instaspin_foc
fast_obs_pm_cal_rs_traj.c
Go to the documentation of this file.
1 
7 
8 // **************************************************************************
9 
10 // solutions
11 #include "fast_obs.h"
12 
13 
14 // **************************************************************************
15 // the defines
16 
17 
18 // **************************************************************************
19 // the globals
20 
21 CAL_State_e gCalState = CAL_State_Idle;
22 
23 EST_State_e gEstState = EST_State_Idle;
24 
25 volatile bool gFlag_enableSys = true;
26 
27 volatile bool gFlag_runCal = false;
28 
29 volatile bool gFlag_runOnLine = false;
30 
31 volatile bool gFlag_enableForceAngle = true;
32 
33 volatile bool gFlag_enableRsRecalc = true;
34 
36 
38 
40 
42 
44 
46 
47 volatile float_t gSpeed_Kp = 0.01;
48 
49 volatile float_t gSpeed_Ki = 0.001;
50 
51 volatile float_t gId_ref_A = 0.0;
52 
54 
56 
57 uint16_t gCounter_speed = 0;
58 
60 
62 
64 
66 
68 
70 
72 
73 MATH_vec3 gOffsets_I_A = {0.0, 0.0, 0.0};
74 
75 MATH_vec3 gOffsets_V_V = {0.0, 0.0, 0.0};
76 
79 
82 
85 
88 
90 
93 
96 
99 
102 
105 
108 
111 
114 
115 #ifdef DRV8301_SPI
116 // Watch window interface to the 8301 SPI
117 DRV_SPI_8301_Vars_t gDrvSpi8301Vars;
118 #endif
119 
125 
126 // **************************************************************************
127 // the functions
128 
129 void main(void)
130 {
131  uint_least8_t estNumber = 0;
132 
133  // initialize the user parameters
134  USER_setParams(&gUserParams);
135 
136  // initialize the user parameters
137  USER_setParams_priv(&gUserParams);
138 
139  // initialize the driver
140  halHandle = HAL_init(&hal,sizeof(hal));
141 
142  // set the driver parameters
143  HAL_setParams(halHandle,&gUserParams);
144 
145  // initialize the calibrator
146  calHandle = CAL_init(&cal,sizeof(cal));
147 
148  // set the default calibrator parameters
149  CAL_setParams(calHandle,&gUserParams);
150 
151  // initialize the Clarke modules
152  clarkeHandle_I = CLARKE_init(&clarke_I,sizeof(clarke_I));
153  clarkeHandle_V = CLARKE_init(&clarke_V,sizeof(clarke_V));
154 
155  // set the Clarke parameters
156  setupClarke_I(clarkeHandle_I,gUserParams.numCurrentSensors);
157  setupClarke_V(clarkeHandle_V,gUserParams.numVoltageSensors);
158 
159  // initialize the estimator
160  estHandle = EST_initEst(estNumber);
161 
162  // set the default estimator parameters
163  EST_setParams(estHandle,&gUserParams);
166 
167  // initialize the inverse Park module
168  iparkHandle = IPARK_init(&ipark,sizeof(ipark));
169 
170  // initialize the Park module
171  parkHandle = PARK_init(&park,sizeof(park));
172 
173  // initialize the PI controllers
174  piHandle_Id = PI_init(&pi_Id, sizeof(pi_Id));
175  piHandle_Iq = PI_init(&pi_Iq, sizeof(pi_Iq));
176  piHandle_spd = PI_init(&pi_spd,sizeof(pi_spd));
177 
178  // setup the controllers
180 
181  // initialize the space vector generator module
182  svgenHandle = SVGEN_init(&svgen,sizeof(svgen));
183 
184  // initialize the Id trajectory
185  trajHandle_Id = TRAJ_init(&traj_Id,sizeof(traj_Id));
186 
187  // configure the Id trajectory
188  TRAJ_setTargetValue(trajHandle_Id,0.0);
189  TRAJ_setIntValue(trajHandle_Id,0.0);
190  TRAJ_setMinValue(trajHandle_Id,-gUserParams.maxCurrent_A);
191  TRAJ_setMaxValue(trajHandle_Id,gUserParams.maxCurrent_A);
192  TRAJ_setMaxDelta(trajHandle_Id,gUserParams.maxCurrent_resEst_A / gUserParams.estFreq_Hz);
