
Copyright © Texas Instruments Incorporated.

USER’S GUIDE

MSP430 IEC60730 Software Package

Copyright
Copyright © Texas Instruments Incorporated. All rights reserved.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
Post Office Box 655303
Dallas, TX 75265
http://www.ti.com/msp430

Revision Information
This is version of this document, last updated on November 15, 2016.

Document License
This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License (CC BY-SA 3.0). To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to

Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document
Copyright © 2015 Texas Instruments Incorporated - http://www.ti.com/

2 November 15, 2016

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

Document License . 2

Contributors to this document . 2

1 Introduction . 5

2 API relation to Table H.1 in IEC60730:2010 standard . 7

3 Running IEC60730 example projects . 9

4 Starting a New IEC60730 project . 13

5 Analog-to-Digital Converter Test . 27
5.0.1 API Functions . 27

6 CPU Registers Test . 29
6.0.2 API Functions . 29

7 Clock Fail Test . 31
7.0.3 API Functions . 31

8 Non Volatile Memory Test . 33
8.0.4 API Functions . 33

9 General Purpose I/O Test . 35
9.0.5 API Functions . 35

10 Variable Memory Test . 37
10.0.6 API Functions . 37

11 Program Counter Register Test . 39
11.0.7 API Functions . 39

12 IEC60730 Class B API execution times and Code Size . 41

13 Using the MSP430 IEC60730 Software Package Configuration Tool 49

IMPORTANT NOTICE . 60

November 15, 2016 3

Table of Contents

4 November 15, 2016

Introduction

1 Introduction
Manufacturers of household appliances must take steps to ensure safe and reliable operation of
their products in order to meet the IEC60730 standard. The IEC60730 standard covers mechanical,
electrical, electronic, EMC, and abnormal operation of AC appliances. Annex H of this standard
covers the aspects most relevant to microcontrollers including the three software classifications
defined for automatic electronic controls:

Class A.- functions such as room thermostats, humidity controls, lighting controls, timers and
switches. These are distinguished by not being relied upon for the safety of the equipment.

Class B.- functions such as thermal cut-offs are intended to prevent unsafe operation of appliances
such as washing machines, dishwashers, dryers, refrigerators, freezers and cookers/stoves.

Class C.- functions are intended to prevent special hazards such as explosions. These include
automatic burner controls and thermal cut-outs for closed, unvented water heaters.

These software libraries allow for a variety of system tests required by IEC 60730-1:2010 for up
to Class B products. The software libraries include projects that demonstrate running power-on
self-test (POST) and periodic self-test (PST) with reporting conducted through flashing an LED.
The userŠs guide demonstrates how to integrate the POST and PST into an application design. In
addition, the software package for IEC 60730 also includes a GUI configuration tool which allows
users to easily generate customized configuration header files.

All the configurations available for the test can be found in “IEC60730_user_config.h" file. The
default options for the tests are:

ENABLED_WDT is enabled

JUMP_TO_FAILSAFE is enabled

MAIN_CLOCK_FREQUENCY is defined at 12 MHz

RAM test is run using March X algorithm in non-destructive mode

PERCENT_FREQUENCY_DRIFT is defined +/-3%

Stack size of 80 Bytes and

MINIMUM_ADC_COUNT_DRIFT and MAXIMUM_ADC_COUNT_DRIFT are defined as -50 and
50, resectively.

CRC_CHECKSUM_LOCATION

for MSP430G2553: Information memory (0x1004)

for MSP430F5529: Beginning of Info D section (0x1800)

for MSP430FR5739: Beginning of Info A section (0x1880) The examples for MSP430F5529 in this
library use API calls from Driverlib which is part of MSP430Ware.

The following tool chains are supported:

Texas Instruments Code Composer Studio™ v5.3 or later;

IAR Embedded Workbench® v5.51.3 or later ;

November 15, 2016 5

Introduction

6 November 15, 2016

API relation to Table H.1 in IEC60730:2010 standard

2 API relation to Table H.1 in IEC60730:2010
standard
The table below show the relation of the API provided in MSP430 IEC60730 Software Package and
the component that needs to be tested according to Table H.1 in Annex H of the IEC60730:2010
standard.

Component Test Item Software Package API
1.1 CPU Registers CPU test API
1.3 PC PC test API
2.0 Interrupt handling and

execution
Device project example
shows
a method to test interrupts
in software

3.0 Clock frequency CLOCK test API
4.1 Memory Testing

(Flash\FRAM)
CRC test API

4.2 Memory Testing
(RAM\FRAM)

MARCH test API

4.3 Memory addressing N/A
5.0 Memory (external) Does not apply to MSP430
5.2 Memory Addressing

(external)
Does not apply to MSP430

6.0 Communication N/A
6.3 Timing of communication N/A
7.0 Input/output periphery GPIO test APIs
7.2.1 A/D tests ADC test API
7.2.2 Analog multiplexer N/A
9.0 Custom chip Does not apply to MSP430

Certain tests are not relevant to MCUs because the function is implemented by another chip exter-
nal to the MCU – usually memory of a custom chip.

November 15, 2016 7

API relation to Table H.1 in IEC60730:2010 standard

8 November 15, 2016

Running IEC60730 example projects

3 Running IEC60730 example projects
Running IEC60730 example projects .??
Generating CRC-CCITT Checksums for examples in CCS ?? Generating CRC-CCITT Checksums for
examples in IAR . ?? The example projects
included in this library will run all available tests in addition to the interrupt test which is included in
the example project. The example projects will toggle different pins depending on the result of each
test. The table below shows the number of times the FAILURE pin will toggle to indicate which test
failed. If none of the tests failed, the SUCCESS pin will remain set.

The example projects contain two functions calls that are not included in the soft-
ware package. The two function calls are IEC60730_FAIL_SAFE_failSafe and
IEC60730_INTERRUPT_TEST_testInterrupt. IEC60730_FAIL_SAFE_failSafe is a user de-
fined function which needs to ensure that the application shuts downs gracefully. The purpose of
defining this function was to show how the JUMP_TO_FAILSAFE macro can be use during the
development phase of the application. In the example projects IEC60730_FAIL_SAFE_failSafe
only reports the type of failure. IEC60730_INTERRUPT_TEST_testInterrupt is also a user defined
function which shows how each interrupt in the device can be triggered by software and verified
that the interrupt jumped to the correct Interrupt Service Routine (ISR).

Failure Detected Number of Toggles
CPU test failure 1
PC test failure 2
OSCILLATOR test failure 3
MARCH test failure 4
CRC test failure 5
INTERRUPT test failure 6
ADC test failure 7
GPIO INPUT test failure 8
GPIO OUTPUT test failure 9

Each example project uses different pin configuration to display SUCCESS or FAILURE status of
each test. The table below shows the pin configuration for each project. The table also shows the
preferred development kit to run the examples.

Example Project
Name

SUCCESS Pin FAILURE Pin Preferred Dev Kit

IEC60730_msp430g2553
_example

P1.6 P1.0 MSP430-EXP430G2

IEC60730_msp430f5529
_example

P8.2 P1.0 MSP-EXP430F5529

IEC60730_msp430fr5739
_example

P3.6 P3.7
MSP-EXP430FR5739

Note It is not required to run the example project on the development kit specified in the table.
However, it will help visualize the SUCCESS and FAILURE sequences since the configured pins
have an LED connected to the selected pins of the development kits. IMPORTANT: Before running
the examples make sure:

ACLK is sourced by a 32768 KHz external crystal

The input pins are set to the expected logic level

November 15, 2016 9

http://www.ti.com/tool/msp-exp430g2
http://www.ti.com/tool/msp-exp430f5529
http://www.ti.com/tool/msp-exp430fr5739

Running IEC60730 example projects

For IEC60730_msp430f5529_example

P3.7 must be set high

FOR CCS EXAMPLES ONLYCRC checksums are loaded to the expected INFO memory address
of of the device. To generate the crc checksums file please refer to Generating CRC-CCITT Check-
sums for examples in CCS

IEC60730_msp430g2553_example

Address 0x1004

IEC60730_msp430f5529_example

Expected CRC checksum location for Bank A: 0x1800

Expected CRC checksum location for Bank B: 0x1802

Expected CRC checksum location for Bank C: 0x1804

Expected CRC checksum location for Bank D: 0x1806

IEC60730_msp430fr5739_example

Address 0x1880 The following steps show how to obtain the CRC-CCITT checksums for the
non-volatile memory monitored in the example projects.

