

PRU-ICSS PROFINET IRT Slave Firmware Data Sheet

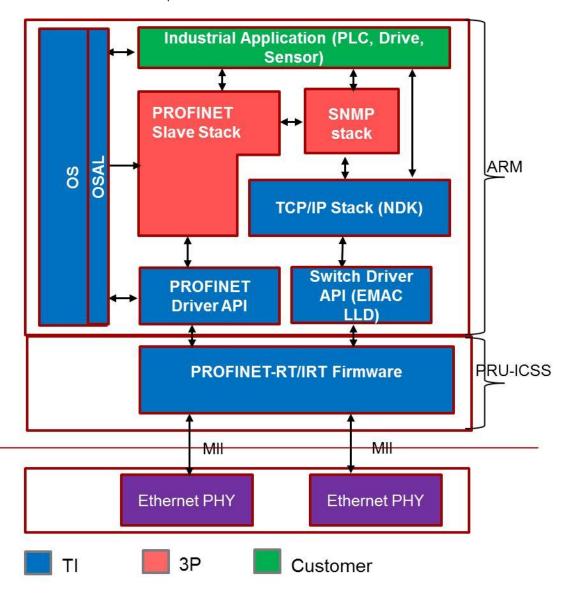
FEATURES

- PROFINET I/O RT/IRT Device(Slave) conforms to PROFINET Conformance classes A,B and C functionality
- Supports minimum cycle time of 250 us
- Integrated two-port cut-through switch, 100 Mb/s Full Duplex
 - Relative forwarder, computes the Forward FSO for RTC3 frames which have to be forwarded
 - PROFINET Quality of Service (QoS)
 - Four priority receive queues on host port, each queue 6 KB in size
 - Four priority transmit queues on each physical port, each queue 3 KB in size
- Up to 8 Application Relations (ARs)
- 8 IOCRs
 - 8 Consumer Protocol Machines (CPM)
 - 8 Provider Protocol Machines (PPM)
 - Supports PROFINET IO data size from 40 to 1440 Bytes
- Data Hold Timer
- DCP Identify Filter
 - DCP Identify frame is given to host only if it is meant for it otherwise it is just forwarded.
 - Reduces the DCP Identify frames reaching host at a particular node at network startup
- One Step Time Synchronization (PTCP)
- 1 millisecond buffering per port
- 802.1d learning bridge for received source MAC addresses
- PNIO static routing and custom FDB for multicast addresses
- Interrupt Pacing

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

- Media Redundancy Protocol (MRP)
 - Bump less transition of PROFINET connection to redundant path on ring break
 - Switch address learned table (FDB) is flushed in 2.4 micro second


1

Copyright © 2016, Texas Instruments Incorporated

Description

PRU-ICSS PROFINET IRT firmware implements PROFINET IRT slave layer2 functionality and provides PROFINET IRT ASIC like functionality integrated into Sitara Processors with PRU-ICSS. PRU-ICSS PROFINET IRT Software from TI can be used by customers to add PROFINET IRT function on top of Processor SDK to Sitara processors.

PROFINET IRT firmware for PRU-ICSS is a black box product maintained by TI. PROFINET IRT driver allows loading and run PROFINET IRT firmware and interface with the firmware.

PROFINET Driver is provided in full source so that customers can adapt this implementation to own hardware and Operating Systems. This driver provides stack interface for CPM/PPM management, Triple Buffer Management, MRP, DCP Filter, Multicast Filter, Phase management and PTCP modules.

Operating System, Switch Driver (ICSS EMAC LLD), TCP/IP Stack (NDK) and associated documentation is available through Processor SDK. See Software section for details

Performance Summary

A 300 MHz CPU speed is sufficient to support a simple IO or sensor application. More complex applications can use higher speed grades of up to 1.5 GHz. The PRU core speed remains 200 MHz for all speed grades.

Memory Summary

This section describes memory usage of the PROFINET IRT PRU-ICSS firmware and Cortex-A driver.