193 
194  // initialize the speed trajectory
195  trajHandle_spd = TRAJ_init(&traj_spd,sizeof(traj_spd));
196 
197  // configure the Id trajectory
198  TRAJ_setTargetValue(trajHandle_spd,0.0);
199  TRAJ_setIntValue(trajHandle_spd,0.0);
200  TRAJ_setMinValue(trajHandle_spd,-3000.0);
201  TRAJ_setMaxValue(trajHandle_spd,3000.0);
202  TRAJ_setMaxDelta(trajHandle_spd,gUserParams.maxAccel_Hzps / gUserParams.estFreq_Hz);
203 
204  // initialize the CPU usage module
205  cpu_usageHandle = CPU_USAGE_init(&cpu_usage,sizeof(cpu_usage));
206  CPU_USAGE_setParams(cpu_usageHandle,
207  (uint32_t)USER_SYSTEM_FREQ_MHz * 1000000, // timer period, cnts
208  (uint32_t)USER_ISR_FREQ_Hz); // average over 1 second of ISRs
209 
210  // setup faults
211  HAL_setupFaults(halHandle);
212 
213  // initialize the interrupt vector table
214  HAL_initIntVectorTable(halHandle);
215 
216  // enable the ADC interrupts
217  HAL_enableAdcInts(halHandle);
218 
219  // enable global interrupts
220  HAL_enableGlobalInts(halHandle);
221 
222  // enable debug interrupts
223  HAL_enableDebugInt(halHandle);
224 
225  // disable the PWM
226  HAL_disablePwm(halHandle);
227 
228 #ifdef DRV8301_SPI
229  // turn on the DRV8301 if present
230  HAL_enableDrv(halHandle);
231  // initialize the DRV8301 interface
232  HAL_setupDrvSpi(halHandle,&gDrvSpi8301Vars);
233 #endif
234 
235  // Waiting for enable system flag to be set
236  while(!gFlag_enableSys);
237 
238  // loop while the enable system flag is true
239  while(gFlag_enableSys)
240  {
241  // set custom speed controller gains
242  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
243 
244  // enable or disable force angle
246 
247  // enable or disable Rs recalibration
249 
250  if((gFlag_runOnLine) && (!gFlag_runCal))
251  {
252  // set trajectory target for Id
254 
255  // set trajectory target for speed
256  TRAJ_setTargetValue(trajHandle_spd,gSpeed_ref_Hz);
257 
258  // disable the calibrator
259  CAL_disable(calHandle);
260 
261  // enable the estimator
263 
264  // enable the PWM
265  HAL_enablePwm(halHandle);
266  }
267  else if(gFlag_runCal)
268  {
269  // enable the calibrator
270  CAL_setFlag_enableAdcOffset(calHandle,true);
271 
272  // enable the calibrator
273  CAL_enable(calHandle);
274 
275  // disable the estimator
277 
278  // enable the PWM
279  HAL_enablePwm(halHandle);
280  }
281  else
282  {
283  // disable the calibrator
284  CAL_disable(calHandle);
285 
286  // disable the estimator
288 
289  // disable the PWM
290  HAL_disablePwm(halHandle);
291 
292  // clear integral outputs of the controllers
293  PI_setUi(piHandle_Id,0.0);
294  PI_setUi(piHandle_Iq,0.0);
295  PI_setUi(piHandle_spd,0.0);
296 
297  // clear current references
298  gId_ref_A = 0.0;
299  gIq_ref_A = 0.0;
300 
301  // clear the Id trajectory
302  TRAJ_setTargetValue(trajHandle_Id,0.0);
303  TRAJ_setIntValue(trajHandle_Id,0.0);
304 
305  // clear the speed trajectory
306  TRAJ_setTargetValue(trajHandle_spd,0.0);
307  TRAJ_setIntValue(trajHandle_spd,0.0);
308  }
309 
310  // update the estimator state
312 
313  // update the calibrator state
314  if(CAL_updateState(calHandle))
315  {
316  CAL_State_e calState = CAL_getState(calHandle);
317 
318  if(calState == CAL_State_Done)
319  {
320  // update the ADC offset values
321  gOffsets_I_A.value[0] = CAL_getOffsetValue_I(calHandle,0);
