handle, const uint_least8_t sensorNumber)
void HAL_setParams(HAL_Handle handle, const USER_Params *pUserParams)
static void CPU_USAGE_run(CPU_USAGE_Handle handle)
bool CAL_updateState(CAL_Handle handle)
HAL_AdcData_t gAdcData
Defines the ADC data.
float_t EST_getFe_Hz(EST_Handle handle)
void HAL_readDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
static bool CAL_isEnabled(CAL_Handle handle)
PI_Obj pi_spd
the speed PI controller object
IPARK_Handle iparkHandle
the handle for the inverse Park transform
float_t gTorque_Nm
Global variable for the estimated torque, N*m.
volatile float_t gId_ref_A
float_t motor_Ls_d_H
float_t motor_Ls_q_H
SVGEN_Handle SVGEN_init(void *pMemory, const size_t numBytes)
SVGEN_Obj svgen
the space vector generator object
SVGEN_Handle svgenHandle
the handle for the space vector generator
static void PI_setGains(PI_Handle handle, const _iq Kp, const _iq Ki)
static void PI_run_series(PI_Handle handle, const _iq refValue, const _iq fbackValue, const _iq ffwdValue, _iq *pOutValue)
float float_t
void EST_run(EST_Handle handle, const MATH_vec2 *pIab_pu, const MATH_vec2 *pVab_pu, const _iq dcBus_pu, const _iq speed_ref_pu)
#define USER_NUM_PWM_TICKS_PER_ISR_TICK
DECIMATION.
Definition: user.h:184