

TouchSense® Android Developer Kit for

DRV2605

Programming Guide

Version 1.1

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page ii

©2012 Immersion CorporationImmersion Confidential Information – Unauthorized Disclosure, Copying and Distribution Strictly Prohibited

Contents

1 Introduction ... 1

2 Solution Overview .. 2

3 Using the Java API ... 4

3.1 Developing Your Application .. 4

3.1.1 Initializing the Java API .. 4

3.1.2 Terminating the Java API ... 4

3.1.3 Playing Single Haptic Effects .. 5

3.1.4 Playing Timed Haptic Effects ... 5

3.1.5 Playing Application-Defined Patterns of Effects 5

3.1.6 Stopping Playing Effects ... 6

3.1.7 Enabling and Disabling Audio-to-Haptic ... 6

3.1.8 Running Diagnostic ... 7

3.1.9 Retrieving DRV260x Chip Revision ... 7

3.1.10 Retrieving DRV260x Chip ID ... 7

3.2 Building Your Application .. 7

3.3 Testing and Debugging Your Application ... 8

3.4 Deploying Your Application ... 8

4 Using the C API .. 9

4.1 Developing Your Application .. 9

4.1.1 Initializing the C API ... 9

4.1.2 Terminating the C API ... 10

4.1.3 Playing Single Haptic Effects ... 10

4.1.4 Playing Timed Haptic Effects .. 10

4.1.5 Playing Application-Defined Patterns of Effects 11

4.1.6 Stopping Playing Effects .. 11

4.1.7 Enabling and Disabling Audio-to-Haptic .. 11

4.1.8 Running Diagnostic .. 12

4.1.9 Retrieving DRV260x Chip Revision .. 12

4.1.10 Retrieving DRV260x Chip ID .. 13

4.2 Building Your Application ... 13

4.3 Testing and Debugging Your Application .. 13

4.4 Deploying Your Application .. 14

Appendix A... 15

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page iii

©2012 Immersion CorporationImmersion Confidential Information – Unauthorized Disclosure, Copying and Distribution Strictly Prohibited

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 1 of 21

©2012 Immersion Corporation

1 Introduction

Immersion’s TouchSense technology enables haptic feedback for mobile

computing devices, mobile handsets, touch screens, touch surfaces, and

buttons.

Haptic feedback, also known as tactile feedback, touch feedback, and vibro-

tactile feedback, allows for a more intuitive, engaging, and natural

experience for the user. Haptics can improve the user interface by making on-

screen buttons feel like they press and release; by improving the usability

of sliders, scrolling lists, and list end stops; and by providing attention-

getting tactile components for alarms and error conditions. TouchSense

tactile sensations combine well with audio feedback and graphics to create a

more immersive, complete, and intuitive multisensory experience.

The TouchSense Android Developer Kit for DRV2605 provides the components that

developers need in order to benefit from the haptic capabilities present in

TouchSense-enabled mobile handsets. The Developer Kit includes header files,

libraries, sample application code, and documentation to assist application

developers in using the TouchSense Solution for DRV2605.

This Programming Guide provides detailed information on how to use

Immersion’s Haptic Java API and Haptic C API, which are part of the

TouchSense Solution for DRV2605. This document will assist application

developers in working through the various software development

considerations.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 2 of 21

©2012 Immersion Corporation

2 Solution Overview

The TouchSense Solution for DRV2605 enables haptics in mobile handsets.

TouchSense implementations add tactile feedback as illustrated in Figure 1. A

user interacts with the device and tactile sensations (outputs) are generated

by TouchSense technology. Tactile output is produced through actuators,

electronics, mechanical mounting, and software.

Figure 1: TouchSense Solution for DRV2605 Architecture (typical)

 Mobile Handset – an easily-portable communication device.

 Host or Embedded Application – the host or embedded computer receives

input from a user or other source. If the host or embedded application

determines that tactile feedback is appropriate, it commands the

TouchSense controller to send a TouchSense effect or vibration file to

the actuator hardware. Applications normally use software components of

the TouchSense Solution for DRV2605 to handle the details of

communicating with the TouchSense controller.