322  gOffsets_I_A.value[1] = CAL_getOffsetValue_I(calHandle,1);
323  gOffsets_I_A.value[2] = CAL_getOffsetValue_I(calHandle,2);
324  gOffsets_V_V.value[0] = CAL_getOffsetValue_V(calHandle,0);
325  gOffsets_V_V.value[1] = CAL_getOffsetValue_V(calHandle,1);
326  gOffsets_V_V.value[2] = CAL_getOffsetValue_V(calHandle,2);
327 
328  // clear the flag
329  gFlag_runCal = false;
330  }
331  }
332 
333  // update the global variables
335 
336  // update CPU usage
337  updateCPUusage();
338 
339 #ifdef DRV8301_SPI
340  HAL_writeDrvData(halHandle,&gDrvSpi8301Vars);
341 
342  HAL_readDrvData(halHandle,&gDrvSpi8301Vars);
343 #endif
344 
345  } // end of while() loop
346 
347  // disable the PWM
348  HAL_disablePwm(halHandle);
349 
350 } // end of main() function
351 
352 
353 interrupt void mainISR(void)
354 {
355  uint32_t timer1Cnt;
356  float_t angleDelta_rad;
357  float_t angleWithDelay_rad;
358  MATH_vec2 Idq_A;
359  float_t outMax_V;
360  MATH_vec2 phasor;
361  MATH_vec2 Vab_out_V;
362  MATH_vec2 Vdq_out_V;
363  HAL_AdcData_t AdcDataWithOffset;
364 
365  // read the timer 1 value and update the CPU usage module
366  timer1Cnt = HAL_readTimerCnt(halHandle,1);
367  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
368 
369  // acknowledge the ADC interrupt
370  HAL_acqAdcInt(halHandle,ADC_IntNumber_6);
371 
372  // read the ADC data with offsets
373  HAL_readAdcDataWithOffsets(halHandle,&AdcDataWithOffset);
374 
375  // remove offsets
376  gAdcData.I_A.value[0] = AdcDataWithOffset.I_A.value[0] - gOffsets_I_A.value[0];
377  gAdcData.I_A.value[1] = AdcDataWithOffset.I_A.value[1] - gOffsets_I_A.value[1];
378  gAdcData.I_A.value[2] = AdcDataWithOffset.I_A.value[2] - gOffsets_I_A.value[2];
379  gAdcData.V_V.value[0] = AdcDataWithOffset.V_V.value[0] - gOffsets_V_V.value[0];
380  gAdcData.V_V.value[1] = AdcDataWithOffset.V_V.value[1] - gOffsets_V_V.value[1];
381  gAdcData.V_V.value[2] = AdcDataWithOffset.V_V.value[2] - gOffsets_V_V.value[2];
382  gAdcData.dcBus_V = AdcDataWithOffset.dcBus_V;
383 
384  // if enabled, run the calibrator
385  if(CAL_isEnabled(calHandle))
386  {
387  // run the calibrator
388  CAL_run(calHandle,&AdcDataWithOffset);
389  }
390 
391  // if enabled, run the estimator
393  {
394  // run Clarke transform on current
395  CLARKE_run(clarkeHandle_I,&(gAdcData.I_A),&(gEstInputData.Iab_A));
396 
397  // run Clarke transform on voltage
398  CLARKE_run(clarkeHandle_V,&(gAdcData.V_V),&(gEstInputData.Vab_V));
399 
400  // store the input data into a buffer
401  gEstInputData.dcBus_V = gAdcData.dcBus_V;
402 
403  // modify references if running Rs recalibration
404  if(EST_getState(estHandle) == EST_State_Rs)
405  {
406  gEstInputData.speed_ref_Hz = 0.0;
408  }
409  else
410  {
411  // run a trajectory for speed, so the reference changes with a ramp instead of a step
412  TRAJ_run(trajHandle_spd);
413 
414  gEstInputData.speed_ref_Hz = TRAJ_getIntValue(trajHandle_spd);
415  gId_rs_recalc_ref_A = 0.0;
416  }
417 
418  // run the estimator
419  EST_run(estHandle,&gEstInputData,&gEstOutputData);
420 
421  // run the speed controller
422  if(++gCounter_speed >= gUserParams.numCtrlTicksPerSpeedTick)
423  {
424  gCounter_speed = 0;
425 
426  PI_run_series(piHandle_spd,gEstInputData.speed_ref_Hz,gEstOutputData.fm_lp_rps * MATH_ONE_OVER_TWO_PI,0.0,&gIq_ref_A);
427  }
428 
429  // get Idq, reutilizing a Park transform used inside the estimator. This is optional, user's Park works as well