After importing the project to CCS and connecting the hardware to your computer. Click on the
example project and then go to Run->Debug.

Generate the memory file for the example project. To obtain the memory file please refer to Example
obtaining memory file in CCS. The number of memory files needed is project dependent:

For “IEC60730_msp430fr5739_example".- One memory file is needed. The Start address=0xC200
and number of words= 0x1EC0.

For “IEC60730_msp430f5529_example".- Four memory file are needed.

File 1.- Start address=0x4400 and number of words= 0x4000.

File 2.- Start address=0xC400 and number of words= 0x4000.

File 3.- Start address=0x14400 and number of words= 0x4000.

File 4.- Start address=0x1C400 and number of words= 0x4000.

10 November 15, 2016

Running IEC60730 example projects

For “IEC60730_msp430g2553_example".- One memory file is needed. The Start address=0xC000
and number of words= 0x1FE0.

Once you have obtained the memory you may use the Configuration Tool included in
{IEC60730_ROOT}/utils to generate the memory file with the CRC checksums. For a step-by-step
instruction on how to generate the checksums please refer to Generating CRC-CCITT checksum
memory file. The tool requires you specify the “CRC checksum location" as an input parameter.
Theses are the locations for each example project:

For “IEC60730_msp430fr5739_example".- CRC checksum location = 0x1880

For “IEC60730_msp430f5529_example".- CRC checksum location = 0x1800

For “IEC60730_msp430g2553_example".- CRC checksum location = 0x1004

Once you have obtained the file with CRC checksum. Go to Memory Browser" in CCS and
Select</tt>Load Memory".

In the Load Memory" window click</tt>Browse" and select the file which
contains the generated checksums. And verify that Use the file header
information to set the start address and size of the memory block to be
loaded." is checked. Click</tt>Finish".

November 15, 2016 11

Running IEC60730 example projects

IAR examples contain a modified XLINK file that will generate the necessary CRC-CCITT check-
sums and place them in the expected FLASH/FRAM memory location. For more information on
how to modify the XLINK file to automatically generate CRC checksum in IAR please refer to the
modified ∗.xcl in every IAR project example and “IAR Linker and Library ToolsŤ documentation
which can be found at {IAR_INSTALL_PATH}\430\doc\xlink.ENU.pdf. The examples show
how to calculate single and multiple CRC-CCITT checksums.

12 November 15, 2016

Starting a New IEC60730 project

4 Starting a New IEC60730 project
Introduction .??
Starting a New IEC60730 project in CCS .??
Starting a New IEC60730 project in IAR .??
Location in Memory to Test Program Counter CCS . ??
Location in Memory to Test Program Counter IAR . ??
In order to minimize the amount of initial configuration required to start a new IEC60730 project
the library includes emptyProject templates for CCS and IAR. The projects can be found in
{IEC60730_PATH}\examples\iec60730\emptyProject. The following sections provide the
steps required to configure your project to be able to use IEC60730 API calls. The following steps
show how to properly configure the project:

Modify the linker command file configuration for PC test.

Set desired configuration for tests using IEC60730_user_config.h file. All configurations available
for the library are defined in the “IEC60730_user_config.h" file. The default configuration are the
following:

Watchdog enabled (ENABLED_WDT=1)

Jump to failsafe enabled (JUMP_TO_FAILSAFE=1)

MCLK frequency of 12MHz (MAIN_CLOCK_FREQUENCY_12MHz is defined)

MCLK frequency divider 1 (MAIN_CLOCK_DIVIDER=1)

ACLK is sourced by an external 32768 Hz crystal (LFXT1_FREQUENCY = 32768)

ACLK frequency divider 1 (LFXT1_FREQUENCY_DIVIDER = 1)

Allowed frequency drift is +/- 2% (PERCENT_FREQUENCY_DRIFT = 2)

RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE need to be explicitly defined if not using
MSP430F5529 or MSP430G2553.

March X in non-destructive mode is applied for RAM testing (MARCH_X_TEST and
NON_DESTRUCTIVE are not commented).

The size of the array to store RAM values in non-destructive mode is 8 16bit words
(RAM_TEST_BUFSIZE=8).

The FRAM/FLASH address where the CRC checksum will be stored needs to be defined. If using
MSP430F5529 the default location is address 0x1800. If using MSP430G2553 the default location
is 0x1004. Finally, if using MSP430FR5739 the default location is 0x1880.

The allowed ADC count drift is set to +/- 50 (MINIMUM_ADC_COUNT_DRIFT= -50 and MAXI-
MUM_ADC_COUNT_DRIFT = 50).

Start Code Composer Studio (CCS) and select/create the workspace where you want to import
the emptyProject. If this is the first time you run CCS please refer to CCSv5 Running for the
first time.

Import the following projects to your workspace:

November 15, 2016 13

http://processors.wiki.ti.com/index.php/GSG:CCSv5_Running_for_the_first_time
http://processors.wiki.ti.com/index.php/GSG:CCSv5_Running_for_the_first_time

Starting a New IEC60730 project

IEC60730_emptyProject

This project is be located in IEC60730_PATH\examples\iec60730. Make sure only the project
listed above are selected in the “Import CCS Eclipse Projects" window.

If the project was imported correctly you will be able to see the “emptyProject" in your CCS
workspace.

The first step is to setup the IEC60730_user_config.h" file. You can modify this
file by double-clicking</tt>IEC60730_user_config.h" file within the
“Project Explorer" window.

14 November 15, 2016

Starting a New IEC60730 project

Note The sotware package includes a Configuration Tool under
{IEC60730_ROOT}\utils which allows the users to generate custom
“IEC60730_user_config.h". For more information on how to
use the Configuration Tool please refer to Generating custom
“IEC60730_user_config.h" file .

If you are not building the library for a MSP430F5529, MSP430G2553 of
MSP430FR5739 you must define RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE
in “IEC60730_user_config.h". Or if you are not using the default stack
size in your project.

To determine RAM_START_ADDRESS value, please consult the “Memory
Organization" section of the datasheet for the device that you are
building the library for.

To determine RAM_SIZE

If you are using the RAM test in destructive mode.

RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS

If you are using the RAM test in non-destructive mode.

RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS -
2∗(RAM_TEST_BUFSIZE)

To determine STACK_SIZE

Right click on emptyProject" select</tt>Properties"

November 15, 2016 15

Starting a New IEC60730 project

Click on General" and in the</tt>Variant" section select the device for

which you are building the library.

Once you have selected the device, expand the Build" menu and then
expand </tt>MSP430 Linker" menu and click on “Basic Options". The
stack size value is the value that you will use to define STACK_SIZE.

16 November 15, 2016

Starting a New IEC60730 project

The Program Counter test requires two test functions to be placed at
specific memory locations to check for stuck at bits in Program Counter
register. Therefore, the linker command file lnk_msp430xxxx.cmd needs
to be modified. The linker command file is automatically added to your
project when you select the MSP430 variant for the project.