Table 1 PROFINET IRT PRU-ICSS Firmware Memory Statistics

Memory	Program memory	Data memory	Remarks
PRU0	7.77KB	5.86 KB	
PRU1	7.80KB	5.03 KB	
PRU-ICSS SHARED RAM	NA	12 KB	Buffer descriptors, Filter tables etc
L3 OCMC RAM	NA	64 KB	Switch Buffers, PPM and CPM buffers

Table 2 PROFINET IRT Driver Memory Statistics

Section	Memory
.text (executable code)	21.55 KB
.rodata (constant data)	16.58 KB
.data (initialized non-constant data –writable static)	84 Bytes
.bss (uninitialized data)	10.1 KB

NOTE: Driver object files (iPNDrv.o, iPnOs.o, iRtcDrv.o, iRtcDrv2.o and iPtcpDrv.o) used for this analysis with gcc-arm-noneeabi-4_8-2014q3 toolchain options : -mcpu=cortex-a8 -mtune=cortex-a8 -marm –mfloat-abi=hard -mfpu=neon -O2

Hardware Requirements

- · Sitara Processor with PRU-ICSS IP and PROFINET IRT support
- · PROFINET IRT implementation uses following interrupts mapped to Host Interrupt Controller

Stack/application interrupts			
Firmware interrupt	Host Interrupt	Remarks	
Frame Receive	PRU_ICSS_EVTOUT0	Notifies host when firmware has stored a frame in	
		host receive queue	
PPM Frame Receive	PRU_ICSS_EVTOUT1	Raised when firmware has transmitted a PPM frame	
CPM Frame Receive	PRU_ICSS_EVTOUT2	On reception of CPM frame firmware raises this	
		interrupt	
DHT	PRU_ICSS_EVTOUT3	Firmware notifies DHT event and PPM list toggle	
		event to host through this interrupt	
PTCP	PRU_ICSS_EVTOUT4	Firmware notifies reception of RTSync frame	
Link 0/1	PRU_ICSS_EVTOUT6	Interrupt is raised when the Link on MII0/1 port comes	
		up or goes down	

- PROFINET IRT implementation makes use of one channel of EDMA
- HW signals required to implement PROFINET IRT slave functionality is shown below, this info needs to be used in conjunction with <u>http://www.ti.com/tool/PINMUXTOOL</u>

NOTE: w.r.t prX, X is 1 or 2 (respectively PRU-ICSS1 and PRU-ICSS2 - refer to SOC TRM for availability)

Table 3 PRU-ICSS signals required for PROFINET functionality				
Signal name		Description		
PRU-ICSS MDIO				
prX_mdio_mdclk	Mandatory	MDIO clock		
prX_mdio_ data	Mandatory	MDIO data		
PRU-ICSS MII PORT0				
PRU-ICSS MII PORT1				
prX_mii_mt0_clk	Mandatory	MII0 and MII1 transmit clock		
prX_mii_mt1_clk				
prX_mii0_txd3	Mandatory	MII0 and MII1 transmit data3		
prX_mii1_txd3				
prX_mii0_txd2	Mandatory	MII0 and MII1 transmit data2		
_prX_mii1_txd2				
_prX_mii0_txd1	Mandatory	MII0 and MII1 transmit data1		
_prX_mii1_txd1				
_prX_mii0_txd0	Mandatory	MII0 and MII1 transmit data0		
_prX_mii1_txd0				
prX_mii0_rxd3	Mandatory	MII0 and MII1 receive data3		
prX_mii1_rxd3				
prX_mii0_rxd2	Mandatory	MII0 and MII1 receive data2		
prX_mii1_rxd2				
prX_mii0_rxd1	Mandatory	MII0 and MII1 receive data1		
prX_mii1_rxd1				
prX_mii0_rxd0	Mandatory	MII0 and MII1 receive data0		
prX_mii1_rxd0	Manalatanı	MII0 and MII1 TX enable		
prX_mii0_txen	Mandatory	MITU and MITT TX enable		
prX_mii1_txen prX_mii_mr0_clk	Mandatory	MII0 and MII1 receive clock		
prX mii mr1 clk	INIALIUALUI Y			
prX_mii0_rxdv	Mandatory	MII0 and MII1 RX data valid		
prX_mii1_rxdv	Internution y			
prX_mii0_rxer	Mandatory	MII0 and MII1 RXERR		
prX_mii1_rxer	inalitatol y			
prX_mii0_rxlink	Optional	For fast link loss detection - connect		
prX_mii1_rxlink		LED_LINK/LED_SPEED from PHY here and		
		enable MLINK mode in MDIO		
PRU-ICSS PTCP Clocks (Net	work clock synchroni			
prX_edc_sync0_out	Recommended	SYNC0 out - Time synchronized OUT0		
p000_091100_000	(for PTCP capable			
	slaves)			
	510,000			