430  EST_getIdq_A(estHandle,&Idq_A);
431 
432  // run a trajectory for Id, so the reference changes with a ramp instead of a step
433  TRAJ_run(trajHandle_Id);
434 
435  // run the Id controller
436  PI_run_series(piHandle_Id,TRAJ_getIntValue(trajHandle_Id),Idq_A.value[0],0.0,&(Vdq_out_V.value[0]));
437 
438  // calculate Iq controller limits, and run Iq controller using fast RTS function, callable assembly
439  outMax_V = sqrt_fastRTS((gUserParams.maxVsMag_V * gUserParams.maxVsMag_V) - (Vdq_out_V.value[0] * Vdq_out_V.value[0]));
440  PI_setMinMax(piHandle_Iq,-outMax_V,outMax_V);
441  PI_run_series(piHandle_Iq,gIq_ref_A,Idq_A.value[1],0.0,&(Vdq_out_V.value[1]));
442 
443  // compute angle with delay compensation
444  angleDelta_rad = gUserParams.angleDelayed_sf_sec * gEstOutputData.fm_lp_rps;
445  angleWithDelay_rad = MATH_incrAngle(gEstOutputData.angle_rad, angleDelta_rad);
446 
447  // compute the sin/cos phasor using fast RTS function, callable assembly
448  sincos_fastRTS(angleWithDelay_rad, &(phasor.value[1]), &(phasor.value[0]));
449 
450  // set the phasor in the inverse Park transform
451  IPARK_setPhasor(iparkHandle,&phasor);
452 
453  // run the inverse Park module
454  IPARK_run(iparkHandle,&Vdq_out_V,&Vab_out_V);
455 
456  // setup the space vector generator (SVGEN) module
457  SVGEN_setup(svgenHandle,gEstOutputData.oneOverDcBus_invV);
458 
459  // run the space vector generator (SVGEN) module
460  SVGEN_run(svgenHandle,&Vab_out_V,&(gPwmData.Vabc_pu));
461  }
462  else
463  {
464  // create PWM data
465  gPwmData.Vabc_pu.value[0] = 0.0;
466  gPwmData.Vabc_pu.value[1] = 0.0;
467  gPwmData.Vabc_pu.value[2] = 0.0;
468  }
469 
470  // write the PWM compare values
471  HAL_writePwmData(halHandle,&gPwmData);
472 
473  // read the timer 1 value and update the CPU usage module
474  timer1Cnt = HAL_readTimerCnt(halHandle,1);
475  CPU_USAGE_updateCnts(cpu_usageHandle,timer1Cnt);
476 
477  // run the CPU usage module
478  CPU_USAGE_run(cpu_usageHandle);
479 
480  return;
481 } // end of mainISR() function
482 
483 
484 void setupClarke_I(CLARKE_Handle handle,const uint_least8_t numCurrentSensors)
485 {
486  float_t alpha_sf,beta_sf;
487 
488  // initialize the Clarke transform module for current
489  if(numCurrentSensors == 3)
490  {
491  alpha_sf = MATH_ONE_OVER_THREE;
492  beta_sf = MATH_ONE_OVER_SQRT_THREE;
493  }
494  else if(numCurrentSensors == 2)
495  {
496  alpha_sf = 1.0;
497  beta_sf = MATH_ONE_OVER_SQRT_THREE;
498  }
499  else
500  {
501  alpha_sf = 0.0;
502  beta_sf = 0.0;
503  }
504 
505  // set the parameters
506  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
507  CLARKE_setNumSensors(handle,numCurrentSensors);
508 
509  return;
510 } // end of setupClarke_I() function
511 
512 
513 void setupClarke_V(CLARKE_Handle handle,const uint_least8_t numVoltageSensors)
514 {
515  float_t alpha_sf,beta_sf;
516 
517  // initialize the Clarke transform module for voltage
518  if(numVoltageSensors == 3)
519  {
520  alpha_sf = MATH_ONE_OVER_THREE;
521  beta_sf = MATH_ONE_OVER_SQRT_THREE;
522  }
523  else
524  {
525  alpha_sf = 0.0;
526  beta_sf = 0.0;
527  }
528 
529  // set the parameters
530  CLARKE_setScaleFactors(handle,alpha_sf,beta_sf);
531  CLARKE_setNumSensors(handle,numVoltageSensors);
532 
533  return;
534 } // end of setupClarke_V() function
535 
536 
538 {
539  float_t Ls_d_H = gUserParams.motor_Ls_d_H;