 TouchSense Controller – Comprised of a tactile feedback microprocessor

incorporating Immersion proprietary control firmware and the actuator

drive circuit that converts host or embedded computer commands into

commands to drive the actuator hardware in playing the tactile effect.

 Actuator Hardware* – Off-the-shelf components that generate vibration

of the device.

*These components must be purchased or manufactured by other providers.

Immersion does not supply these components.

The software components of the TouchSense Solution for DRV2605 support

Android™ applications written in Java, and Windows® applications written in

C. Windows is supported for evaluation purposes and is not normally a target

platform for the Solution. Figure 2 gives an overview of the Solution.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 3 of 21

©2012 Immersion Corporation

Figure 2: TouchSense Solution for DRV2605 Overview

Android applications written in Java use a Haptic Java API that is

implemented on top of the Haptic C API.

C applications call functions in the Haptic C API to command the hardware to

play haptic effects. The C API has the following desirable properties:

 The Haptic C API handles calls from multiple applications. The C API

runs in each application’s process space.

 The Haptic C API is platform-independent. Applications use the C API

the same way on different platforms.

C API

Transport

Drivers

C Applications

Firmware

Electronics

Actuator

I2C

Java Applications

Java API

Software

Inertial Controller

DRV 2605

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 4 of 21

©2012 Immersion Corporation

3 Using the Java API

The Haptic Java API implemented by the Haptic class uses the Haptic C API.

Every function in the C API is reflected by a public static method in the

Java API. To use the Java API:

 Call the initialize method once, typically when your application

initializes.

 Call the playEffect method whenever you want to play an effect from

your application.

 Call the playTimedEffect method whenever you want to play a pre-defined

effect from your application, for a specified duration.

 Call the playEffectSequence method whenever you want to play an

application-defined sequence of effects from your application.

 Call the terminate method once, typically when your application gets

destroyed.

Whenever you start playing a new haptic effect, if there is a previous effect

still playing, the old effect stops playing before the new one starts. If you

want to stop any playing effect without starting a new one, call the

stopPlayingEffect method.

3.1 Developing Your Application

3.1.1 Initializing the Java API

Applications must call initialize, typically during application

initialization, before calling any other Haptic Java API method. The

initialize method establishes communication with the haptic hardware.

The code below shows how an application can call initialize to prepare the

Haptic Java API for use.

 public void myHapticInitialize()

 {

 try

 {

 Haptic.initialize();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.2 Terminating the Java API

Applications should call terminate, typically during application destruction,

after calling all other Haptic Java API methods. The terminate method frees

resources such as dynamically-allocated memory, and releases any connection

to the haptic hardware.

The code below shows how an application can call terminate.

 public void myHapticTerminate()

 {

 try

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 5 of 21

©2012 Immersion Corporation

 {

 Haptic.terminate();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.3 Playing Single Haptic Effects

The Haptic Java API provides a variety of effects that applications can

trigger by calling playEffect. Refer to Appendix A for a description of the

available effects.

The code below shows how an application can call the playEffect method.

 public void myHapticPlayEffect(int nEffect)

 {

 try

 {

 Haptic.playEffect(nEffect);

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.4 Playing Timed Haptic Effects

The Haptic Java API provides applications with the ability to play a pre-

defined effect for a desired duration, by calling playTimedEffect.

The code below shows how an application can call the playTimedEffect method.

 public void myHapticPlayTimedEffect(int Duration)

 {

 try

 {

 Haptic.playTimedEffect(nDuration);

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.5 Playing Application-Defined Patterns of Effects

The Haptic Java API allows applications to play sequences of effects.

Applications can set up a buffer containing the desired effect indices along

with the desired delays between adjacent effects. The inter-effect delays are

specified in multiples of 10ms. If the 7th bit of the byte is set to 1, that

element in the buffer will be treated as a delay element. Beware of the

following limitations:

 Maximum number of effects and delays in a sequence: 8

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 6 of 21

©2012 Immersion Corporation

Refer to Appendix A for a description of the available effects that can be

combined into sequences.