Table 3 PRU-ICSS signals required for PROFINET functionality

www.ti.com

Software

PROFINET IRT slave firmware, driver, examples and associated documentation for Sitara Processors is available from http://www.ti.com/tool/PRU-ICSS-PROFINET. PROFINET IRT software runs on top of TI Processor SDK

More details can be found here

http://processors.wiki.ti.com/index.php/Industrial_Protocol_Package_Software_Developer_Guide http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Software_Developer_Guide http://processors.wiki.ti.com/index.php/Processor_SDK_Linux_Software_Developer's_Guide

Certification Information

Certification was done on <u>AM335x ICEv2</u> board using PROFINET IRT firmware build (00.0A.0C) and Molex PROFINET IRT stack 5.0.4.0 during June 2015.

Certificate		
PROFIBUS Nutzero	rganisation e.V. grants to	
	nts Deutschland GmbH 85356 Freising, Germany	
the Certificate No: 2	Z10659 for the PROFINET IO Device:	
Model Name: Revision: Identnumber: GSD:	AM3359 Profinet Evaluation Kit SW/FW: T 1.0.2; HW: 1 0x0127; 0x0310	
DAP:	GSDML-V2.31-MOLEX_TI-AM335xProfinet_SDK-20150609.xm DIM 1: Molex-TI sample device, 0x1010 0000	
This certificate confirms	that the product has successfully passed the certification tests with the following scope:	
PNIO_Version Conformance Cl	V2.32 lass C Optional Features: IRT	
Netload Class	III	
PNIO_Tester_Ve	ersion V2.3.5 SIEMENS AG, Fürth, Germany PN346-1, IRT086-1	
	ted according to the document: g and certification of PROFIBUS and PROFINET products".	
"Framework for testing	Board of PROFIBUS Nutzerorganisation e. V.	
"Framework for testing	re placed in circulation by June 19, 2018 the certificate is valid for life.	
"Framework for testing For all products that an	re placed in circulation by June 19, 2018 the certificate is valid for life.	

References

- 1. PROFINET on Sitara Processors spry252b
- 2. Industrial Communications Solution Guide slyy050b
- 3. PROFINET IRT Communications Development Platform
- 4. Certified PROFINET IRT v2.3 Device With 1-GHz ARM Application Processor tiduak0
- 5. Molex PROFINET IRT Stack

www.ti.com

Acronyms

Acronym	Description
PRUSS	Programmable RealTime Unit Sub System
PRU-ICSS	Programmable RealTime Unit - Industrial Communication Sub System -
	PRUSS with industrial communication support
IRT	Isochronous Real Time
PTCP	Precision Transparent Clock Protocol
DL	Datalink Layer
ISR	Interrupt Service Routine
AL	Application Layer
DCP	Discovery and basic Configuration Protocol
IOCR	IO Communication Relation
PNIO	PROFINET Input Output
FDB	Filtering Data Base
ASIC	Application Specific Integrated Circuit
EDMA	Enhanced Direct Memory Access
MDIO	Management Data Input Output
MII	Media Independent Interface
OS	Operating Systems

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	<u>e2e.ti.com</u>
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated