

 1

Sensored FOC Control with SMO for the
Hercules RM46

Version 1.0 Motor Solutions

Abstract

This application note presents a solution for sensored FOC with SMO control of Brushless permanent
magnet motors using a Hercules RM46x microcontroller. The RM46 family of MCUs are designed for
safety critical applications in the transportation, medical and industrial sectors. They meet safety
standards such as IEC61508/SIL3 and are well suited for high performance real-time, computationally
intensive and cost constrained control applications.

A complete 3 phase motor control solution is presented below: control structures, power hardware
topology, control hardware and remarks on performance efficiency can be found in this document.

This application note covers the following:

 Hardware and software setup of the sensored FOC control with SMO project.
 Step by step instructions to get a brushless PM motor running in different control and commutation

modes.

Table of Contents

Introduction ... 2

Directory Overview .. 2

System Overview .. 3

Hardware Configuration .. 8

Software Setup Instructions to Run RM46L852_sensored_speed_smo Project .. 10

Running/Modifying the Project .. 13

System Build ... 19

 2

Introduction

The economic constraints and new standards legislated by governments place increasingly stringent
requirements on electrical systems. New generations of equipment must have higher performance
parameters such as better efficiency and reduced electromagnetic interference. System flexibility must be
high to facilitate market modifications and to reduce development time. All these improvements must be
achieved while, at the same time, decreasing system cost.

Brushless motor technology makes it possible to achieve these specifications. Such motors combine high
reliability with high efficiency, and for a lower cost in comparison with brush motors. This application note
describes the use of a Brushless Permanent Magnet motor. The control algorithm presented here in,
allows for high performance speed and torque control of motors with a sinusoidal Back EMF waveform
shape. Permanent magnet synchronous machines with sinusoidal Back-EMF and sinusoidal stator
currents are widely used due their smooth torque output, low inertia and high energy efficiency
characteristics.

Directory Overview

Below is the MotorWare directory structure for the main files in the project:

Fig 1 MotorWare Directory Structure

 3

Below is the MotorWare directory structure for the driver files in the project:

Fig 2 Driver Files Directory Structure

Below is the MotorWare directory structure for the module files in the project:

Fig 3 Module Files Directory Structure

System Overview

This document describes the “C” real-time control framework used to demonstrate Field Oriented Control
(FOC) of brushless permanent magnet motors. The “C” framework is designed to run on the Hercules
RM46 based controllers in Code Composer Studio.

 4

The framework uses the following modules1:
Macro Names Explanation
RAMPGEN Ramp Generator

TPS/ECMP Power Supply Controller and Serial Interface

QEP Encoder Position Measurement (sensor based electrical angle)

SPEED_FR Speed Measurement (based on encoder electrical angle)

CLARKE Clarke Transform

PARK Park Transform

RAMP_CNTL Ramp Controller (speed command slew rate limiter)

PID PID Controller

IPARK Inverse Park Transform

SVGEN Space Vector Generator

VOLT_CALC Voltage Estimator (phase voltage applied to motor)

SMOPOS
Sliding Mode Observer Position Estimator (for sensorless electrical
angle)

SPEED_EST Speed Measurement (based on SMO electrical angle)

DLOG Data Logger
1 Please refer to pdf documents in motor control folder explaining the details and theoretical background of each module

In this system, sensored and sensorless Field Oriented Control (FOC) of brushless permanent magnet
motors will be experimented with and the performance of the speed controller will examined. The motor is
driven by using the DRV8301-EVM board with the DRV8301 gate driven IC and external bridge stage.
The Hercules RM46x control card is used to generate three pulse width modulation (PWM) signals for
high side gate drive. The motor phase currents and DC bus voltage are measured and sent to the RM46x
via analog-to-digital converters (ADCs).

The sensored_speed_smo project has the following properties:

C Framework

System Name
Flash Memory Usage

RM46x
RAM Memory Usage

RM46x

RM46L852_sensored_speed_smo 25984 bytes 5836 bytes

 5

CPU Utilization of Sensored FOC Control with SMO

Name of Modules *
Number of Cycles

(RTI Counter Clock)
RAMPGEN 25√
QEP 78
SPEED_FR 69
CLARKE 11
PARK 31
RAMP_CNTL 22
PID (x3) 88 (x3)
IPARK 31
SVGEN 48
VOLT_CALC 34
SMOPOS 105
SPEED_EST 66
DLOG 27

Total Number of Cycles
(RTI Counter Clock @ 40 MHz) 786
Total Number of Cycles CPU 3144 **
CPU Utilization @ 160 MHz 39.3%

* The modules are defined in the header files as inline functions.
** At 20 kHz ISR freq.
√ Not included in the speed loop.

System Features

Development /Emulation Code Composer Studio v5.2.1 (or above) with Real Time debugging

Target Controller Hercules RM46x

PWM Frequency 20kHz PWM (Default)

PWM Mode PWM control of high side gates only (i.e. three independent signals). Low
side is complementary to high side gates with programmable dead-band.

Interrupts adc1Group1Interrupt()
adc1Group2Interrupt()

Peripherals Used ePWM – PWM Generation
eQEP – Quadrature Encoder Read
SPI – Gate Driver and Control Card Power Supply Configuration
GIO – Fault diagnostics, Gate driver enable/disable
RTI – Time base for delays and profiling
ADC – Motor phase currents and DC bus voltage

 6

The overall system implementation of brushless 3-ph permanent magnet motor control using sensored
FOC with SMO is depicted in Fig.4.

 Fig 4 A 3-ph Brushless permanent magnet drive implementation

 7

The software flow is described in the Figure 5 below.

Fig 5 Software Flow Chart

*The DRV8301 gate driver IC settings such as current amplifier gains, PWM mode and diagnostic
reporting are configured via SPI interface. The TPS65381 power supply on the control card is also
configured using the SPI. During the driver module initialization, the TPS/ECMP module is initialized.
The RTI timer module is used to count down a 50 mS delay for DRV initialization. At this point the gate
driver enable signal (EN_GATE) of the DRV8301 IC is asserted. Once again, the RTI timer module is
used to count down a 50 mS delay for the gate driver power up (i.e. charge pumps, internal regulator,

 8

current amplifiers). After initialization of the remaining driver and software modules, SPI commands are
used to configure the DRV8301 IC.

Hardware Configuration (DRV8301-EVM)

Please refer to the DRV8301-EVM How to Run Guide and HW Reference Guide found at:

sw\boards\drv8301kit_revD\docs

for an overview of the kit’s hardware and steps on how to setup this kit. Some of the hardware setup
instructions are captured below for quick reference.

HW Setup Instructions

1. Unpack the DIMM style controlCARD.

2. Place the controlCARD in the connector slot of J1. Push vertically down using even pressure from
both ends of the card until the clips snap and lock. (to remove the card simply spread open the
retaining clip with thumbs).

3. Make sure the DRV8301 control card +5V source jumper (JP2) is installed. Refer to the DRV8301
Setup Guide.

4. Connect a USB cable to connector J101 on the RM46. This will enable isolated JTAG emulation to
the Hercules RM46x device. The power (POW) LED should turn on. If the included Code Composer
Studio is installed, the drivers for the onboard JTAG emulation will automatically be installed. If this is
your first time connecting to the control card set all positions of DIP switch SW1 to off. This will
disable the TPS65381 watch dog.

5. Connect the encoder feedback cable to connector J4.

6. The motor phases R, S, T should be connected to the terminals OUTA, OUTB and OUTC
respectively. The shield (drain) wire should get connected to the ground terminal. For more details on
motor wiring please refer to the datasheet provided with your motor.

7. Connect a 24V power supply to J25(+ terminal) and J26(- terminal) of the DRV8301-EVM (refer to
Figure 6). Now LED1 and LED3 should turn on. Notice the control card LEDs would light up as well
indicating the control card is receiving power from the board.

The included power supplies are only capable of 2.5A maximum and have been shown to drop
voltage and may not provide enough current during rapid speed or load changes, especially with
motors that can draw more than 2.5A When doing full performance evaluation please use a power
supply that more than meets the demands of the motor and application use.

 9

 10

Fig. 6 DRV8301-EVM Connections and Settings

 11

Software Setup Instructions to Run RM46L852_sensored_speed_smo Project

For information on getting started with Code Composer Studio v5, use the CCSv5 Getting Started Guide
online at http://processors.wiki.ti.com/index.php/CCSv5_Getting_Started_Guide. The Getting Started
Guide details the process to download, install, and run Code Composer Studio v5. At the TI wiki
downloads page, ensure to select CCSv5 build 5.2.1.00018 or later for installation (refer to Figure 7
below).

Fig 7 CCSv5 release and build information

When CCSv5 has been downloaded, installed, and is running, the sensored_speed_smo project can be
imported into the desired workspace. In CCS, go to Project->Import Existing CCS/CCE Eclipse Project.
Browse to the project path below:
sw\solutions\sensored_speed_smo\boards\drv8301kit_revD\Hercules\RM46L852\projects\ccs5\pro
ject01 in your MotorWare directory. The sensored_speed_smo project should be discovered. Make sure
the checkbox next to the project title is selected (refer to Figure 8 below). Click on Finish to import the
project into your workspace.