To modify the linker command file follow this steps:

Double-click the lnk_msp430xxxx.cmd file. Depending on the device
for which the library will be built. The linker command file could
have a FLASH section or FLASH and FLASH2 section. The linker
command file in IEC60730_PATH\examples\iec60730\msp430g2553\CCS\ and
IEC60730_PATH\examples\iec60730\msp430f5529\CCS\ shows the modification
required to add PC_TEST_SECTION_1 and PC_TEST_SECTION_2. Below is a
snapshot of each modification.

Linker command file with FLASH section only

Original linker command file:

November 15, 2016 17

Starting a New IEC60730 project

Modified linker command file:

Linker command file with FLASH and FLASH2 section

Original linker command file:

Modified linker command file:

To determine the origin of each PC_TEST_SECTION please refer to section

18 November 15, 2016

Starting a New IEC60730 project

Location in Memory to Test Program Counter CCS.

Link .pc_test_section_1 and .pc_test_section_2 to the previously defined
Memory locations. .pc_test_section_1 : {} > PC_TEST_SECTION_1
.pc_test_section_2 : {} > PC_TEST_SECTION_2

Make sure to append all FLASH memory locations to .text , .cinit ,
.const , .pint , .init_array , mspabi.exidx , .mspabi.extab sections
accordingly. For an example of how to append FLASH section refer to the
linker command files for MSP430G2553 and MSP430F5529 example projects.

If the library will test RAM memory using the non-destructive mode.

MEMORY location in RAM called IEC60730_SAFE_RAM needs to be defined in
the highest section of RAM with a length of 2∗RAM_TEST_BUFSIZE (defined
in “IEC60730_user_config.h").

Define the following section in the linker command file: .safe_ram:
{} > IEC60730_SAFE_RAM Rebuild the
emptyProject for the desired MSP430 device. Right
click on “IEC60730emptyProject”select“Properties” < /LI >< LI >
Clickon“General”andinthe“V ariant”sectionselectthedeviceforwhichyouarebuildingthelibrary. <
/LI >< LI > Click”OK” < /LI >< LI > Rightclickon“IEC60730emptyProject”projectselect“RebuildProject” <
/LI >< /UL >< /LI >< LI > TheprojectisreadytorunIEC60730test. < /LI >

If importing the IEC example project from MSP430Ware the empty project
window will have the option of launching the IEC Configuration Tool.
Lauching the tool from this link will set the output path to the
location of the project in the IEC60730
include folder of the project.

latex laucnhingtoolfrommsp430Ware.png

Go to IEC60730_PATH\examples\iec60730\emptyProject\IAR and double-click on
emptyProject.eww. When IAR starts click on Overview" tab in the</tt>Workspace"
window you should be able to see the emptyProject int the workspace.

The first step if is to setup the IEC60730_user_config.h" file. You can
modify this file by double-clicking</tt>IEC60730_user_config.h" file
within the workspace window.

November 15, 2016 19

Starting a New IEC60730 project

Note The sotware package includes a Configuration Tool under
{IEC60730_ROOT}\utils which allows the users to generate custom
“IEC60730_user_config.h". For more information on how to
use the Configuration Tool please refer to Generating custom
“IEC60730_user_config.h" file .

If you are not building the library for a MSP430F5529, MSP430G2553 or
MSP430FR5739 you must define RAM_START_ADDRESS, RAM_SIZE, STACK_SIZE
in “IEC60730_user_config.h". Or if you are not using the default stack
size in your project.

To determine RAM_START_ADDRESS value, please consult the “Memory
Organization" section of the datasheet for the device that you are
building the library for.

To determine RAM_SIZE

If you are using the RAM test in destructive mode.

RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS

If you are using the RAM test in non-destructive mode.

RAM_SIZE= endAddressOfRamMemory - RAM_START_ADDRESS -
2∗(RAM_TEST_BUFSIZE)

To determine STACK_SIZE

Right click on emptyProject" select</tt>Options..."

20 November 15, 2016

Starting a New IEC60730 project

In the Category" window select</tt>General Options" and make sure the
“Target" tab is selected. In the device section select the device for
which you are building the library.

Once you have selected the device, select Stack/Heap" tab. This window
will show you the default stack size for the device. The</tt>Stack
size" value is the value that you will use to define STACK_SIZE.

November 15, 2016 21

Starting a New IEC60730 project

The Program Counter test requires two test functions to be placed in
a specific location to check for stuck at bits in Program Counter
register. Therefore, the linker command file lnk430xxxx.xcl, which
is located in {IAR_INSTALLATION PATH}\IAR Systems\Embedded Workbench
x.x\430\config\, needs to be modified.

WARNING: It is recommended that you create a copy of the linker command
in the project location.

To modify the linker command file follow this steps:

Make a copy of the original linker command file and place it in
{IEC60730_PATH}\examples\iec60730\emptyProject\IAR. The image below
shows the folder content of the IAR project after the .xcl was copied.

Open lnk430xxxx.xcl file in IAR or your preffered text editor and scroll
to the CODE section.

22 November 15, 2016

Starting a New IEC60730 project

Create PC_TEST_SECTION_1, PC_TEST_SECTION_2 code sections. You can copy
and paste the commands shown below:

-Z(CODE)PC_TEST_SECTION_1= -Z(CODE)PC_TEST_SECTION_2= Your CODE section
should look very similar to the image below:

The final step is to determine the memory location where the functions
need to be placed. To determine the memory location and range for
each PC_TEST_SECTION please refer to section Location in Memory to Test
Program Counter IAR

November 15, 2016 23

Starting a New IEC60730 project

MSP430 Device PC_TEST_SECTION_1 CCS PC_TEST_SECTION_2 CCS
MSP430G23xx origin:0xF554,length=0x0008 origin:0xFAAA,length=0x0008
MSP430G24xx ori-

gin:0xEAAA,length=0x0008
origin:0xF554,length=0x0008

MSP430G25xx,
MSP430FR58x7,
MSP430FR59x7,
MSP430FR59x71,
MSP430FR58x71

origin:0xD554,length=0x0008 ori-
gin:0xEAAA,length=0x0008

MSP430F5340,
MSP430F5212,
MSP430F5217,
MSP430F5222,
MSP430F5227,
MSP430F5324,
MSP430F5325,
MSP430F5514,
MSP430F5515,
MSP430F5524,
MSP430F5525,
MSP430F5341,
MSP430F5326,
MSP430F5327,
MSP430F5517,
MSP430F5526,
MSP430F5527

ori-
gin:0x13D54,length=0x0008

ori-
gin:0xC2AA,length=0x0008

MSP430F5342,
MSP430F5214,
MSP430F5219,
MSP430F5224,
MSP430F5229,
MSP430F5328,
MSP430F5329,
MSP430F5519,
MSP430F5528,
MSP430F5529

ori-
gin:0x1C2AA,length=0x0008

ori-
gin:0x23D54,length=0x0008

MSP430F5513,
MSP430F5521,
MSP430F5522,
MSP430FR58x8,
MSP430FR59x8

origin:0xD554,length=0x0008 ori-
gin:0xAAAA,length=0x0008

MSP430FR59x9,
MSP430FR58x9

origin:0xD554,length=0x0008 ori-
gin:0x12AAA,length=0x0008

MSP430F5418A,
MSP430F5419A,
MSP430F5435A,
MSP430F5436A,
MSP430F5437A,
MSP430F5438A

ori-
gin:0x1D554,length=0x0008

ori-
gin:0x22AAA,length=0x0008

MSP430F5171,
MSP430F5172,
MSP430F5310,
MSP430F5503,
MSP430F5507,
MSP430F5510

ori-
gin:0xAAAA,length=0x0008

origin:0xD554,length=0x0008

MSP430F5309,
MSP430F5502,
MSP430F5506,
MSP430F5509

ori-
gin:0xAAAA,length=0x0008

origin:0xB554,length=0x0008

MSP430F5151,
MSP430F5152,
MSP430F5308,
MSP430F5501,
MSP430F5505,
MSP430F5508

ori-
gin:0xAAAA,length=0x0008

origin:0xC554,length=0x0008

MSP430F5508,
MSP430F5131,
MSP430F5132,
MSP430F5304,
MSP430F5500,
MSP430F5504

origin:0xE554,length=0x0008 origin:0xFAAA,length=0x0008

MSP430F5333,
MSP430F5336,
MSP430F5630,
MSP430F5633,
MSP430F5636,
MSP430F5631,
MSP430F5634,
MSP430F5637,
MSP430F5335,
MSP430F5338,
MSP430F5632,
MSP430F5635,
MSP430F5638,
MSP430F5358,
MSP430F5658

