instaspin_foc
fast_obs_pm_cal_rs_rsol.c
Go to the documentation of this file.
1 
7 
8 // **************************************************************************
9 
10 // solutions
11 #include "fast_obs.h"
12 
13 
14 // **************************************************************************
15 // the defines
16 
17 
18 // **************************************************************************
19 // the globals
20 
21 CAL_State_e gCalState = CAL_State_Idle;
22 
23 EST_State_e gEstState = EST_State_Idle;
24 
25 volatile bool gFlag_enableSys = true;
26 
27 volatile bool gFlag_runCal = false;
28 
29 volatile bool gFlag_runOnLine = false;
30 
31 volatile bool gFlag_enableForceAngle = true;
32 
33 volatile bool gFlag_enableRsRecalc = true;
34 
35 volatile bool gFlag_enableRsOnLine = false;
36 
37 volatile bool gFlag_updateRs = false;
38 
40 
42 
44 
46 
48 
50 
52 
53 volatile float_t gSpeed_Kp = 0.01;
54 
55 volatile float_t gSpeed_Ki = 0.001;
56 
57 volatile float_t gId_ref_A = 0.0;
58 
60 
62 
63 uint16_t gCounter_speed = 0;
64 
66 
68 
70 
72 
74 
75 volatile float_t gRsOnLineFreq_Hz = 0.2;
76 
77 volatile float_t gRsOnLineId_mag_A = 0.5;
78 
79 volatile float_t gRsOnLinePole_Hz = 0.2;
80 
82 
84 
85 MATH_vec3 gOffsets_I_A = {0.0, 0.0, 0.0};
86 
87 MATH_vec3 gOffsets_V_V = {0.0, 0.0, 0.0};
88 
91 
94 
97 
100 
102 
105 
108 
111 
114 
117 
120 
121 #ifdef DRV8301_SPI
122 // Watch window interface to the 8301 SPI
123 DRV_SPI_8301_Vars_t gDrvSpi8301Vars;
124 #endif
125 
131 
132 // **************************************************************************
133 // the functions
134 
135 void main(void)
136 {
137  uint_least8_t estNumber = 0;
138 
139  // initialize the user parameters
140  USER_setParams(&gUserParams);
141 
142  // initialize the user parameters
143  USER_setParams_priv(&gUserParams);
144 
145  // initialize the driver
146  halHandle = HAL_init(&hal,sizeof(hal));
147 
148  // set the driver parameters
149  HAL_setParams(halHandle,&gUserParams);
150 
151  // initialize the calibrator
152  calHandle = CAL_init(&cal,sizeof(cal));
153 
154  // set the default calibrator parameters
155  CAL_setParams(calHandle,&gUserParams);
156 
157  // initialize the Clarke modules
158  clarkeHandle_I = CLARKE_init(&clarke_I,sizeof(clarke_I));
159  clarkeHandle_V = CLARKE_init(&clarke_V,sizeof(clarke_V));
160 
161  // set the Clarke parameters
162  setupClarke_I(clarkeHandle_I,gUserParams.numCurrentSensors);
163  setupClarke_V(clarkeHandle_V,gUserParams.numVoltageSensors);
164 
165  // initialize the estimator
166  estHandle = EST_initEst(estNumber);
167 
168  // set the default estimator parameters
169  EST_setParams(estHandle,&gUserParams);
176 
177  // initialize the inverse Park module
178  iparkHandle = IPARK_init(&ipark,sizeof(ipark));
179 
180  // initialize the Park module
181  parkHandle = PARK_init(&park,sizeof(park));
182 
183  // initialize the PI controllers
184  piHandle_Id = PI_init(&pi_Id, sizeof(pi_Id));
185  piHandle_Iq = PI_init(&pi_Iq, sizeof(pi_Iq));
186  piHandle_spd = PI_init(&pi_spd,sizeof(pi_spd));
187 
188  // setup the controllers
190 
191  // initialize the space vector generator module
192  svgenHandle = SVGEN_init(&svgen,sizeof(svgen));
193 
194  // initialize the CPU usage module