540  float_t Ls_q_H = gUserParams.motor_Ls_q_H;
541  float_t Rs_d_Ohm = gUserParams.motor_Rs_d_Ohm;
542  float_t Rs_q_Ohm = gUserParams.motor_Rs_q_Ohm;
543  float_t RdoverLd_rps = Rs_d_Ohm / Ls_d_H;
544  float_t RqoverLq_rps = Rs_q_Ohm / Ls_q_H;
545  float_t BWc_rps = gUserParams.BWc_rps;
546  float_t currentCtrlPeriod_sec = (float_t)gUserParams.numCtrlTicksPerCurrentTick / gUserParams.ctrlFreq_Hz;
547  float_t outMax_V = gUserParams.Vd_sf * gUserParams.maxVsMag_V;
548 
549  float_t Kp_Id = Ls_d_H * BWc_rps;
550  float_t Ki_Id = RdoverLd_rps * currentCtrlPeriod_sec;
551 
552  float_t Kp_Iq = Ls_q_H * BWc_rps;
553  float_t Ki_Iq = RqoverLq_rps * currentCtrlPeriod_sec;
554 
555  // set the Id controller
556  PI_setGains(piHandle_Id,Kp_Id,Ki_Id);
557  PI_setUi(piHandle_Id,0.0);
558  PI_setRefValue(piHandle_Id,0.0);
559  PI_setFbackValue(piHandle_Id,0.0);
560  PI_setFfwdValue(piHandle_Id,0.0);
561  PI_setMinMax(piHandle_Id,-outMax_V,outMax_V);
562 
563  // set the Iq controller
564  PI_setGains(piHandle_Iq,Kp_Iq,Ki_Iq);
565  PI_setUi(piHandle_Iq,0.0);
566  PI_setRefValue(piHandle_Iq,0.0);
567  PI_setFbackValue(piHandle_Iq,0.0);
568  PI_setFfwdValue(piHandle_Iq,0.0);
569  PI_setMinMax(piHandle_Iq,0.0,0.0);
570 
571  // set the speed controller
572  PI_setGains(piHandle_spd,gSpeed_Kp,gSpeed_Ki);
573  PI_setUi(piHandle_spd,0.0);
574  PI_setRefValue(piHandle_spd,0.0);
575  PI_setFbackValue(piHandle_spd,0.0);
576  PI_setFfwdValue(piHandle_spd,0.0);
577  PI_setMinMax(piHandle_spd,-gUserParams.maxCurrent_A,gUserParams.maxCurrent_A);
578 
579  return;
580 } // end of setupCurrentControllers() function
581 
582 
584 {
585  // get the states
586  gCalState = CAL_getState(calHandle);
587  gEstState = EST_getState(estHandle);
588 
589  // get the speed estimate
590  gSpeed_Hz = EST_getFe_Hz(estHandle);
591 
592  // get the torque estimate
593  gTorque_Nm = EST_computeTorque_Nm(estHandle);
594 
595  // get the stator resistance
596  gRs_Ohm = EST_getRs_Ohm(estHandle);
597 
598  // get the stator inductance in the direct coordinate direction
599  gLs_d_H = EST_getLs_d_H(estHandle);
600 
601  // get the stator inductance in the quadrature coordinate direction
602  gLs_q_H = EST_getLs_q_H(estHandle);
603 
604  // get the flux, Wb
605  gFlux_Wb = EST_getFlux_Wb(estHandle);
606 
607  return;
608 } // end of updateGlobalVariables_motor() function
609 
610 
611 void updateCPUusage(void)
612 {
613  uint32_t minDeltaCntObserved = CPU_USAGE_getMinDeltaCntObserved(cpu_usageHandle);
614  uint32_t avgDeltaCntObserved = CPU_USAGE_getAvgDeltaCntObserved(cpu_usageHandle);
615  uint32_t maxDeltaCntObserved = CPU_USAGE_getMaxDeltaCntObserved(cpu_usageHandle);
616  uint16_t pwmPeriod = HAL_readPwmPeriod(halHandle,PWM_Number_1);
617  float_t cpu_usage_den = (float_t)pwmPeriod * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK * 2.0;
618 
619  // calculate the minimum cpu usage percentage
620  gCpuUsagePercentageMin = (float_t)minDeltaCntObserved / cpu_usage_den * 100.0;
621 
622  // calculate the average cpu usage percentage
623  gCpuUsagePercentageAvg = (float_t)avgDeltaCntObserved / cpu_usage_den * 100.0;
624 
625  // calculate the maximum cpu usage percentage
626  gCpuUsagePercentageMax = (float_t)maxDeltaCntObserved / cpu_usage_den * 100.0;
627 
628  return;
629 } // end of updateCPUusage() function
630 
631 
632 // end of file
633 
#define USER_SYSTEM_FREQ_MHz
CLOCKS & TIMERS.