ori-
gin:0x1D554,length=0x0008

ori-
gin:0x22AAA,length=0x0008

MSP430FR2633,
MSP430FR2533,
MSP430FR2433

origin = 0xD554, length =
0x0008

origin = 0xEAAA, length =
0x0008

MSP430FR2632,
MSP430FR2532

origin = 0xEAAA, length =
0x0008

origin = 0xF554, length =
0x0008

24 November 15, 2016

Starting a New IEC60730 project

MSP430 Device PC_TEST_SECTION_1 IAR PC_TEST_SECTION_2 IAR
MSP430G23xx F554-F55D FAAA-FAB3
MSP430G24xx EAAA-EAB3 F554-F55D
MSP430G25xx,
MSP430FR58x7,
MSP430FR59x7,
MSP430FR59x71,
MSP430FR58x71

D554-D55d EAAA-EAB3

MSP430F5340,
MSP430F5212,
MSP430F5217,
MSP430F5222,
MSP430F5227,
MSP430F5324,
MSP430F5325,
MSP430F5514,
MSP430F5515,
MSP430F5524,
MSP430F5525,
MSP430F5341,
MSP430F5326,
MSP430F5327,
MSP430F5517,
MSP430F5526,
MSP430F5527

13D54-13D5D C2AA-C2B3

MSP430F5342,
MSP430F5214,
MSP430F5219,
MSP430F5224,
MSP430F5229,
MSP430F5328,
MSP430F5329,
MSP430F5519,
MSP430F5528,
MSP430F5529

1C2AA-1C2B3 23D54-23D5D

MSP430F5513,
MSP430F5521,
MSP430F5522,
MSP430FR58x8,
MSP430FR59x8

AAAA-AAB3 D554-D55D

MSP430FR59x9,
MSP430FR58x9,
MSP430FR59x91

D554-D55D 12AAA,12AB5

MSP430F5418A,
MSP430F5419A,
MSP430F5435A,
MSP430F5436A,
MSP430F5437A,
MSP430F5438A

1D554-1D55D 22AAA-22AB3

MSP430F5171,
MSP430F5172,
MSP430F5310,
MSP430F5503,
MSP430F5507,
MSP430F5510

AAAA-AAB3 D554-D55D

MSP430F5309,
MSP430F5502,
MSP430F5506,
MSP430F5509

AAAA-AAB3 B554-B55D

MSP430F5151,
MSP430F5152,
MSP430F5308,
MSP430F5501,
MSP430F5505,
MSP430F5508

C554-C55D AAAA-AAB3

MSP430F5508,
MSP430F5131,
MSP430F5132,
MSP430F5304,
MSP430F5500,
MSP430F5504

E554-E55D FAAA-FAB3

MSP430F5333,
MSP430F5336,
MSP430F5630,
MSP430F5633,
MSP430F5636,
MSP430F5631,
MSP430F5634,
MSP430F5637,
MSP430F5335,
MSP430F5338,
MSP430F5632,
MSP430F5635,
MSP430F5638,
MSP430F5358,
MSP430F5658

1D554-1D55D 22AAA-22AB3

MSP430FR5726,
MSP430FR5727,
MSP430FR5728,
MSP430FR5729
MSP430FR5736,
MSP430FR5737,
MSP430FR5738,
MSP430FR5739

D554-D55D EAAA-EAB3

MSP430FR5722,
MSP430FR5723,
MSP430FR5724,
MSP430FR5725
MSP430FR5732,
MSP430FR5733,
MSP430FR5734,
MSP430FR5735

EAAA-EAB3 F554-F55D

MSP430FR5720,
MSP430FR5721,
MSP430FR5730,
MSP430FR5731

F554-F55D FAAA-FAB3

MSP430FR2633,
MSP430FR2533,
MSP430FR2433

D554-D55D EAAA-EAB3

MSP430FR2632,
MSP430FR2532

EAAA-EAB3 F554-F55D

November 15, 2016 25

Starting a New IEC60730 project

26 November 15, 2016

Analog-to-Digital Converter Test

5 Analog-to-Digital Converter Test
Introduction .??
Type of test . ??
API Functions .27
Programming Example . ?? This functions performs a plausibility check on the
ADC10 or ADC12 module. The proper operation of the pin mux selection, and the A/D converter
is checked with this function. Before calling this API the user must set three parameters in struct
IEC60730_ADC_TEST_adcTest_Handle. This structure has three parameters:

pinCount this value is the expected ADC conversion result

useInternalInput specifies if the ADC voltage reference that will be use to make the conversion. The
following are acceptable inputs:

EXTERNAL_REF

INT_REF_1_5_V

INT_REF_2_5_V

muxChannel specifies tha ADC channel that will be tested

If "muxChannel" is set to 2, ADC INCH_2 channel will be sampled. To avoid disabling inter-
rupts in the application the function will poll ADCxxIFG to verify the ADC conversion is com-
plete. The ADC conversion result is compared with "pinCount" value. The user can define the
acceptable ADC count drift by adjusting the values of MINIMUM_ADC_COUNT_DRIFT and MAXI-
MUM_ADC_COUNT_DRIFT macros in "IEC60730_user_config.h" file.

The function may return failure if any of the following errors occur:

User selected to test ADC module using internal voltage generator, but does not have internal
voltage generator enabled.

User has wrong internal voltage selection (e.g. user is testing with 1.5V internal voltage selection
but ADC register are configured for 2.5V internal voltage selection.

User selected an invalid ADC channel

FOR ADC12 MODULE ONLY.- If ADC module is not configured in single-conversion mode.

ADC conversion is out of user defined ADC drift range. The ADC test checks for fault conditions
using plausibility check (H.2.18.13).