195  cpu_usageHandle = CPU_USAGE_init(&cpu_usage,sizeof(cpu_usage));
196  CPU_USAGE_setParams(cpu_usageHandle,
197  (uint32_t)USER_SYSTEM_FREQ_MHz * 1000000, // timer period, cnts
198  (uint32_t)USER_ISR_FREQ_Hz); // average over 1 second of ISRs
199 
200  // setup faults
201  HAL_setupFaults(halHandle);
202 
203  // initialize the interrupt vector table
204  HAL_initIntVectorTable(halHandle);
205 
206  // enable the ADC interrupts
207  HAL_enableAdcInts(halHandle);
208 
209  // enable global interrupts
210  HAL_enableGlobalInts(halHandle);
211 
212  // enable debug interrupts
213  HAL_enableDebugInt(halHandle);
214 
215  // disable the PWM
216  HAL_disablePwm(halHandle);
217 
218 #ifdef DRV8301_SPI
219  // turn on the DRV8301 if present
220  HAL_enableDrv(halHandle);
221  // initialize the DRV8301 interface
222  HAL_setupDrvSpi(halHandle,&gDrvSpi8301Vars);
223 #endif
224 
225  // Waiting for enable system flag to be set
226  while(!gFlag_enableSys);
227 
228  // loop while the enable system flag is true
229  while(gFlag_enableSys)
230  {
231  // set custom speed controller gains
232  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
233 
234  // enable or disable force angle
236 
237  // enable or disable Rs recalibration
239 
240  // enable or disable RsOnLine
242 
243  // set slow rotating frequency for RsOnLine
245 
246  // set current amplitude for RsOnLine
248 
249  // set RsOnLine beta based on the desired filter pole
251 
252  // set flag that updates Rs from RsOnLine value
254 
255  if((gFlag_runOnLine) && (!gFlag_runCal))
256  {
257  // disable the calibrator
258  CAL_disable(calHandle);
259 
260  // enable the estimator
262 
263  // enable the PWM
264  HAL_enablePwm(halHandle);
265  }
266  else if(gFlag_runCal)
267  {
268  // enable the calibrator
269  CAL_setFlag_enableAdcOffset(calHandle,true);
270 
271  // enable the calibrator
272  CAL_enable(calHandle);
273 
274  // disable the estimator
276 
277  // enable the PWM
278  HAL_enablePwm(halHandle);
279  }
280  else
281  {
282  // disable the calibrator
283  CAL_disable(calHandle);
284 
285  // disable the estimator
287 
288  // disable the PWM
289  HAL_disablePwm(halHandle);
290 
291  // clear integral outputs of the controllers
292  PI_setUi(piHandle_Id,0.0);
293  PI_setUi(piHandle_Iq,0.0);
294  PI_setUi(piHandle_spd,0.0);
295 
296  // clear current references
297  gId_ref_A = 0.0;
298  gIq_ref_A = 0.0;
299 
300  // disable RsOnLine flags
301  gFlag_enableRsOnLine = false;
302  gFlag_updateRs = false;
303  }
304 
305  // update the estimator state
307 
308  // update the calibrator state
309  if(CAL_updateState(calHandle))
310  {
311  CAL_State_e calState = CAL_getState(calHandle);
312 
313  if(calState == CAL_State_Done)
314  {
315  // update the ADC offset values
316  gOffsets_I_A.value[0] = CAL_getOffsetValue_I(calHandle,0);
317  gOffsets_I_A.value[1] = CAL_getOffsetValue_I(calHandle,1);
318  gOffsets_I_A.value[2] = CAL_getOffsetValue_I(calHandle,2);
319  gOffsets_V_V.value[0] = CAL_getOffsetValue_V(calHandle,0);
320  gOffsets_V_V.value[1] = CAL_getOffsetValue_V(calHandle,1);
321  gOffsets_V_V.value[2] = CAL_getOffsetValue_V(calHandle,2);
322 
323  // clear the flag
324  gFlag_runCal = false;
325  }
326  }