 12

Fig 8 Importing a Project

Right click on the project name and select “Properties”. Select the “General” tab in the left pane of the
properties window (refer to Figure 9 below). Confirm that the compiler version selected is 5.0.0 or later.
Click “ok” to close the properties window.

 13

Fig 9 Compiler version selection

In the project explorer window, right click on the project name and select “Clean Project” then “Build
Project”. Once the build completes, launch a debug session (Run->Debug) to load the code into the MCU.
Make sure you are connected to the Hercules RM46x device (Run->Connect Target) and load the

program (Run->Load->Load Program). Press the Run button to start code execution on the target.

While in Debug mode, click on View->Expressions. This should bring up the expressions tab of the CCS
Watch Window (if not already open). Right Click inside the expressions window and select “Import”.
Navigate to the path:
sw\solutions\sensored_speed_smo\boards\drv8301kit_revD\Hercules\rm46l852\projects\ccs5\proj
ect01 and choose "RM46_DRV8301_GUI_Watch_Window_Variables.txt". You should now have a watch

window that looks like Figure 10. Click on the Continuous Refresh button on the top right corner of
the watch window. Note that Figure 10 only shows a partial list of the variables within the gui object
(gGUIObj).

 14

Fig 10 Watch Window Setup

Make sure you are connected to the RM46x device and that run button has been pressed.

Setup time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location:
sw\solutions\sensored_speed_smo\boards\drv8301kit_revD\Hercules\rm46l852\projects\ccs5\proj

ect01. Click on Continuous Refresh button on the top right corner of the graph tab to enable periodic
capture of data from the microcontroller.

 15

Running/Modifying the Project

TPS65381 Safety Critical Power Supply

The TPS65381 regulator powers the RM46 control card. The first time you connect to the processor make
sure all positions of the SW1 DIP switch are set to the off position to disable the watchdog on the
TPS65381. When the TPS65381 watch dog is used the watch dog must be disabled within 600ms of
power on or it will have to be serviced. If the TPS65381 is enabled and the software flashed on the
control card does not disable the watch dog within 600ms you will not be able to connect to the control
card. The provided software project needs the TPS65381 to be enabled to run correctly, after connecting
to the control card for the first time, load the compiled software, disconnect from the target in CCS, power
down the system, place positions 1 and 4 of DIP switch SW1 into the on position and re-power the
system.

When the TPS65381 is enabled the supplied software will detect its presence and automatically disable
the watchdog within the first 600ms of power up. The software will then wait for user input. Because the
TPS65381 controls the enable signal of the DRV8301 gate driver the system will wait for the user to
enable the gGUIObj.TPSFlag in the watch window. Enabling this Flag allows the software to utilize the
SPI port to enable the TPS65381 watchdog, this will activate the DRV8301 powering up the motor
inverter. The motor inverter cannot be powered without enabling the watchdog. It should be noted that
once the watchdog is enabled it has to be serviced over the SPI regularly or power to the processor will
be disabled. The software automatically handles the servicing, but if you halt the code execution in CCS
or set a break point the TPS65381 will power cycle and you will lose your connection to the processor. If
you would like to be able to set break points or halt the processor disable the TPS65381 by setting all
positions on DIP switch SW1 to OFF and commenting out lines 89-98 in drv.c.

System Calibration Sequence

Once the run button has been pressed after following the steps in the preceding section, the system is
ready for user commands. During run time, the motor can be enabled or disabled using the
gGUIObj.EnableFlg variable (0 = Disabled, 1 = Enabled). The default state of the variable is 0 (i.e.
disabled).

The calibration routine calculates the offset (in encoder ticks) between the encoder index position and
motor zero pole pair position. This is a necessary step, in order to align the direct and quadrature current
vectors being applied to the motor. In the software, the key variables to be adjusted/ observed for system
calibration are summarized below.

 gGUIObj.EnableFlg -> for enabling/ disabling the motor.
 gGUIObj.calibrateEnable-> for enabling/disabling the motor to encoder index calibration routine.
 gGUIObj.CommAngleOffset-> for observing the calculated encoder index angle offset.
 sdrv.commutationMode-> the motor commutation mode.

To run the calibration routine, complete the following:

1. Make sure the program is currently running on the device. If so, also assure that
“gGUIObj.EnableFlg” and “gGUIObj.CommAngleOffset” are set to 0.