5.0.1 API Functions

To test the ADC module is operating correctly the following API can be called:
IEC60730_ADC_TEST_testAdcInput() The following example shows how to use the
IEC60730_ADC_TEST_testAdcInput to test internal ADC channels in MSP430G2553 devices

// Initialize IEC60730_ADC_TEST_adcTest_Handle IEC60730_ADC_TEST_adcTest_Handle ad-
cTestHandle; // Select input channel 1 for ADC ADC10CTL1 = INCH_8;

November 15, 2016 27

Analog-to-Digital Converter Test

// Set-up struct to test ADC input channel 8 with expected value of 0x3FF // using internal
voltage reference of 2.5V adcTestHandle.muxChannel=8; adcTestHandle.pinCount=0x3FF; ad-
cTestHandle.useInternalInput=INT_REF_2_5_V;

IEC60730_ADC_TEST_testAdcInput(adcTestHandle);

The following example shows how to use the IEC60730_ADC_TEST_testAdcInput to test internal
ADC channels in MSP430F5529 devices

// Initialize IEC60730_ADC_TEST_adcTest_Handle IEC60730_ADC_TEST_adcTest_Handle ad-
cTestHandle;

//Configure Memory Buffer /* * Base Addres of ADC12_A Module * Configure memory buffer 0 *
Map temp sensor to memory buffer 0 * Vref+ = Vref+ (int) * Vref- = AVss * Memory buffer 0 is not
the end of a sequence */ ADC12_A_memoryConfigure(ADC12_A_BASE, ADC12_A_MEMORY_0,
ADC12_A_INPUT_A8, ADC12_A_VREFPOS_INT, ADC12_A_VREFNEG_AVSS,
ADC12_A_NOTENDOFSEQUENCE);

// Set-up struct to test ADC input channel 8 with expected value of 0x3FF // using internal
voltage reference of 2.5V adcTestHandle.muxChannel=8; adcTestHandle.pinCount=0x3FF; ad-
cTestHandle.useInternalInput=INT_REF_2_5_V;

IEC60730_ADC_TEST_testAdcInput(adcTestHandle);

28 November 15, 2016

CPU Registers Test

6 CPU Registers Test
Introduction .??
Type of test . ??
API Functions .29
Programming Example ?? This C-callable assembly routine tests CPU core registers for stuck at bits.
The following registers are tested:

R4

SP

SR

R5-R15 The registers are tested in the order listed above

The first register to be tested is R4 since this register is used to store the content of SP and SR.
After SP and SR are tested the rest of the registers are tested.

Each register is filled with 0xA value and then read to verify that the register has 0xAAAA or
0xAAAAA. This value depends on whether the library was compiled for a CPU or a CPUX ar-
chitecture. If the test passes, the same register is filled with 0x5. Afterwards, the register is read to
verify the content of the register is 0x5555 or 0x55555, depending on the architecture.

The CPU test will preserve the content of each register.

WARNING: Not all the bits in the SR are tested. This is to prevent the MSP430 going to LPM0 and
turning off the CPU. Also R3 is not tested since R3 always reads as 0 and writes to it are ignored.
The CPU test checks for stuck at bits using a static memory test (H.2.19.6). This test should be
implemented as a periodic self-test.

6.0.2 API Functions

To test the CPU register for stuck at bits, the following API can be called:
IEC60730_CPU_TEST_testCpuRegisters() The following example shows how to use the
IEC60730_CPU_TEST_testCpuRegisters.

IEC60730_CPU_TEST_testCpuRegisters();

November 15, 2016 29

CPU Registers Test

30 November 15, 2016

Clock Fail Test

7 Clock Fail Test
Introduction .??
Type of test . ??
API Functions .31
Programming Example . ?? Using different
Timer . . ?? The following function verifies that MCLK is oscillating at the frequency specified by the
MAIN_CLOCK_FREQUENCY macro. The user must define the allowed +/- percentage frequency
drift using the macro PERCENT_FREQUENCY_DRIFT in "IEC60730_user_config.h". The test
passes if freqCounter is between FREQUENCY_COUNT_MAX and FREQUENCY_COUNT_MIN.
TA0 must be sourced by ACLK with a high precision clock source. To increase accuracy of oscillator
measurement, it is suggested to source LF or XT1 with a 32768 Hz crystal. If the application uses
a different frequency for LF or XT1, the LFXT1_FREQUENCY macro in "IEC60730_user_config.h"
file must be updated with correct frequency.

NOTE: The test requires TA0 to be source by ACLK, and configured in Up mode. Also, TAIE will
be disabled. Therefore, if the application requires TAIE to be enabled the user must set TAIE upon
test completion. The Clock Fail Test API checks for wrong frequency using frequency monitoring
(H.2.18.10.1)

7.0.3 API Functions

To test that MCLK is oscillating at the user defined frequency the following API can be
called: IEC60730_OSCILLATOR_TEST_testOsc() The following example shows how to use the
IEC60730_OSCILLATOR_TEST_testOsc.

IEC60730_OSCILLATOR_TEST_testOsc();

By default TA0 is used to monitor the frequency of MCLK. If required by the application,
a different timer can be used to generate the 10 msec interval. To use a different timer
IEC60730_clock_fail_test.c needs to be modified. In the file replace all TA0 registers for
the desired TAx to be used by the test. Finally, go to IEC60730_user_config.h file and update
TA0CCR0_VALUE_FOR_10_mSEC for TAxCCR0_VALUE_FOR_10_mSEC, where x is the timer
that you want to use.

November 15, 2016 31

Clock Fail Test

32 November 15, 2016

Non Volatile Memory Test

8 Non Volatile Memory Test
Introduction .??
Type of test . ??
API Functions .33
Programming Example ?? The following function checks for memory corruption in non
volatile memory. The user must first calculate the CRC-CCITT value of the memory to be checked.
This can be achieved by using the CRC_tool which is included in the utils folders of the library.

If the library is built for an MSP430 device that has a CRC module, the API will take advatange of
the CRC module and calculate the CRC in hardware. Otherwise the CRC is calculated in software.

Before calling the function the user must calculate the CRC of non volatile memory and store it in
FLASH/FRAM memory.

The memorySize parameter is specified in 16 bit words and should not exceed 65535 16 bit words.

The expectedCrc value is compared to the newly calculated CRC value. The test passes if the two
CRC values are identical.

To determine the start address and size of non volatile memory for each MSP430 device, please
consult the device datasheet. The CRC test checks for single bit faults using word protection with
multi-bit redundancy (H.2.19.8.1)

8.0.4 API Functions

To test for memory corruption in non volatile memory the following
API can be called: IEC60730_CRC_TEST_testNvMemory() The follow-
ing example shows how to use the IEC60730_CRC_TEST_testNvMemory.
IEC60730_CRC_TEST_testNvMemory((uint16_t*)0xc000,0x3fd0,(uint16_t*)CRC_CHECKSUM_LOCATION);

November 15, 2016 33

Non Volatile Memory Test

34 November 15, 2016

General Purpose I/O Test

9 General Purpose I/O Test
Introduction .??
Type of test . ??
API Functions .35
Programming Example ?? The following functions will perform output and input plausibility checks on
the GPIO module. When testing an output the function sets and clears the pin specified by gpioPin.
The test passes if the function is able to set and clear the BITX on PXOUT. When testing an input
the function compares the current state in PxIN with the expectedValue and the test passes if both
values are equal.

The function will check if the user has passed valid port and gpioPin values. If the MSP430
device does not have the selected PORTx or if the value value for gpioPin is outside the valid
range, the function will call IEC60730_FAIL_SAFE_failSafe() if JUMP_TO_FAILSAFE is enabled in
"IEC60730_user_config.h", otherwise TEST_FAILURE is returned.

The valid parameters for gpioPin:

PORT1-PORT11 valid range (0x0000-0x00FF)

PORTA-PORTF valid range (0x0000-0xFFFF)

PORTJ valid range (0x0000-0x000F)

NOTE: PORT will retain after function call. The GPIO test checks for faul conditions using plausi-
bility check (H.2.18.13).

9.0.5 API Functions

To test the GPIO module is operating correctly the following APIs can be called:
IEC60730_GPIO_TEST_testGpioOutput() IEC60730_GPIO_TEST_testGpioInput() The
following example shows how to use the IEC60730_GPIO_TEST_testGpioOutput and
IEC60730_GPIO_TEST_testGpioInput.