327 
328  // update the global variables
330 
331  // update CPU usage
332  updateCPUusage();
333 
334 #ifdef DRV8301_SPI
335  HAL_writeDrvData(halHandle,&gDrvSpi8301Vars);
336 
337  HAL_readDrvData(halHandle,&gDrvSpi8301Vars);
338 #endif
339 
340  } // end of while() loop
341 
342  // disable the PWM
343  HAL_disablePwm(halHandle);
344 
345 } // end of main() function
346 
347 
348 interrupt void mainISR(void)
349 {
350  uint32_t timer1Cnt;
351  float_t angleDelta_rad;
352  float_t angleWithDelay_rad;
353  MATH_vec2 Idq_A;
354  float_t outMax_V;
355  MATH_vec2 phasor;
356  MATH_vec2 Vab_out_V;
357  MATH_vec2 Vdq_out_V;
358  HAL_AdcData_t AdcDataWithOffset;
359 
360  // read the timer 1 value and update the CPU usage module
361  timer1Cnt = HAL_readTimerCnt(halHandle,1);
362  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
363 
364  // acknowledge the ADC interrupt
365  HAL_acqAdcInt(halHandle,ADC_IntNumber_6);
366 
367  // read the ADC data with offsets
368  HAL_readAdcDataWithOffsets(halHandle,&AdcDataWithOffset);
369 
370  // remove offsets
371  gAdcData.I_A.value[0] = AdcDataWithOffset.I_A.value[0] - gOffsets_I_A.value[0];
372  gAdcData.I_A.value[1] = AdcDataWithOffset.I_A.value[1] - gOffsets_I_A.value[1];
373  gAdcData.I_A.value[2] = AdcDataWithOffset.I_A.value[2] - gOffsets_I_A.value[2];
374  gAdcData.V_V.value[0] = AdcDataWithOffset.V_V.value[0] - gOffsets_V_V.value[0];
375  gAdcData.V_V.value[1] = AdcDataWithOffset.V_V.value[1] - gOffsets_V_V.value[1];
376  gAdcData.V_V.value[2] = AdcDataWithOffset.V_V.value[2] - gOffsets_V_V.value[2];
377  gAdcData.dcBus_V = AdcDataWithOffset.dcBus_V;
378 
379  // if enabled, run the calibrator
380  if(CAL_isEnabled(calHandle))
381  {
382  // run the calibrator
383  CAL_run(calHandle,&AdcDataWithOffset);
384  }
385 
386  // if enabled, run the estimator
388  {
389  // run Clarke transform on current
390  CLARKE_run(clarkeHandle_I,&(gAdcData.I_A),&(gEstInputData.Iab_A));
391 
392  // run Clarke transform on voltage
393  CLARKE_run(clarkeHandle_V,&(gAdcData.V_V),&(gEstInputData.Vab_V));
394 
395  // store the input data into a buffer
396  gEstInputData.dcBus_V = gAdcData.dcBus_V;
397 
398  // modify references if running Rs recalibration
399  if(EST_getState(estHandle) == EST_State_Rs)
400  {
401  gEstInputData.speed_ref_Hz = 0.0;
403  }
404  else
405  {
406  gEstInputData.speed_ref_Hz = gSpeed_ref_Hz;
407  gId_rs_recalc_ref_A = 0.0;
408  }
409 
410  // run the estimator
411  EST_run(estHandle,&gEstInputData,&gEstOutputData);
412 
413  // run the speed controller
414  if(++gCounter_speed >= gUserParams.numCtrlTicksPerSpeedTick)
415  {
416  gCounter_speed = 0;
417 
418  PI_run_series(piHandle_spd,gEstInputData.speed_ref_Hz,gEstOutputData.fm_lp_rps * MATH_ONE_OVER_TWO_PI,0.0,&gIq_ref_A);
419  }
420 
421  // get Idq, reutilizing a Park transform used inside the estimator. This is optional, user's Park works as well
422  EST_getIdq_A(estHandle,&Idq_A);
423 
424  // run the Id controller
425  PI_run_series(piHandle_Id,gId_ref_A + gId_rs_recalc_ref_A + EST_getRsOnLineId_A(estHandle),Idq_A.value[0],0.0,&(Vdq_out_V.value[0]));
426 
427  // calculate Iq controller limits, and run Iq controller using fast RTS function, callable assembly