Definition: user.h:140
EST_State_e gEstState
Global variable for the estimator state.
float_t angleDelayed_sf_sec
void EST_setFlag_enableForceAngle(EST_Handle handle, const bool state)
static void CAL_enable(CAL_Handle handle)
IPARK_Handle IPARK_init(void *pMemory, const size_t numBytes)
#define MATH_ONE_OVER_TWO_PI
CLARKE_Handle clarkeHandle_V
the handle for the voltage Clarke transform
PI_Obj pi_Iq
the Iq PI controller object
TRAJ_Obj traj_spd
the speed trajectory object
static void TRAJ_setTargetValue(TRAJ_Handle handle, const _iq targetValue)
PI_Obj pi_spd
the speed PI controller object
volatile bool gFlag_enableRsRecalc
SVGEN_Obj svgen
the space vector generator object
void HAL_enableGlobalInts(HAL_Handle handle)
void HAL_enableAdcInts(HAL_Handle handle)
float_t EST_getFlux_Wb(EST_Handle handle)
void updateGlobalVariables_motor(EST_Handle estHandle)
Updates the global motor variables.
static void PI_setFfwdValue(PI_Handle handle, const _iq ffwdValue)
MATH_vec3 Vabc_pu
float_t gCpuUsagePercentageAvg
static void HAL_readAdcDataWithOffsets(HAL_Handle handle, HAL_AdcData_t *pAdcData)
static void CAL_run(CAL_Handle handle, const HAL_AdcData_t *pAdcData)
static void TRAJ_setMaxDelta(TRAJ_Handle handle, const _iq maxDelta)
float_t gLs_d_H
Global variable for the stator inductance in the direct coordinate direction, Henry.
float_t gIq_ref_A
float_t motor_Rs_d_Ohm
static _iq TRAJ_getIntValue(TRAJ_Handle handle)
float_t gSpeed_ref_Hz
float_t maxAccel_Hzps
static void HAL_writePwmData(HAL_Handle handle, HAL_PwmData_t *pPwmData)
float_t BWc_rps
_iq value[3]
struct _EST_Obj_ * EST_Handle
float_t maxCurrent_A
void HAL_writeDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
PI_Handle piHandle_spd
the handle for the speed PI controller
static void PI_setUi(PI_Handle handle, const _iq Ui)
static void HAL_acqAdcInt(HAL_Handle handle, const ADC_IntNumber_e intNumber)
float_t motor_Rs_q_Ohm
static void CAL_setFlag_enableAdcOffset(CAL_Handle handle, const bool value)
uint_least8_t numCurrentSensors
bool EST_isEnabled(EST_Handle handle)
volatile float_t gSpeed_Kp
void CAL_setParams(CAL_Handle handle, const USER_Params *pUserParams)
void EST_setParams(EST_Handle handle, USER_Params *pUserParams)
static void SVGEN_run(SVGEN_Handle handle, const MATH_vec2 *pVab, MATH_vec3 *pT)
static uint32_t CPU_USAGE_getAvgDeltaCntObserved(CPU_USAGE_Handle handle)
uint_least16_t numCtrlTicksPerCurrentTick
float_t gId_rs_recalc_ref_A
#define MATH_ONE_OVER_THREE
void main(void)
void USER_setParams(USER_Params *pUserParams)
Sets the user parameter values.
void setupClarke_V(CLARKE_Handle handle, const uint_least8_t numVoltageSensors)
Sets the number of voltage sensors.