// Code to test outputs IEC60730_GPIO_TEST_testGpioOutput(PORT_2, PIN0|PIN1|PIN2);
//Code to test inputs IEC60730_GPIO_TEST_testGpioInput(PORT_1, PIN3|PIN4|PIN5,
PIN3_LOW|PIN4_HIGH|PIN5_HIGH);

November 15, 2016 35

General Purpose I/O Test

36 November 15, 2016

Variable Memory Test

10 Variable Memory Test
Introduction .??
Type of test . ??
API Functions .37
Programming Example ?? This function checks RAM memory for DC fault using march
test. MarchC and MarchX can be run in destructive or non-destructive mode based on the macro
definition of MARCH_X_TEST or MARCH_C_TEST in "IEC60730_user_config.h" file. The macros
for RAM_START_ADDRESS and RAM_END_ADDRESS are defined in "IEC60730_user_config.h"
file. to determine the correct start and end address for ram please consult the MSP430 datasheet.

The test will perform the desired march test over the range of RAM memory specified by
pui16_StartAddr and pui16_EndAddr.

When the test is run in NON-DESTRUCTIVE mode, the SAFE_RAM_BUFFER is used to store the
current content of ram to be tested. The first task performed by the test is to check for DC faults on
the SAFE_RAM_BUFFER. Once the buffer is checked, the test cotinues checking the rest of RAM
memory.

NOTE: If the march test is going to be run in NON-DESTRUCTIVE mode in CCS the linker com-
mand file (∗.cmd) needs to have a section called ".safe_ram". For more information on how to
define this section in the linker command file please refer to the sample project and inspect the
linker command files associated with the projects. The MARCH test checks for DC fault using
static memory tests (H.2.19.6). This test should be implemented as a periodic self-test.

10.0.6 API Functions

To test the volatile memory for DC fault, the following APIs-
can be called: IEC60730_MARCH_TEST_testRam() The follow-
ing example shows how to use IEC60730_MARCH_TEST_testRam.
IEC60730_MARCH_TEST_testRam((uint16_t*)RAM_START_ADDRESS,
(uint16_t*)RAM_END_ADDRESS);

November 15, 2016 37

Variable Memory Test

38 November 15, 2016

Program Counter Register Test

11 Program Counter Register Test
Introduction .??
Type of test . ??
API Functions .39
Programming Example . ?? This function tests the Program
Counter register for stuck at bits. The routine calls two test functions that return their addresses.
Their return values are compared to the PC test function address. If the value matches, the function
passes, if not it fails. The PC test functions need to reside in separate memory locations such that,
by the time all of the functions are called, all the Program Counter register bits are set or cleared,
thus indirectly testing the PC register for stuck at bits. The user must define two sections named
"pc_test_section_1", "pc_test_section_2" in the linker command file. The example project contains
a modified linker command file with both sections defined.

In the example code provided for MSP430G2553 devices the PC test functions have the following
memory address locations in the specified sections.

pcTestFunction1 - (0xD554) pc_test_section_1

pcTestFunction2 - (0xEAAA) pc_test_section_2 In the example code provided for MSP430F5529
devices the PC test functions have the following memory address locations in the specified sections.

pcTestFunction1 - (0x23D54) pc_test_section_1

pcTestFunction2 - (0x1C2AA) pc_test_section_2 The PC test checks for stuck at bits using logical
monitoring of the program counter (H.2.18.10.2). This test should be implemented as a periodic
self-test.

11.0.7 API Functions

To test the PC register for stuck at bits the following API can be called:
IEC60730_PC_TEST_testPcRegister() The following example shows how to use the
IEC60730_PC_TEST_testPcRegister IEC60730_PC_TEST_testPcRegister();

November 15, 2016 39

Program Counter Register Test

40 November 15, 2016

IEC60730 Class B API execution times and Code Size

12 IEC60730 Class B API execution times and
Code Size
Introduction .??
IEC60730 Class B API Execution Time and Code Size MSP430G2553 CCS . ??
IEC60730 Class B API Execution Time and Code Size MSP430G2553 IAR . ??
IEC60730 Class B API Execution Time and Code Size MSP430F5529 CCS . ??
IEC60730 Class B API Execution Time and Code Size MSP430F5529 IAR . ??
IEC60730 Class B API Execution Time and Code Size MSP430FR5739 CCS . ??
IEC60730 Class B API Execution Time and Code Size MSP430FR5739 IAR . ??
IEC60730 Class B API Execution Time and Code Size MSP430FR2633 CCS . ??
IEC60730 Class B API Execution Time and Code Size MSP430FR2633 IAR?? The following
section shows the API execution times for the example projects included in this software package.
The example projects were developed for MSP430G2553 , MSP430F5529 and MSP430FR5739
devices. The MSP430G2553 device was tested on the MSP430 LaunchPad Value Line Devel-
opment kit (MSP-EXP430G2). MCLK was sourced by the integrated digitally controlled oscillator
(DCO) with a frequency of 12 MHz. ACLK was source by an external 32768 Hz crystal. Finally, the
Analog-to-Digital Converter (ADC) was configured to use the internal voltage generator to test the
execution of the API. The projects were built on Texas Instruments Code Composer Studio™v 5.3
using TI compiler v4.1.3 with no optimization.

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

19.91 usec 736

IEC60730_
PC_TEST_testPcRegister

7.66 usec 160

IEC60730_ OSCILLA-
TOR_TEST_testOsc

9.97 msec 152

IEC60730_ INTER-
RUPT_TEST_testInterrupt

35.54 usec 336

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

9.49 msec 676

using March X algorithm
(destructive mode)

8.64 msec

using March C algorithm
(non-destructive mode)

18.16 msec

using March C algorithm
(destructive mode)

16.96 msec

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

168.37 msec 272

IEC60730_
ADC_TEST_testAdcInput

16.20 usec 308

IEC60730_
GPIO_TEST_testGpioOutput

34.62 usec 412

IEC60730_
GPIO_TEST_testGpioInput

46.70 usec 460

The example project will run all the APIs mentioned above and in case any of the tests fails, the

November 15, 2016 41

IEC60730 Class B API execution times and Code Size

program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430G2553 device was tested
on the MSP430 LaunchPad Value Line Development kit (MSP-EXP430G2). MCLK was sourced by
the integrated Digitally Controlled Oscillator (DCO) with a frequency of 12 MHz. ACLK was source
by an external 32768 Hz crystal. Finally, the Analog-to-Digital Converter (ADC) was configured to
use the internal voltage generator to test the execution of the API. The projects were built on IAR
Embedded Workbench® 5.51.3 with no optimization.

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

18.50 usec 358

IEC60730_
PC_TEST_testPcRegister

8.33 usec 88

IEC60730_ OSCILLA-
TOR_TEST_testOsc

9.99 msec 78

IEC60730_ INTER-
RUPT_TEST_testInterrupt

35.54 usec 166

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

10.89 msec 326

using March X algorithm
(destructive mode)

8.64 msec 186

using March C algorithm
(non-destructive mode)

20.79 msec 416

using March C algorithm
(destructive mode)

19.35 msec 276

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

178.52 msec 134

IEC60730_
ADC_TEST_testAdcInput

13.95 usec 176

IEC60730_
GPIO_TEST_testGpioOutput

50.83 usec 414

IEC60730_
GPIO_TEST_testGpioInput

38.95 usec 378

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430F5529 device was tested
on the MSP430F5529 USB ExperimenterŠs Board (MSP-EXP430F5529). MCLK was sourced by
the DCO with a frequency of 12 MHz. ACLK was sourced by an external 32768 Hz crystal. The
project was built on Code Composer Studio 5.3 using TI compiler v4.1.3 with no optimization.