2. Set “gGUIObj.EnableFlg” to 1.

3. Set “gGUIObj.calibrateEnable” to 1. The motor should start rotating.

4. Once the motor has stopped rotating. Set “gGUIObj.calibrateEnable” to 0. This concludes the
calibration routine. gGUIObj.CommAngleOffset should now have a value in the range of160 -
180.

 16

The key steps can be explained as follows:

 Setting “gGUIObj.EnableFlg” to 1 starts the main interrupt service routine for FOC control, ADC
sampling of motor phase currents and DC bus voltage as well as generation of PWM output. Shown in
Figure 11, is the expected Scope output (PWM signals) seen on pins 25, 26 and 28 of connector J5. If
no change is observed, check to make sure continuous refresh is pressed.

 Upon setting “gGUIObj.calibrateEnable” to 1, the motor starts ramp commutating to determine the index
position of the encoder. When the index is discovered, the rotor is locked in position to read in the offset
between the encoder index and zero pole pair position. At this point “drv.commutationMode” should be
equal to “LOCK_ROTOR_MODE”.

 The offset observed is stored into the controller when “gGUIObj.calibrateEnable” is set to 0. The
updated value is reflected in “gGUIObj.CommAngleOffset”. The system is now ready for motor control
commands.

The calibration routine needs to be executed only once during motor bring up. If the commutation angle
offset is known, it can be used to directly update “drv.calibrateAngle”. In this case calibration is no longer
necessary.

Fig 10 PWM output on pins 25,26 and 28 of connector J5

Motor Control Modes

To change the mode that the motor is running, you will have to modify the “gGUIObj.CtrlType” variable in
the Watch Window. The default value is 0, which represents disabled mode. The possible values of
CtrlType are described below:

 17

Value Mode

0 Disabled

1 Closed loop Torque Control

2 Closed loop Speed Control

It is important that the motor be in disabled mode first (“gGUIObj.CtrlType” equal to 0) before switching to
any other control mode. When the control mode changes from disabled to torque control or speed control
mode, the motor ramp commutates to find the encoder index position. After this index find routine, the
system accepts torque or speed commands from the watch window.

Torque Control Mode

In the software, the key variables to be adjusted/ observed are summarized below.

 gGUIObj.CtrlType: for changing motor control mode.
 gGUIObj.IqCmd: for changing the torque output of the motor.
 drv.commutationMode-> the motor commutation mode.
 gGUIObj.CommAngleOffset-> the calculated/ applied encoder index angle offset.
 gGUIObj.GraphInput-> to modify graphing variables fed to data logger module.

To run in torque control mode, complete the following:

1. Make sure the program is currently running on the device. If so, also assure that
“gGUIObj.EnableFlg” is set to 0.

2. Verify that “gGUIObj.CtrlType” is set to 0, for disabled Mode.

3. Set “gGUIObj.EnableFlg” to 1.

4. Check to make sure “gGUIObj.CommAngleOffset” is set to the correct value. If going through
startup, complete the system calibration routine described above. Alternatively,
“drv.calibrateAngle” can be set to a known value manually.

5. Verify that “gGUIObj.IqCmd” is set to 0.0, for zero output torque request and that
“drv.commutationMode” is set to “ENCODER_COMMUTATION_MODE”.

6. Set “gGUIObj.CtrlType” to 1 for torque control mode.

7. Set “gGUIObj.IqCmd” (quadrature current vector) to 0.06. At this point the motor should start
spinning. Adjust “gGUIObj.IqCmd” for desired motor toque output. Note that “gGUIObj.IdCmd”
(i.e. the direct current vector) should always be set to 0.0.

The key steps can be explained as follows:

 After startup, when the control mode is changed from disabled to torque control, the motor ramp
commutates to find the encoder index. The duration of ramp commutation depends on the position of
the rotor.

 At this point, “gGUIObj.IqCmd” can be used to specify the reference current command for the
quadrature component (i.e. torque component) PI controller. Note that the speed is not controlled in this

 18

step and a non-zero torque reference will keep increasing the motor speed. Therefore, the motor should
be loaded using a brake/generator (or manually if the motor is small enough) after closing the loop.

 Set “gGUIObj.GraphInput” to 2 to enable graphing of current control mode variables. Verify the DC bus
voltage (real world value, unit Volt) and PWM output (per unit) waveforms. Refer to Figure 11.

 Bring the system to a safe stop by setting “gGUIObj.IqCmd” and “gGUIObj.CtrlType” to 0. Take the

controller out of Continuous Refresh mode and close all graph windows before attempting to reset.