The code in below shows how an application can call playEffectSequence to

play a pattern of two effects.

 public void myHapticPlayEffectSequence2(int nEffect0,

 int nDelay0,

 int nEffect1,

 int nDelay1)

 {

 byte[] aBuffer = { nEffect0, nDelay0, nEffect1, nDelay1 };

 try

 {

 Haptic.playEffectSequence(aBuffer, aBuffer.length);

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.6 Stopping Playing Effects

The code below shows how an application can call stopPlayingEffect to stop

any effect that may be playing.

 public void myHapticStopPlayingEffect()

 {

 try

 {

 Haptic.stopPlayingEffect();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.7 Enabling and Disabling Audio-to-Haptic

The code below shows how an application can call isAudioHapticEnabled and

setAudioHapticEnabled to check, enable or disable Audio-to-Haptic.

 public void myHapticToggleAudioToHaptic()

 {

 try

 {

 if (!Haptic.isAudioHapticEnabled())

 {

 Haptic.setAudioHapticEnabled(true);

 } else

 {

 Haptic.setAudioHapticEnabled(false);

 }

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 7 of 21

©2012 Immersion Corporation

3.1.8 Running Diagnostic

The code below shows how an application can call runDiagnostic to tell

DRV2605 chip to perform diagnostic on the actuator.

 public void myHapticRunDiagnostic()

 {

 int result;

 try

 {

 result = Haptic.runDiagnostic();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.9 Retrieving DRV260x Chip Revision

The code below shows how an application can call getChipRevision to tell the

driver to retrieve the revision number of the chip.

 public void myHapticGetChipRevision()

 {

 int revision;

 try

 {

 revision = Haptic.getChipRevision();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.1.10 Retrieving DRV260x Chip ID

The code below shows how an application can call getDeviceID to tell the

driver to retrieve the ID of the chip.

 public void myHapticGetChipRevision()

 {

 int device;

 try

 {

 device = Haptic.getDeviceID();

 }

 catch (RuntimeException x)

 {

 // handle error, application-specific

 }

 }

3.2 Building Your Application

The Eclipse IDE automatically rebuilds your application if necessary prior to

running it.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 8 of 21

©2012 Immersion Corporation

3.3 Testing and Debugging Your Application

All methods of the Haptic Java API report errors by throwing a

RuntimeException. The detail message of the RuntimeException is a string

representation of the Haptic C API error code; for example, “HAPTIC_E_FAIL”.

Table 1 describes the detail messages.

Table 1: Haptic Java API RuntimeException Detail Messages

Detail Message Description

“HAPTIC_E_FAIL”
General error not covered by more specific

detail messages.

“HAPTIC_E_INTERNAL”

Internal error. Should not arise. Possibly due

to a programming error in the Haptic C API or

Haptic Transport.

“HAPTIC_E_SYSTEM” System error. A system call returned an error.

“HAPTIC_E_MEMORY”
Memory allocation error. Unable to allocate

required memory.

“HAPTIC_E_ARGUMENT” Null or invalid argument.

“HAPTIC_E_ALREADY_INITIALIZED”

The Haptic Java API is already initialized.

The application has already called the

initialize method without an intervening call

to the terminate method.

“HAPTIC_E_NOT_INITIALIZED”

The Haptic Java API is not initialized. The

application must first call the initialize

method.

“HAPTIC_E_UNSUPPORTED”

The Haptic Java API is not installed on this

device. The application will not be able to

play any effect.

3.4 Deploying Your Application

Because the Haptic Java API and dependent libraries may be tailored to

specific devices, those libraries should already be pre-installed by the

manufacturer on supported devices; therefore, you should not distribute any

Java API libraries with your application.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 9 of 21

©2012 Immersion Corporation

4 Using the C API

To use the Haptic C API:

 Call the ImHapticInitialize function once, typically when your

application initializes.

 Call the ImHapticPlayEffect function whenever you want to play an

effect from your application.

 Call the ImHapticPlayEffectSequence function whenever you want to play

a sequence of effects from your application.

 Call the ImHapticGetDevID function whenever you want to get the ID of

the current chip.

 Call the ImHapticGetChipRev function whenever you want to get the

revision of the current chip.

 Call the ImHapticRunDiagnostic function whenever you want to get the

chip to perform diagnostic procedures.

 Call the ImHapticTerminate function once, typically when your

application terminates.