42 November 15, 2016

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

26.50 usec 732

IEC60730_
PC_TEST_testPcRegister

15.58 usec 220

IEC60730_ OSCILLA-
TOR_TEST_testOsc

10.01 msec 152

IEC60730_ INTER-
RUPT_TEST_testInterrupt

54.29 usec 672

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

171.92 msec 660

using March X algorithm
(destructive mode)

162.00 msec 348

using March C algorithm
(non-destructive mode)

329.31 msec 844

using March C algorithm
(destructive mode)

318.73 msec 532

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

19.13 msec 164

IEC60730_
ADC_TEST_testAdcInput

19.29 usec 312

IEC60730_
GPIO_TEST_testGpioOutput

41.29 usec 612

IEC60730_
GPIO_TEST_testGpioInput

52.20 usec 664

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430F5529 device was tested
on the MSP430F5529 USB ExperimenterŠs Board (MSP-EXP430F5529). MCLK was sourced by
the DCO with a frequency of 12 MHz. ACLK was sourced by an external 32768 Hz crystal. The
project was built on IAR Embedded Workbench® 5.51.3 with no optimization.

November 15, 2016 43

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

27.04 usec 368

IEC60730_
PC_TEST_testPcRegister

19.08 usec 106

IEC60730_ OSCILLA-
TOR_TEST_testOsc

10.01 msec 78

IEC60730_ INTER-
RUPT_TEST_testInterrupt

55.12 usec 672

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

186.61 msec 318

using March X algorithm
(destructive mode)

174.40 msec 184

using March C algorithm
(non-destructive mode)

356.57 msec 406

using March C algorithm
(destructive mode)

343.43 msec 272

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

24.59 msec 94

IEC60730_
ADC_TEST_testAdcInput

21.33 usec 164

IEC60730_
GPIO_TEST_testGpioOutput

44.87 usec 501

IEC60730_
GPIO_TEST_testGpioInput

34.33 usec 474

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430FR5739 device was tested
on the MSP-EXP430FR5739. MCLK was sourced by the DCO with a frequency of 12 MHz. ACLK
was sourced by an external 32768 Hz crystal. The project was built on Code Composer Studio v
5.3 using TI compiler v4.1.3 with no optimization.

44 November 15, 2016

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

31.70 usec 732

IEC60730_
PC_TEST_testPcRegister

18.29 usec 220

IEC60730_ OSCILLA-
TOR_TEST_testOsc

10.009 msec 152

IEC60730_ INTER-
RUPT_TEST_testInterrupt

271 usec 964

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

19.02 msec 660

using March X algorithm
(destructive mode)

17.58 msec 348

using March C algorithm
(non-destructive mode)

36.47 msec 844

using March C algorithm
(destructive mode)

34.62 msec 532

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

11.25 msec 164

IEC60730_
ADC_TEST_testAdcInput

21.50 usec 364

IEC60730_
GPIO_TEST_testGpioOutput

64.04 usec 472

IEC60730_
GPIO_TEST_testGpioInput

50.00 usec 524

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430FR5739 device was tested
on the MSP-EXP430FR5739. MCLK was sourced by the DCO with a frequency of 12 MHz. ACLK
was sourced by an external 32768 Hz crystal. The project was built on IAR Embedded Workbench®
5.51.3 with no optimization.

November 15, 2016 45

IEC60730 Class B API execution times and Code Size

API Name Execution Time Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

24.08 usec 368

IEC60730_
PC_TEST_testPcRegister

15.54 usec 112

IEC60730_ OSCILLA-
TOR_TEST_testOsc

10.007 msec 78

IEC60730_ INTER-
RUPT_TEST_testInterrupt

260 msec 406

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

23.60 msec 316

using March X algorithm
(destructive mode)

21.74 msec 184

using March C algorithm
(non-destructive mode)

45.23 msec 404

using March C algorithm
(destructive mode)

42.82 msec 272

IEC60730_
CRC_TEST_testNvMemory
(16KB) in software

13.54 msec 94

IEC60730_
ADC_TEST_testAdcInput

17.41 usec 200

IEC60730_
GPIO_TEST_testGpioOutput

47.00 usec 434

IEC60730_
GPIO_TEST_testGpioInput

33.66 usec 404

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430FR2633 device was tested
on the CAPTIVATE-FR2633. MCLK was sourced by the DCO with a frequency of 1 MHz. ACLK
was sourced by an external 32768 Hz crystal. The project was built on Code Composer Studio v
6.1.1.00022 using TI compiler v4.4.6 with no optimization.

46 November 15, 2016

IEC60730 Class B API execution times and Code Size

API Name Cycle count Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

301 724

IEC60730_
PC_TEST_testPcRegister

135 220

IEC60730_ OSCILLA-
TOR_TEST_testOsc

325 154

IEC60730_ INTER-
RUPT_TEST_testInterrupt

2261 353

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

36633 687

using March X algorithm
(destructive mode)

30374 390

using March C algorithm
(non-destructive mode)

46695 844

using March C algorithm
(destructive mode)

33225 532

IEC60730_
CRC_TEST_testNvMemory
(12KB) in software

20559 153

IEC60730_
ADC_TEST_testAdcInput

126 364

IEC60730_
GPIO_TEST_testGpioOutput

679 475

IEC60730_
GPIO_TEST_testGpioInput

559 526

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function. The MSP430FR2633 device was tested
on the CAPTIVATE-FR2633. MCLK was sourced by the DCO with a frequency of 1 MHz. ACLK was
sourced by an external 32768 Hz crystal. The project was built on IAR Embedded Workbench®
6.40 with no optimization.

November 15, 2016 47

IEC60730 Class B API execution times and Code Size

API Name Cycle count Code Size (Bytes)
IEC60730_
CPU_TEST_testCpuRegisters

294 354

IEC60730_
PC_TEST_testPcRegister

185 108

IEC60730_ OSCILLA-
TOR_TEST_testOsc

315 178

IEC60730_ INTER-
RUPT_TEST_testInterrupt

2243 406

IEC60730_
MARCH_TEST_testRam size
(416 Bytes)
using March X algorithm
(non-destructive mode)

35140 298

using March X algorithm
(destructive mode)

28881 187

using March C algorithm
(non-destructive mode)

10406 272

using March C algorithm
(destructive mode)

7406 184

IEC60730_
CRC_TEST_testNvMemory
(12KB) in software

19686 97

IEC60730_
ADC_TEST_testAdcInput

129 207

IEC60730_
GPIO_TEST_testGpioOutput

538 432

IEC60730_
GPIO_TEST_testGpioInput

402 410

The example project will run all the APIs mentioned above and in case any of the tests fails, the
program will call IEC60730_FAIL_SAFE_failSafe function.

48 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

13 Using the MSP430 IEC60730 Software
Package Configuration Tool
Introduction .??
Running Configuration Tool . ??
Launching Configuration Tool from TI Resource Explorer . ??
Generating custom IEC60730_user_config.h file . ??
Generating CRC-CCITT checksum memory file . ??
Obtaining memory file . ??
Example obtaining memory file in CCS .??
Example obtaining memory file in IAR .??
Loading CRC checksum memory file .??
The MSP430 IEC60730 Software Package Configuration Tool allows the user to generate custom
IEC60730_user_config.h header files using a Graphical User Interface. The configuration tool al-
lows the user to obtain two essential files needed to run the self test:

"IEC60730_user_config_custom.h" header file.- Used at compilation time to configure MSP430
IEC60730 Software Package self tests.

Memory file in 16-bit C-style (∗.dat) file or MSP-430 TXT file (∗.txt) containing crc checksum(s) used
in non-voltaile memory test.

Requirements to generate "IEC60730_user_config_custom.h" header file:

RAM_START_ADDRESS

RAM_SIZE

STACK_SIZE

The value of these fields are device dependent. To determine the correct values for please refer
to step #5 on Starting a New IEC60730 project in CCS. The same instructions apply if you are
developing on IAR.

Requirements to generate CRC-CCITT checksum memory file:

Single segment memory content file in 16-bit C-style (∗.dat) file or MSP-430 TXT file (∗.txt) to be
monitored using non-voltile test. The software requirements to run the tool are: -Java 1.5 or later
-The tool can be run in Windows and Linux OS.