 If a fault condition is encountered, “gGUIObj.CtrlType” and “gGUIObj.IqCmd” are automatically reset to
0. The gate driver fault indication LED6 on the DRV8301 will be asserted. The variable
“gGUIObj.RstFault” can be used to reset the fault (by setting to a value of 1). The shipped motor has a
maximum operating voltage range greater than 50VDC and a back EMF rating of 4.6 V/krpm. When
using a 24 Volt brick power supply, the maximum speed of the motor is physically limited. Operating the
motor unloaded in torque control mode may therefore cause a fault condition to occur.

 19

Fig 11 Graph Windows for Torque Control Mode (a) Motor torque output, (b) Total motor Current, (c) DC bus
measurement (Volt) and (d) PWM1 output (pu)

Speed Control Mode

In the software, the key variables to be adjusted/ observed are summarized below.

 gGUIObj.CtrlType: for changing motor control mode.
 gGUIObj.SpdCmd: for changing the speed output of the motor.
 drv.commutationMode-> the motor commutation mode.

 20

 gGUIObj.CommAngleOffset-> the calculated/ applied encoder index angle offset.
 gGUIObj.GraphInput-> to modify graphing variables fed to data logger module.
 drv.currentSpd-> per unit measured speed of motor.
 gGUIObj.SwitchOverSpdFwd -> increasing speed encoder/smo switchover threshold
 gGUIObj.SwitchOverSpdRev -> decreasing speed encoder/smo switchover threshold
 gGUIObj.SpeedEncoder-> encoder based speed measurement in RPM
 gGUIObj.SMO-> sliding mode observer based speed measurement in RPM
 gGUIObj.FaultEncoder-> encoder fault status

To run in speed control mode, complete the following:

1. Make sure the program is currently running on the device. If so, also assure that
“gGUIObj.EnableFlg” is set to 0.

2. Verify that “gGUIObj.CtrlType” is set to 0, for disabled Mode.

3. Set “gGUIObj.EnableFlg” to 1.

4. Check to make sure “gGUIObj.CommAngleOffset” is set to the correct value. If going through
startup, complete the system calibration routine described above. Alternatively,
“drv.calibrateAngle” can be set to a known value manually.

5. Verify that “gGUIObj.SpdCmd” is set to 0.0, for zero output speed request and that
“drv.commutationMode” is set to “ENCODER_COMMUTATION_MODE”.

6. Set “gGUIObj.CtrlType” to 2 for speed control mode.

7. Set “gGUIObj.SpdCmd” to 0.5. At this point the motor should start spinning. Adjust
“gGUIObj.SpdCmd” for desired motor speed output. Verify that “drv.commutationMode” is set to
“SENSORLESS_COMMUTATION_MODE”.

The key steps can be explained as follows:

 After startup, when the control mode is changed from disabled to speed control, the motor ramp
commutates to find the encoder index. The duration of ramp commutation depends on the position of
the rotor.

 At this point, “gGUIObj.SpdCmd” can be used to specify the reference speed command for the speed
PI controller. If the measured speed (pu) of the motor “drv.currentSpd” is greater than the forward
speed threshold “gGUIObj.SwitchOverSpdFwd”, the commutation mode will automatically be switched
to sensorless commutation mode. If “drv.currentSpd” is less than the reverse speed threshold
“gGUIObj.SwitchOverSpdRev” the commutation mode is changed back to encoder commutation mode.

 Set “gGUIObj.GraphInput” to 1 to enable graphing of speed control mode variables. Verify the motor
speed feedback (pu) and SMO based electrical angle (pu) waveforms (Refer to Figure 11).

 While “drv.commutationMode” is set to “SENSORLESS_COMMUTATION_MODE”, the encoder
feedback cable can be unplugged from connector J4. The variable “gGUIObj.FaultEncoder” will register
an encoder fault. The motor will continue to operate until the speed measurement falls below the
reverse direction speed threshold (“gGUIObj.SwitchOverSpdRev”). When this happens the motor is
disabled. If “gGUIObj.CtrlType” is now set to speed control mode, the encoder index pulse will not be
detected. Once again the motor is put back in disabled mode. Normal speed control operation resumes
when the encoder is plugged back in.

 21

 Bring the system to a safe stop by setting “gGUIObj.SpdCmd” and “gGUIObj.CtrlType” to 0. Take the

controller out of Continuous Refresh mode and close all graph windows before attempting to reset.

Fig 11 Graph Windows for Speed Control Mode (a) Motor speed feedback (pu), (b) Phase A current (pu), (c)
SMO based electrical angle and (d) Encoder based electrical Angle

 22