Whenever you start playing a new haptic effect, if there is a previous effect

still playing, the old effect stops playing before the new one starts. If you

want to stop any playing effect without starting a new one, call the

ImHapticStopPlayingEffect function.

The following sub-sections provide additional information about using the

Haptic C API, including examples of calling each function, and best-practice

suggestions to aid in development.

4.1 Developing Your Application

4.1.1 Initializing the C API

Applications must call ImHapticInitialize, typically during application

initialization, before calling any other Haptic C API function.

ImHapticInitialize establishes communication with the haptic hardware.

The code below shows how an application can call ImHapticInitialize to

prepare the Haptic C API for use.

void MyHapticInitialize()

{

 HapticResult res;

 res = ImHapticInitialize();

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 10 of 21

©2012 Immersion Corporation

4.1.2 Terminating the C API

Applications should call ImHapticTerminate, typically during application

termination, after calling all other Haptic C API functions.

ImHapticTerminate frees resources such as dynamically-allocated memory, and

releases any connection to the haptic hardware.

The code below shows how an application can call ImHapticTerminate.

void MyHapticTerminate()

{

 HapticResult res;

 res = ImHapticTerminate();

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.3 Playing Single Haptic Effects

The Haptic C API provides a variety of effects that applications can trigger

by calling ImHapticPlayEffect. Refer to Appendix A for a description of the

available effects.

The code below shows how an application can call ImHapticPlayEffect.

void MyHapticPlayEffect(HapticInt nEffect)

{

 HapticResult res;

 res = ImHapticPlayEffect(nEffect);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.4 Playing Timed Haptic Effects

The Haptic C API provides applications with the ability to play a pre-defined

effect for a desired duration, by calling ImHapticPlayTimedEffect.

The code below shows how an application can call ImHapticPlayTimedEffect.

void MyHapticPlayTimedEffect(HapticInt nDuration)

{

 HapticResult res;

 res = ImHapticPlayTimedEffect(nDuration);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 11 of 21

©2012 Immersion Corporation

4.1.5 Playing Application-Defined Patterns of Effects

The Haptic C API allows applications to play sequences of effects.

Applications can set up a buffer containing the desired effect indices along

with the desired delays between adjacent effects. The inter-effect delays are

specified in multiples of 5ms. If the 7th bit of the byte is set to 1, that

element in the buffer will be treated as a delay element. Beware of the

following limitations:

 Maximum number of effects and delays in a sequence: 8

Refer to Appendix A for a description of the available effects that can be

combined into sequences.

The code below shows how an application can call ImHapticPlayEffectSequence

to play a pattern of two effects.

void MyHapticPlayEffectSequence2(HapticInt nEffect0,

 HapticInt nDelay0,

 HapticInt nEffect1,

 HapticInt nDelay1)

{

 HapticUInt8 aBuffer[4];

 HapticResult res;

 aBuffer[0] = nEffect0;

 aBuffer[1] = nDelay0;

 aBuffer[2] = nEffect1;

 aBuffer[3] = nDelay1;

 res = ImHapticPlayEffectSequence(aBuffer, 4);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.6 Stopping Playing Effects

The code below shows how an application can call ImHapticStopPlayingEffect to

stop any effect that may be playing.

void MyHapticStopPlayingEffect()

{

 HapticResult res;

 res = ImHapticStopPlayingEffect();

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.7 Enabling and Disabling Audio-to-Haptic

The code below shows how an application can call ImAudioHapticGetStatus,

ImAudioHapticEnable and ImAudioHapticDisable to check, enable or disable

Audio-to-Haptic.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 12 of 21

©2012 Immersion Corporation

void MyHapticToggleAudioToHaptic()

{

 HapticResult res;

 int enabled;

 res = ImAudioHapticGetStatus(&enabled);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

 if (!enabled)

 {

 res = ImAudioHapticEnable();

 } else

 {

 res = ImAudioHapticDisable();

 }

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.8 Running Diagnostic

The code below shows how an application can call ImHapticRunDiagnostic to

perform diagnostic procedures

void MyHapticRunDiagnostic()

{

 HapticResult res;

 int diag_res;

 res = ImHapticRunDiagnostic(&diag_res);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.1.9 Retrieving DRV260x Chip Revision