428  outMax_V = sqrt_fastRTS((gUserParams.maxVsMag_V * gUserParams.maxVsMag_V) - (Vdq_out_V.value[0] * Vdq_out_V.value[0]));
429  PI_setMinMax(piHandle_Iq,-outMax_V,outMax_V);
430  PI_run_series(piHandle_Iq,gIq_ref_A,Idq_A.value[1],0.0,&(Vdq_out_V.value[1]));
431 
432  // compute angle with delay compensation
433  angleDelta_rad = gUserParams.angleDelayed_sf_sec * gEstOutputData.fm_lp_rps;
434  angleWithDelay_rad = MATH_incrAngle(gEstOutputData.angle_rad, angleDelta_rad);
435 
436  // compute the sin/cos phasor using fast RTS function, callable assembly
437  sincos_fastRTS(angleWithDelay_rad, &(phasor.value[1]), &(phasor.value[0]));
438 
439  // set the phasor in the inverse Park transform
440  IPARK_setPhasor(iparkHandle,&phasor);
441 
442  // run the inverse Park module
443  IPARK_run(iparkHandle,&Vdq_out_V,&Vab_out_V);
444 
445  // setup the space vector generator (SVGEN) module
446  SVGEN_setup(svgenHandle,gEstOutputData.oneOverDcBus_invV);
447 
448  // run the space vector generator (SVGEN) module
449  SVGEN_run(svgenHandle,&Vab_out_V,&(gPwmData.Vabc_pu));
450  }
451  else
452  {
453  // create PWM data
454  gPwmData.Vabc_pu.value[0] = 0.0;
455  gPwmData.Vabc_pu.value[1] = 0.0;
456  gPwmData.Vabc_pu.value[2] = 0.0;
457  }
458 
459  // write the PWM compare values
460  HAL_writePwmData(halHandle,&gPwmData);
461 
462  // read the timer 1 value and update the CPU usage module
463  timer1Cnt = HAL_readTimerCnt(halHandle,1);
464  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
465 
466  // run the CPU usage module
467  CPU_USAGE_run(cpu_usageHandle);
468 
469  return;
470 } // end of mainISR() function
471 
472 
473 void setupClarke_I(CLARKE_Handle handle,const uint_least8_t numCurrentSensors)
474 {
475  float_t alpha_sf,beta_sf;
476 
477  // initialize the Clarke transform module for current
478  if(numCurrentSensors == 3)
479  {
480  alpha_sf = MATH_ONE_OVER_THREE;
481  beta_sf = MATH_ONE_OVER_SQRT_THREE;
482  }
483  else if(numCurrentSensors == 2)
484  {
485  alpha_sf = 1.0;
486  beta_sf = MATH_ONE_OVER_SQRT_THREE;
487  }
488  else
489  {
490  alpha_sf = 0.0;
491  beta_sf = 0.0;
492  }
493 
494  // set the parameters
495  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
496  CLARKE_setNumSensors(handle,numCurrentSensors);
497 
498  return;
499 } // end of setupClarke_I() function
500 
501 
502 void setupClarke_V(CLARKE_Handle handle,const uint_least8_t numVoltageSensors)
503 {
504  float_t alpha_sf,beta_sf;
505 
506  // initialize the Clarke transform module for voltage
507  if(numVoltageSensors == 3)
508  {
509  alpha_sf = MATH_ONE_OVER_THREE;
510  beta_sf = MATH_ONE_OVER_SQRT_THREE;
511  }
512  else
513  {
514  alpha_sf = 0.0;
515  beta_sf = 0.0;
516  }
517 
518  // set the parameters
519  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
520  CLARKE_setNumSensors(handle,numVoltageSensors);
521 
522  return;
523 } // end of setupClarke_V() function
524 
525 
527 {
528  float_t Ls_d_H = gUserParams.motor_Ls_d_H;
529  float_t Ls_q_H = gUserParams.motor_Ls_q_H;
530  float_t Rs_d_Ohm = gUserParams.motor_Rs_d_Ohm;
531  float_t Rs_q_Ohm = gUserParams.motor_Rs_q_Ohm;
532  float_t RdoverLd_rps = Rs_d_Ohm / Ls_d_H;
533  float_t RqoverLq_rps = Rs_q_Ohm / Ls_q_H;
534  float_t BWc_rps = gUserParams.BWc_rps;