float_t EST_computeTorque_Nm(EST_Handle handle)
float_t speed_ref_Hz
IPARK_Handle iparkHandle
the handle for the inverse Park transform
static void CLARKE_setScaleFactors(CLARKE_Handle handle, const _iq alpha_sf, const _iq beta_sf)
TRAJ_Handle TRAJ_init(void *pMemory, const size_t numBytes)
CAL_State_e
void EST_enable(EST_Handle handle)
PI_Obj pi_Id
the Id PI controller object
float_t maxVsMag_V
void HAL_setupFaults(HAL_Handle handle)
float_t EST_getLs_d_H(EST_Handle handle)
void EST_setFlag_enableRsRecalc(EST_Handle handle, const bool state)
static void TRAJ_setIntValue(TRAJ_Handle handle, const _iq intValue)
USER_Params gUserParams
The user parameters.
void EST_getIdq_A(EST_Handle handle, MATH_vec2 *pIdq_A)
static void HAL_enablePwm(HAL_Handle handle)
volatile bool gFlag_runOnLine
EST_State_e
void HAL_enableDrv(HAL_Handle handle)
_iq value[2]
CLARKE_Obj clarke_I
the current Clarke transform object
CPU_USAGE_Handle cpu_usageHandle
EST_Handle EST_initEst(const uint_least8_t estNumber)
TRAJ_Obj traj_Id
the Id trajectory object
MATH_vec3 gOffsets_V_V
PI_Handle PI_init(void *pMemory, const size_t numBytes)
void HAL_setupDrvSpi(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
uint_least8_t numVoltageSensors
float_t EST_getLs_q_H(EST_Handle handle)
void HAL_enableDebugInt(HAL_Handle handle)
CLARKE_Handle CLARKE_init(void *pMemory, const size_t numBytes)
float_t oneOverDcBus_invV
void sincos_fastRTS(float_t angle_rad, float_t *pSin, float_t *pCos)
Calculates sine and cosine in a single function call, using callable assembly, fast RTS...
volatile bool gFlag_runCal
PARK_Handle parkHandle
the handle for the Park object
IPARK_Obj ipark
the inverse Park transform object
static void IPARK_run(IPARK_Handle handle, const MATH_vec2 *pInVec, MATH_vec2 *pOutVec)
EST_State_e EST_getState(EST_Handle handle)
static void CAL_disable(CAL_Handle handle)
void setupClarke_I(CLARKE_Handle handle, const uint_least8_t numCurrentSensors)
Sets the number of current sensors.
HAL_DacData_t gDacData
Defines the DAC data.
PI_Handle piHandle_Id
the handle for the Id PI controller
PI_Handle piHandle_Iq
the handle for the Iq PI controller
float_t gLs_q_H
Global variable for the stator inductance in the quadrature coordinate direction, Henry...
interrupt void mainISR(void)
The main interrupt service (ISR) routine.
static uint32_t HAL_readTimerCnt(HAL_Handle handle, const uint_least8_t timerNumber)
static _iq CAL_getOffsetValue_V(CAL_Handle handle, const uint_least8_t sensorNumber)
static void CLARKE_setNumSensors(CLARKE_Handle handle, const uint_least8_t numSensors)
MATH_vec3 gOffsets_I_A
float_t EST_getRs_Ohm(EST_Handle handle)
float_t gSpeed_Hz
uint_least16_t numCtrlTicksPerSpeedTick
void CPU_USAGE_setParams(CPU_USAGE_Handle handle, const uint32_t timerPeriod_cnts, const uint32_t numDeltaCntsAvg)
#define USER_ISR_FREQ_Hz
Defines the Interrupt Service Routine (ISR) frequency, Hz.
Definition: user.h:173
static void IPARK_setPhasor(IPARK_Handle handle, const MATH_vec2 *pPhasor)
CPU_USAGE_Handle CPU_USAGE_init(void *pMemory, const size_t numBytes)
static void HAL_disablePwm(HAL_Handle handle)
static void TRAJ_setMaxValue(TRAJ_Handle handle, const _iq maxValue)
HAL_Obj hal
the hardware abstraction layer object
HAL_Handle HAL_init(void *pMemory, const size_t numBytes)
CAL_Obj cal
the calibrator object
static void CLARKE_run(CLARKE_Handle handle, const MATH_vec3 *pInVec, MATH_vec2 *pOutVec)
static uint32_t CPU_USAGE_getMaxDeltaCntObserved(CPU_USAGE_Handle handle)
HAL_Handle halHandle
the handle for the hardware abstraction layer
float_t gCpuUsagePercentageMin
void updateCPUusage(void)
Updates CPU usage.
static CAL_State_e CAL_getState(CAL_Handle handle)
CPU_USAGE_Obj cpu_usage
float_t gFlux_Wb
Global variable for the rotor flux estimate, Wb.