The code below shows how an application can call ImHapticGetChipRev to

retrieve the current chip revision

void MyHapticGetChipRevision()

{

 HapticResult res;

 int chip_rev;

 res = ImHapticGetChipRev(&chip_rev);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 13 of 21

©2012 Immersion Corporation

}

4.1.10 Retrieving DRV260x Chip ID

The code below shows how an application can call ImHapticGetDevID to retrieve

the current chip ID

void MyHapticGetChipRevision()

{

 HapticResult res;

 int chip_id;

 res = ImHapticGetChipRev(&chip_id);

 if (HAPTIC_FAILED(res))

 {

 /* handle error, application-specific */

 return;

 }

}

4.2 Building Your Application

To build your application, ensure that the application project or makefiles

are set up to access the Haptic C API header files and library as described

in section 4.1.

4.3 Testing and Debugging Your Application

All functions of the Haptic C API return a value that can be tested for

success or failure. Zero and positive values indicate success; negative

values are error codes. Table 2 describes the return status codes.

Table 2: Haptic C API Return Status Codes

Value Constant Name Description

1 HAPTIC_S_TRUE Indicates true condition (no error).

0 HAPTIC_S_FALSE Indicates false condition (no error).

0 HAPTIC_S_OK No error

-1 HAPTIC_E_FAIL
General error not covered by more

specific codes.

-2 HAPTIC_E_INTERNAL

Internal error. Should not arise.

Possibly due to a programming error in

the Haptic C API or Haptic Transport.

-3 HAPTIC_E_SYSTEM
System error. A system call returned an

error.

-4 HAPTIC_E_MEMORY
Memory allocation error. Unable to

allocate required memory.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 14 of 21

©2012 Immersion Corporation

Value Constant Name Description

-5 HAPTIC_E_ARGUMENT Null or invalid argument.

-6 HAPTIC_E_ALREADY_INITIALIZED

The Haptic C API is already initialized.

The application has already called the

ImHapticInitialize function without an

intervening call to the ImHapticTerminate

function.

-7 HAPTIC_E_NOT_INITIALIZED

The Haptic C API is not initialized. The

application must first call the

ImHapticInitialize function.

-9 HAPTIC_E_UNSUPPORTED

The Haptic C API is not installed on this

device. The application will not be able

to play any effect.

4.4 Deploying Your Application

Because the Haptic C API and dependent libraries may be tailored to specific

devices, those libraries should already be pre-installed by the manufacturer

on supported devices; therefore, you should not distribute any C API

libraries with your application.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 15 of 21

©2012 Immersion Corporation

Appendix A

Table 3 describes the haptic effects that are available for applications to

play or combine into sequences.

Table 3: Effect Library

Effect

Index
Description

Suggested Usage

Button Alert Gesture

1 Strong Click - 100% X

2 Strong Click - 60% X

3 Strong Click - 30% X

4 Sharp Click - 100% X

5 Sharp Click - 60% X

6 Sharp Click - 30% X

7 Soft Bump - 100% X

8 Soft Bump - 60% X

9 Soft Bump - 30% X

10 Double Click - 100% X

11 Double Click - 60% X

12 Triple Click - 100% X X X

13 Soft Fuzz - 60% X X

14 Strong Buzz - 100% X X

15 Long 750 ms Buzz NA NA NA

16 Long 1000 ms Buzz NA NA NA

17 Strong Click 1 - 100% X

18 Strong Click 2 - 80% X

19 Strong Click 3 - 60% X

20 Strong Click 4 - 30% X

21 Medium Click 1 - 100% X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 16 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

22 Medium Click 2 - 80% X

23 Medium Click 3 - 60% X

24 Sharp Tick 1 - 100% X

25 Sharp Tick 2 - 80% X

26 Sharp Tick 3 – 60% X

27 Short Double Click Strong 1 – 100% X

28 Short Double Click Strong 2 – 80% X

29 Short Double Click Strong 3 – 60% X

30 Short Double Click Strong 4 – 30% X

31 Short Double Click Medium 1 – 100% X

32 Short Double Click Medium 2 – 80% X

33 Short Double Click Medium 3 – 60% X

34 Short Double Sharp Tick 1 – 100% X

35 Short Double Sharp Tick 2 – 80% X

36 Short Double Sharp Tick 3 – 60% X

37 Long Double Sharp Click Strong 1 – 100% X

38 Long Double Sharp Click Strong 2 – 80% X

39 Long Double Sharp Click Strong 3 – 60% X

40 Long Double Sharp Click Strong 4 – 30% X

41 Long Double Sharp Click Medium 1 – 100% X

42 Long Double Sharp Click Medium 2 – 80% X

43 Long Double Sharp Click Medium 3 – 60% X

44 Long Double Sharp Tick 1 – 100% X

45 Long Double Sharp Tick 2 – 80% X

46 Long Double Sharp Tick 3 – 60% X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 17 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

47 Buzz 1 – 100% X X

48 Buzz 2 – 80% X X

49 Buzz 3 – 60% X X

50 Buzz 4 – 40% X X

51 Buzz 5 – 20% X X

52 Pulsing Strong 1 – 100% X X

53 Pulsing Strong 2 – 60% X X

54 Pulsing Medium 1 – 100% X X

55 Pulsing Medium 2 – 60% X X

56 Pulsing Sharp 1 – 100% X X

57 Pulsing Sharp 2 – 60% X X

58 Transition Click 1 – 100% X X

59 Transition Click 2 – 80% X X

60 Transition Click 3 – 60% X X

61 Transition Click 4 – 40% X X

62 Transition Click 5 – 20% X X

63 Transition Click 6 – 10% X X

64 Smooth Hum (No kick or brake pulse) @80% X X

65 Smooth Hum (No kick or brake pulse) @65% X X

66 Transition Hum 3 – 60% X X

67 Transition Hum 4 – 40% X X

68 Transition Hum 5 – 20% X X

69 Transition Hum 6 – 10% X X

70
Transition Ramp Down Long Smooth 1 – 100

to 0%
 X X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 18 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

71
Transition Ramp Down Long Smooth 2 – 100

to 0%
 X X

72
Transition Ramp Down Medium Smooth 1 – 100

to 0%
 X X

73
Transition Ramp Down Medium Smooth 2 – 100

to 0%
 X X

74
Transition Ramp Down Short Smooth 1 – 100

to 0%
 X X

75
Transition Ramp Down Short Smooth 2 – 100

to 0%
 X X

76
Transition Ramp Down Long Sharp 1 – 100 to

0%
 X X

77
Transition Ramp Down Long Sharp 2 – 100 to

0%
 X X

78
Transition Ramp Down Medium Sharp 1 – 100

to 0%
 X X

79
Transition Ramp Down Medium Sharp 2 – 100

to 0%
 X X

80
Transition Ramp Down Short Sharp 1 – 100

to 0%
 X X

81
Transition Ramp Down Short Sharp 2 – 100

to 0%
 X X

82
Transition Ramp Up Long Smooth 1 – 0 to

100%
 X X

83
Transition Ramp Up Long Smooth 2 – 0 to

100%
 X X

84
Transition Ramp Up Medium Smooth 1 – 0 to

100%
 X X

85
Transition Ramp Up Medium Smooth 2 – 0 to

100%
 X X

86
Transition Ramp Up Short Smooth 1 – 0 to

100%
 X X

87
Transition Ramp Up Short Smooth 2 – 0 to

100%
 X X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 19 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

88
Transition Ramp Up Long Sharp 1 – 0 to

100%
 X X

89
Transition Ramp Up Long Sharp 2 – 0 to

100%
 X X

90
Transition Ramp Up Medium Sharp 1 – 0 to

100%
 X X

91
Transition Ramp Up Medium Sharp 2 – 0 to

100%
 X X

92
Transition Ramp Up Short Sharp 1 – 0 to

100%
 X X

93
Transition Ramp Up Short Sharp 2 – 0 to

100%
 X X

94
Transition Ramp Down Long Smooth 1 – 50 to

0%
 X X

95
Transition Ramp Down Long Smooth 2 – 50 to

0%
 X X

96
Transition Ramp Down Medium Smooth 1 – 50

to 0%
 X X

97
Transition Ramp Down Medium Smooth 2 – 50

to 0%
 X X

98
Transition Ramp Down Short Smooth 1 – 50

to 0%
 X X

99
Transition Ramp Down Short Smooth 2 – 50

to 0%
 X X

100
Transition Ramp Down Long Sharp 1 – 50 to

0%
 X X

101
Transition Ramp Down Long Sharp 2 – 50 to

0%
 X X

102
Transition Ramp Down Medium Sharp 1 – 50

to 0%
 X X

103
Transition Ramp Down Medium Sharp 2 – 50

to 0%
 X X

104
Transition Ramp Down Short Sharp 1 – 50 to

0%
 X X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 20 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

105
Transition Ramp Down Short Sharp 2 – 50 to

0%
 X X

106
Transition Ramp Up Long Smooth 1 – 0 to

50%
 X X

107
Transition Ramp Up Long Smooth 2 – 0 to

50%
 X X

108
Transition Ramp Up Medium Smooth 1 – 0 to

50%
 X X

109
Transition Ramp Up Medium Smooth 2 – 0 to

50%
 X X

110
Transition Ramp Up Short Smooth 1 – 0 to

50%
 X X

111
Transition Ramp Up Short Smooth 2 – 0 to

50%
 X X

112 Transition Ramp Up Long Sharp 1 – 0 to 50% X X

113 Transition Ramp Up Long Sharp 2 – 0 to 50% X X

114
Transition Ramp Up Medium Sharp 1 – 0 to

50%
 X X

115
Transition Ramp Up Medium Sharp 2 – 0 to

50%
 X X

116
Transition Ramp Up Short Sharp 1 – 0 to

50%
 X X

117
Transition Ramp Up Short Sharp 2 – 0 to

50%
 X X

118
Long buzz for programmatic stopping –

100%, 10 seconds max
X X X

119
Smooth Hum 1 (No kick or brake pulse) –

50%*
 X X

120
Smooth Hum 2 (No kick or brake pulse) –

40%*
 X X

121
Smooth Hum 3 (No kick or brake pulse) –

30%*
 X X

122
Smooth Hum 4 (No kick or brake pulse) –

20%*
 X X

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 21 of 21

©2012 Immersion Corporation

Effect

Index
Description

Suggested Usage

Button Alert Gesture

123
Smooth Hum 5 (No kick or brake pulse) –

10%*
 X X

*Effects 64, 65, and 119 through 122 do not have kick or brake pulses and may

be repeated to obtain longer smooth effects. The sequence may need to be

preceded by an effect having a kick pulse in order to activate the haptic

actuator.

TouchSense® Android Developer Kit for DRV2605 Programming Guide Page 22

©2012 Immersion CorporationImmersion Confidential Information – Unauthorized Disclosure, Copying and Distribution Strictly Prohibited

Immersion Corporation
30 Rio Robles

San Jose, CA 95134 USA

www.immersion.com

Copyright 2012 Immersion Corporation. All rights reserved. Immersion, the

Immersion logo, and TouchSense are trademarks of Immersion Corporation in the

U.S. and other countries. All other trademarks are the property of their

respective owners.

This document and the content of this document shall be subject to the terms,

conditions, and restrictions of Immersion Corporation’s Terms of Use

applicable to “Content” (as defined therein) listed at

http://www.immersion.com/legal.html, including, but not limited to, the

terms, conditions, and restrictions relating to Immersion’s general

disclaimers described therein. The terms, conditions, and restrictions of

Immersion Corporation’s Terms of Use are hereby incorporated herein by

reference. By accessing this document, you hereby agree to follow and be

bound by the terms, conditions, and restrictions described in this document

and the applicable provisions of Immersion Corporation’s Terms of Use.

No warranties, representations or conditions, express or implied, including,

without limitation, any representations, warranties or conditions of

accuracy, sufficiency, suitability or non-infringement of third party rights,

or ownership of any intellectual property rights described or otherwise

contained herein, are made by Immersion in this document. All information

contained herein is provided “as is,” and Immersion shall have no liability

whatsoever for any damages, losses or expenses incurred by the recipient of

this document (or any other party) as a result of its receipt of this

document or use of the information contained herein, whether arising in

contract, tort or otherwise.

http://www.immersion.com/
http://www.immersion.com/legal.html