535  float_t currentCtrlPeriod_sec = (float_t)gUserParams.numCtrlTicksPerCurrentTick / gUserParams.ctrlFreq_Hz;
536  float_t outMax_V = gUserParams.Vd_sf * gUserParams.maxVsMag_V;
537 
538  float_t Kp_Id = Ls_d_H * BWc_rps;
539  float_t Ki_Id = RdoverLd_rps * currentCtrlPeriod_sec;
540 
541  float_t Kp_Iq = Ls_q_H * BWc_rps;
542  float_t Ki_Iq = RqoverLq_rps * currentCtrlPeriod_sec;
543 
544  // set the Id controller
545  PI_setGains(piHandle_Id,Kp_Id,Ki_Id);
546  PI_setUi(piHandle_Id,0.0);
547  PI_setRefValue(piHandle_Id,0.0);
548  PI_setFbackValue(piHandle_Id,0.0);
549  PI_setFfwdValue(piHandle_Id,0.0);
550  PI_setMinMax(piHandle_Id,-outMax_V,outMax_V);
551 
552  // set the Iq controller
553  PI_setGains(piHandle_Iq,Kp_Iq,Ki_Iq);
554  PI_setUi(piHandle_Iq,0.0);
555  PI_setRefValue(piHandle_Iq,0.0);
556  PI_setFbackValue(piHandle_Iq,0.0);
557  PI_setFfwdValue(piHandle_Iq,0.0);
558  PI_setMinMax(piHandle_Iq,0.0,0.0);
559 
560  // set the speed controller
561  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
562  PI_setUi(piHandle_spd,0.0);
563  PI_setRefValue(piHandle_spd,0.0);
564  PI_setFbackValue(piHandle_spd,0.0);
565  PI_setFfwdValue(piHandle_spd,0.0);
566  PI_setMinMax(piHandle_spd,-gUserParams.maxCurrent_A,gUserParams.maxCurrent_A);
567 
568  return;
569 } // end of setupCurrentControllers() function
570 
571 
573 {
574  // get the states
575  gCalState = CAL_getState(calHandle);
576  gEstState = EST_getState(estHandle);
577 
578  // get the speed estimate
579  gSpeed_Hz = EST_getFe_Hz(estHandle);
580 
581  // get the torque estimate
582  gTorque_Nm = EST_computeTorque_Nm(estHandle);
583 
584  // get the stator resistance estimate from RsOnLine
585  gRsOnLine_Ohm = EST_getRsOnLine_Ohm(estHandle);
586 
587  // get the stator resistance
588  gRs_Ohm = EST_getRs_Ohm(estHandle);
589 
590  // get the stator inductance in the direct coordinate direction
591  gLs_d_H = EST_getLs_d_H(estHandle);
592 
593  // get the stator inductance in the quadrature coordinate direction
594  gLs_q_H = EST_getLs_q_H(estHandle);
595 
596  // get the flux, Wb
597  gFlux_Wb = EST_getFlux_Wb(estHandle);
598 
599  return;
600 } // end of updateGlobalVariables_motor() function
601 
602 
603 void updateCPUusage(void)
604 {
605  uint32_t minDeltaCntObserved = CPU_USAGE_getMinDeltaCntObserved(cpu_usageHandle);
606  uint32_t avgDeltaCntObserved = CPU_USAGE_getAvgDeltaCntObserved(cpu_usageHandle);
607  uint32_t maxDeltaCntObserved = CPU_USAGE_getMaxDeltaCntObserved(cpu_usageHandle);
608  uint16_t pwmPeriod = HAL_readPwmPeriod(halHandle,PWM_Number_1);
609  float_t cpu_usage_den = (float_t)pwmPeriod * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK * 2.0;
610 
611  // calculate the minimum cpu usage percentage
612  gCpuUsagePercentageMin = (float_t)minDeltaCntObserved / cpu_usage_den * 100.0;
613 
614  // calculate the average cpu usage percentage
615  gCpuUsagePercentageAvg = (float_t)avgDeltaCntObserved / cpu_usage_den * 100.0;
616 
617  // calculate the maximum cpu usage percentage
618  gCpuUsagePercentageMax = (float_t)maxDeltaCntObserved / cpu_usage_den * 100.0;
619 
620  return;
621 } // end of updateCPUusage() function
622 
623 
624 // end of file
625 
#define USER_SYSTEM_FREQ_MHz
CLOCKS & TIMERS.
Definition: user.h:140
float_t EST_getRsOnLine_Ohm(EST_Handle handle)
EST_State_e gEstState
Global variable for the estimator state.
float_t angleDelayed_sf_sec
void EST_setFlag_enableForceAngle(EST_Handle handle, const bool state)
static void CAL_enable(CAL_Handle handle)
IPARK_Handle IPARK_init(void *pMemory, const size_t numBytes)
#define MATH_ONE_OVER_TWO_PI
void HAL_enableGlobalInts(HAL_Handle handle)
void HAL_enableAdcInts(HAL_Handle handle)
float_t EST_getFlux_Wb(EST_Handle handle)
CPU_USAGE_Handle cpu_usageHandle
void updateGlobalVariables_motor(EST_Handle estHandle)
Updates the global motor variables.
float_t gId_rs_recalc_ref_A
void EST_setRsOnLineId_mag_A(EST_Handle handle, const float_t Id_mag_A)
static void PI_setFfwdValue(PI_Handle handle, const _iq ffwdValue)
float_t gIq_ref_A
MATH_vec3 Vabc_pu
static void HAL_readAdcDataWithOffsets(HAL_Handle handle, HAL_AdcData_t *pAdcData)
static void CAL_run(CAL_Handle handle, const HAL_AdcData_t *pAdcData)
SVGEN_Handle svgenHandle
the handle for the space vector generator
volatile bool gFlag_updateRs
float_t gLs_d_H
Global variable for the stator inductance in the direct coordinate direction, Henry.
float_t motor_Rs_d_Ohm
PARK_Handle parkHandle
the handle for the Park object
#define USER_EST_FREQ_Hz
Defines the estimator frequency, Hz.
Definition: user.h:219
static void HAL_writePwmData(HAL_Handle handle, HAL_PwmData_t *pPwmData)
#define MATH_TWO_PI
float_t BWc_rps
_iq value[3]
struct _EST_Obj_ * EST_Handle
float_t maxCurrent_A
MATH_vec3 gOffsets_V_V
void HAL_writeDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
static void PI_setUi(PI_Handle handle, const _iq Ui)
EST_OutputData_t gEstOutputData
static void HAL_acqAdcInt(HAL_Handle handle, const ADC_IntNumber_e intNumber)
volatile bool gFlag_enableForceAngle
float_t motor_Rs_q_Ohm
PI_Obj pi_Id
the Id PI controller object
static void CAL_setFlag_enableAdcOffset(CAL_Handle handle, const bool value)
uint_least8_t numCurrentSensors
bool EST_isEnabled(EST_Handle handle)
EST_Handle estHandle
the handle for the estimator
void CAL_setParams(CAL_Handle handle, const USER_Params *pUserParams)
void EST_setParams(EST_Handle handle, USER_Params *pUserParams)
static void SVGEN_run(SVGEN_Handle handle, const MATH_vec2 *pVab, MATH_vec3 *pT)
PARK_Obj park
the Park transform object
static uint32_t CPU_USAGE_getAvgDeltaCntObserved(CPU_USAGE_Handle handle)
uint16_t gCounter_speed
volatile float_t gSpeed_Ki
volatile float_t gSpeed_Kp
uint_least16_t numCtrlTicksPerCurrentTick
#define MATH_ONE_OVER_THREE
void USER_setParams(USER_Params *pUserParams)
Sets the user parameter values.
CAL_Obj cal
the calibrator object
void setupClarke_V(CLARKE_Handle handle, const uint_least8_t numVoltageSensors)
Sets the number of voltage sensors.
void EST_setFlag_updateRs(EST_Handle handle, const bool state)
float_t EST_computeTorque_Nm(EST_Handle handle)
float_t speed_ref_Hz
volatile float_t gRsOnLinePole_Hz
static void CLARKE_setScaleFactors(CLARKE_Handle handle, const _iq alpha_sf, const _iq beta_sf)
PI_Handle piHandle_spd
the handle for the speed PI controller
CAL_State_e
void EST_enable(EST_Handle handle)
float_t maxVsMag_V
void HAL_setupFaults(HAL_Handle handle)
float_t EST_getLs_d_H(EST_Handle handle)
void EST_setFlag_enableRsRecalc(EST_Handle handle, const bool state)
USER_Params gUserParams
The user parameters.
void EST_getIdq_A(EST_Handle handle, MATH_vec2 *pIdq_A)
CAL_State_e gCalState
static void HAL_enablePwm(HAL_Handle handle)
EST_State_e
PI_Obj pi_spd
the speed PI controller object
SVGEN_Obj svgen
the space vector generator object
void HAL_enableDrv(HAL_Handle handle)
_iq value[2]
float_t gRsOnLine_Ohm
EST_Handle EST_initEst(const uint_least8_t estNumber)
CLARKE_Handle clarkeHandle_I
the handle for the current Clarke transform
PI_Handle PI_init(void *pMemory, const size_t numBytes)
void HAL_setupDrvSpi(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
uint_least8_t numVoltageSensors
float_t EST_getLs_q_H(EST_Handle handle)
CPU_USAGE_Obj cpu_usage
void HAL_enableDebugInt(HAL_Handle handle)
volatile float_t gRsOnLineId_mag_A
CLARKE_Handle CLARKE_init(void *pMemory, const size_t numBytes)
float_t oneOverDcBus_invV
void sincos_fastRTS(float_t angle_rad, float_t *pSin, float_t *pCos)
Calculates sine and cosine in a single function call, using callable assembly, fast RTS...
static void IPARK_run(IPARK_Handle handle, const MATH_vec2 *pInVec, MATH_vec2 *pOutVec)
EST_State_e EST_getState(EST_Handle handle)
static void CAL_disable(CAL_Handle handle)
void setupClarke_I(CLARKE_Handle handle, const uint_least8_t numCurrentSensors)
Sets the number of current sensors.
HAL_DacData_t gDacData
Defines the DAC data.
float_t gCpuUsagePercentageAvg
volatile bool gFlag_enableRsOnLine
float_t gLs_q_H
Global variable for the stator inductance in the quadrature coordinate direction, Henry...
volatile float_t gRsOnLineFreq_Hz
EST_InputData_t gEstInputData
float_t gSpeed_ref_Hz
MATH_vec3 gOffsets_I_A
void EST_setFlag_enableRsOnLine(EST_Handle handle, const bool state)
interrupt void mainISR(void)
The main interrupt service (ISR) routine.
static uint32_t HAL_readTimerCnt(HAL_Handle handle, const uint_least8_t timerNumber)
static _iq CAL_getOffsetValue_V(CAL_Handle handle, const uint_least8_t sensorNumber)
CAL_Handle calHandle
the handle for the calibrator
static void CLARKE_setNumSensors(CLARKE_Handle handle, const uint_least8_t numSensors)
float_t EST_getRs_Ohm(EST_Handle handle)
float_t gCpuUsagePercentageMax
HAL_Obj hal
the hardware abstraction layer object
uint_least16_t numCtrlTicksPerSpeedTick
void CPU_USAGE_setParams(CPU_USAGE_Handle handle, const uint32_t timerPeriod_cnts, const uint32_t numDeltaCntsAvg)
#define USER_ISR_FREQ_Hz
Defines the Interrupt Service Routine (ISR) frequency, Hz.
Definition: user.h:173
static void IPARK_setPhasor(IPARK_Handle handle, const MATH_vec2 *pPhasor)
float_t gCpuUsagePercentageMin
CPU_USAGE_Handle CPU_USAGE_init(void *pMemory, const size_t numBytes)
static void HAL_disablePwm(HAL_Handle handle)
void EST_setRsOnLineAngleDelta_rad(EST_Handle handle, const float_t angleDelta_rad)
float_t gSpeed_Hz
HAL_Handle HAL_init(void *pMemory, const size_t numBytes)
float_t gRs_Ohm
static void CLARKE_run(CLARKE_Handle handle, const MATH_vec3 *pInVec, MATH_vec2 *pOutVec)
static uint32_t CPU_USAGE_getMaxDeltaCntObserved(CPU_USAGE_Handle handle)
HAL_Handle halHandle
the handle for the hardware abstraction layer
void EST_setRsOnLine_beta_rad(EST_Handle handle, const float_t beta_rad)
void updateCPUusage(void)
Updates CPU usage.
static CAL_State_e CAL_getState(CAL_Handle handle)
CLARKE_Handle clarkeHandle_V
the handle for the voltage Clarke transform
PI_Obj pi_Iq
the Iq PI controller object
float_t EST_getRsOnLineId_A(EST_Handle handle)
float_t gFlux_Wb
Global variable for the rotor flux estimate, Wb.
MATH_vec2 Iab_A
uint_least32_t ctrlFreq_Hz
CAL_Handle CAL_init(void *pMemory, const size_t numBytes)
void SVGEN_setup(SVGEN_Handle svgenHandle)
static void PI_setMinMax(PI_Handle handle, const _iq outMin, const _iq outMax)
static void PI_setRefValue(PI_Handle handle, const _iq refValue)
CLARKE_Obj clarke_I
the current Clarke transform object
static void CPU_USAGE_updateCnts(CPU_USAGE_Handle handle, const uint32_t cnt)
void setupControllers(void)
Setups the controllers.
float_t sqrt_fastRTS(float_t x)
Calculates square root using callable assembly, fast RTS.
volatile bool gFlag_enableSys
Global flag to enable/disable the system.
MATH_vec2 Vab_V
static uint32_t CPU_USAGE_getMinDeltaCntObserved(CPU_USAGE_Handle handle)
#define MATH_ONE_OVER_SQRT_THREE
static void HAL_initIntVectorTable(HAL_Handle handle)
volatile bool gFlag_runOnLine
static float_t MATH_incrAngle(const float_t angle_rad, const float_t angleDelta_rad)
PI_Handle piHandle_Iq
the handle for the Iq PI controller
CLARKE_Obj clarke_V
the voltage Clarke transform object
PARK_Handle PARK_init(void *pMemory, const size_t numBytes)
static void PI_setFbackValue(PI_Handle handle, const _iq fbackValue)
static uint16_t HAL_readPwmPeriod(HAL_Handle handle, const PWM_Number_e pwmNumber)
HAL_PwmData_t gPwmData
Defines the PWM data.
IPARK_Obj ipark
the inverse Park transform object
bool EST_updateState(EST_Handle handle, const _iq Id_target_pu)
void EST_disable(EST_Handle handle)
static _iq CAL_getOffsetValue_I(CAL_Handle handle, const uint_least8_t sensorNumber)
void HAL_setParams(HAL_Handle handle, const USER_Params *pUserParams)
static void CPU_USAGE_run(CPU_USAGE_Handle handle)
volatile bool gFlag_enableRsRecalc
bool CAL_updateState(CAL_Handle handle)
HAL_AdcData_t gAdcData
Defines the ADC data.
float_t EST_getFe_Hz(EST_Handle handle)
void main(void)
void HAL_readDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
float_t maxCurrent_resEst_A
static bool CAL_isEnabled(CAL_Handle handle)
volatile bool gFlag_runCal
float_t gTorque_Nm
Global variable for the estimated torque, N*m.
float_t motor_Ls_d_H
float_t motor_Ls_q_H
PI_Handle piHandle_Id
the handle for the Id PI controller
IPARK_Handle iparkHandle
the handle for the inverse Park transform
SVGEN_Handle SVGEN_init(void *pMemory, const size_t numBytes)
volatile float_t gId_ref_A
static void PI_setGains(PI_Handle handle, const _iq Kp, const _iq Ki)
static void PI_run_series(PI_Handle handle, const _iq refValue, const _iq fbackValue, const _iq ffwdValue, _iq *pOutValue)
float float_t
void EST_run(EST_Handle handle, const MATH_vec2 *pIab_pu, const MATH_vec2 *pVab_pu, const _iq dcBus_pu, const _iq speed_ref_pu)
#define USER_NUM_PWM_TICKS_PER_ISR_TICK
DECIMATION.
Definition: user.h:184