MATH_vec2 Iab_A
PARK_Obj park
the Park transform object
uint_least32_t ctrlFreq_Hz
CAL_Handle CAL_init(void *pMemory, const size_t numBytes)
void SVGEN_setup(SVGEN_Handle svgenHandle)
static void PI_setMinMax(PI_Handle handle, const _iq outMin, const _iq outMax)
static void PI_setRefValue(PI_Handle handle, const _iq refValue)
CAL_State_e gCalState
CLARKE_Obj clarke_V
the voltage Clarke transform object
static void CPU_USAGE_updateCnts(CPU_USAGE_Handle handle, const uint32_t cnt)
void setupControllers(void)
Setups the controllers.
float_t sqrt_fastRTS(float_t x)
Calculates square root using callable assembly, fast RTS.
volatile bool gFlag_enableSys
Global flag to enable/disable the system.
MATH_vec2 Vab_V
static uint32_t CPU_USAGE_getMinDeltaCntObserved(CPU_USAGE_Handle handle)
#define MATH_ONE_OVER_SQRT_THREE
volatile bool gFlag_enableForceAngle
TRAJ_Handle trajHandle_spd
the handle for the speed trajectory
static void HAL_initIntVectorTable(HAL_Handle handle)
static float_t MATH_incrAngle(const float_t angle_rad, const float_t angleDelta_rad)
SVGEN_Handle svgenHandle
the handle for the space vector generator
PARK_Handle PARK_init(void *pMemory, const size_t numBytes)
static void PI_setFbackValue(PI_Handle handle, const _iq fbackValue)
EST_OutputData_t gEstOutputData
static uint16_t HAL_readPwmPeriod(HAL_Handle handle, const PWM_Number_e pwmNumber)
HAL_PwmData_t gPwmData
Defines the PWM data.
float_t gRs_Ohm
bool EST_updateState(EST_Handle handle, const _iq Id_target_pu)
CAL_Handle calHandle
the handle for the calibrator
uint_least32_t estFreq_Hz
void EST_disable(EST_Handle handle)
static _iq CAL_getOffsetValue_I(CAL_Handle handle, const uint_least8_t sensorNumber)
void HAL_setParams(HAL_Handle handle, const USER_Params *pUserParams)
static void CPU_USAGE_run(CPU_USAGE_Handle handle)
bool CAL_updateState(CAL_Handle handle)
HAL_AdcData_t gAdcData
Defines the ADC data.
uint16_t gCounter_speed
float_t EST_getFe_Hz(EST_Handle handle)
void HAL_readDrvData(HAL_Handle handle, DRV_SPI_8301_Vars_t *Spi_8301_Vars)
float_t maxCurrent_resEst_A
static bool CAL_isEnabled(CAL_Handle handle)
EST_Handle estHandle
the handle for the estimator
volatile float_t gId_ref_A
float_t gTorque_Nm
Global variable for the estimated torque, N*m.
static void TRAJ_run(TRAJ_Handle handle)
TRAJ_Handle trajHandle_Id
the handle for the Id trajectory
volatile float_t gSpeed_Ki
float_t motor_Ls_d_H
float_t motor_Ls_q_H
SVGEN_Handle SVGEN_init(void *pMemory, const size_t numBytes)
static void PI_setGains(PI_Handle handle, const _iq Kp, const _iq Ki)
static void PI_run_series(PI_Handle handle, const _iq refValue, const _iq fbackValue, const _iq ffwdValue, _iq *pOutValue)
float float_t
float_t gCpuUsagePercentageMax
EST_InputData_t gEstInputData
CLARKE_Handle clarkeHandle_I
the handle for the current Clarke transform
static void TRAJ_setMinValue(TRAJ_Handle handle, const _iq minValue)
void EST_run(EST_Handle handle, const MATH_vec2 *pIab_pu, const MATH_vec2 *pVab_pu, const _iq dcBus_pu, const _iq speed_ref_pu)
#define USER_NUM_PWM_TICKS_PER_ISR_TICK
DECIMATION.
Definition: user.h:184