To run the tool just double-click in the executable jar file "MSP430_IEC60730_Config_Tool.jar"
which is located in: {IEC60730_ROOT}\utils directory. Below is a snapshot of the MSP430
IEC60730 Software Package Configuration Tool.

November 15, 2016 49

Using the MSP430 IEC60730 Software Package Configuration Tool

If you download MSP430 IEC60730 Software Package as part of MSP430Ware, you will have the
option to launch the IEC configuration tool from TI Resource Explorer.

To launch the IEC configuration tool, go to TI Resource Explorer windows View -> TI Resource
Explorer.

Under Packages select MSP430ware.

50 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

Expand Libraries and IEC 60730 Library and IEC Configuration Tool.

Finally, click on the "Launch IEC60730 Configuration Tool". The default output location of the
header file is {IEC60730_ROOT}\iec60730\include . If the tool is run from a different directory
the output directory path needs to be updated. The following steps show how to update the output
path:

Uncheck the “Use Default Location".

After removing the check mark, click the “Browse..." button and point to the following directory
{IEC60730_ROOT}\iec60730\include

Once you have filled with the desired values, click the “Generate" button. If you have entered the
valid values, you will be prompted by a dialog box as the one shown below.

November 15, 2016 51

Using the MSP430 IEC60730 Software Package Configuration Tool

In case a field has invalid data content an error message similar to the one below will be generated.

To integrate the custom generated file to the library you must rename
IEC60730_user_config_custom.h" to</tt>IEC60730_user_config.h". Once
you rename the file you will be able to run the self test with the
custom parameters.

NOTE: It is suggested that the user keeps a copy of the original
“IEC60730_user_config.h". Using a custom configuration file may cause
example projects to have compilation errors. The MSP430 IEC60730 Software
Package Configuration Tool includes a panel that allows users to generate ∗.dat and ∗.txt memory
file with CRC-CCITT checksums calculated from memory locations that are monitored by the
non-volatile test.

To generate the checksum memory file:

52 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

Obtain a ∗.dat or ∗.txt file with the memory content to be monitored by the test. To generate the
memory file please refer to Obtaining memory file

Load the generated file(s) to the configuration tool using the “Load Memory File #X" checkboxes.

Once you load all the memory files, click on “Calculate". If the files loaded had the expected format,
the CRC-CCITT checksum(s) will be calculated and displayed at “File #N checksum:" field. The
supported formats are:

16-bit C-style (∗.dat) file or

MSP-430 TXT file (∗.txt)

After, the CRC checksum are calculated click on the checkbox “Generate File with CRC check-
sums".

Verify that the “CRC checksum location" fiels has the correct address.

Select the desired output format for the memory file. The output file is IDE dependent:

For CCS use (∗.dat) file

For IAR use (∗.txt) file

Select the output path for the memory file.

Click “Create".

NOTE: The CRC-CCITT checksum will be placed in the same order as you are loading the memory
files starting at the “CRC checksum location" specified in the Configuration Tool (e.g. loading
memory file #1 and #2 with CRC checksum loaction= 0x1800, will place checksum for file #1 in
memory location 0x1800 and checksum for file #2 will be placed in 0x1802). The general steps to
obtain a memory content file in CCS are the following:

Determine non-volatile memory location in MSP430 device to be monitored.

November 15, 2016 53

Using the MSP430 IEC60730 Software Package Configuration Tool

This can be determined using the “Memory Organization" section in the device datasheet.

Obtain memory file using CCS or IAR IDE. If you want to use the CRC checksum generation feature,
please verify that the memory file has the expected format.

For CCS expected format 16-Bit Hex -C Style

For IAR expected format msp430-txt

For more information on how to obtain memory content file in CCS please refer to Example ob-
taining memory file in CCS or for IAR please refer to Example obtaining memory file in IAR. The
following section shows how to obtain the flash memory content of Bank A in a MSP430F5529 in
Code Composer Studio.

Go to “Memory Organization" section in the device datasheet and determine the start and end
address for Bank A.

For MSP430F5529 Bank A has a start address of 0x004400h" and end address of
</tt>0x00C3FF".

Calculate the number of 16-bit word based on the start and end address:

of 16-bit words = (end_address - start_address +1)/2

For this example the “# of 16-bit words = 0x4000"

In CCS, start a debugging session of the project.

When the debug session has started, go to Windows->Show View->Memory
Browser.

54 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

In the Memory Browser window select “Save Memory"

In the Save Memory" window select the output path and file name for the
memory file. Click</tt>Next"

November 15, 2016 55

Using the MSP430 IEC60730 Software Package Configuration Tool

Verify Format" is set to 16-Bit Hex - C Style. Enter</tt>Start
Address". Click on “Specify the number of memory words to read" and
enter the value calculated in step 2. Click “Finish"

56 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

Note When generating the memory file verify that no breakpoints are set
in the project. If you currently have no project in CCS and you just
want to obtain the memory file. Follow this steps:

 In CCS, go to Windows->Show View->Target Configurations

latex memoryf ileCCStargetConfigview.png < /li >< li >
Inthe“TargetConfiguration”windowright−clickon“UserDefined”andselect“NewTargetConfiguration”.T ypethenameofthe“TargetConfiguration”.Click“Finish”.

latex memoryf ileCCStargetConfignew.png < /li >< li > Inthe“TargetConfiguration”windowright −
clickonthenewtargetconfigurationfileyoujustcreatedandselect“LaunchSelectedConfiguration”

latex memoryf ileCCStargetConfiglaunch.png < /li >< li > Once“DebugPerspective”isavailable, gotoRun− >
ConnectTarget.

latex memoryf ileCCStargetConfigconnecttoTarget.png < /li >< li > FollowStep4 −
7frominstructionsabove. < /li >< /ol > The following section shows how to obtain the flash
memory content of Bank A in a MSP430F5529 in IAR.

Go to “Memory Organization" section in the device datasheet and determine the start and end
address for Bank A.

November 15, 2016 57

Using the MSP430 IEC60730 Software Package Configuration Tool

For MSP430F5529 Bank A has a start address of 0x004400" and end address of
</tt>0x00C3FF".

Start a debugging session in IAR.

When the debug session has started in IAR, go to Debug -> Memory ->
Save.. .

Note When generating the memory file verify that no breakpoints are set
in the project.

In the Memory Save" window, select</tt>Memory" in the Drop-down menu
for “Zone". Type the start and end address. Select <tt>msp430-txt"
for File Format. Finally, select the output path and file name of the
memory file. ClickSave".

To load the memory file in CCS use the “Load Memory"
option in the Memory Browser windows. The Memory Browser window can be accessed while
debugging an application and selecting Windows–>Show View–>Memory Browser.

58 November 15, 2016

Using the MSP430 IEC60730 Software Package Configuration Tool

To load the memory file in IAR use the “Restore.." memory option while debugging the application.
The Restore option is under Debug–>Memory–>Restore.

For detailed step-by-step instruction on how to load the CRC checksums please refer to step 4 and
5 from @ref generatingcrcexamplesccsor@refgeneratingcrcexamplesiar.

November 15, 2016 59

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © , Texas Instruments Incorporated

60 November 15, 2016

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	Document License
	Contributors to this document
	1 Introduction
	2 API relation to Table H.1 in IEC60730:2010 standard
	3 Running IEC60730 example projects
	4 Starting a New IEC60730 project
	5 Analog-to-Digital Converter Test
	5.0.1 API Functions

	6 CPU Registers Test
	6.0.2 API Functions

	7 Clock Fail Test
	7.0.3 API Functions

	8 Non Volatile Memory Test
	8.0.4 API Functions

	9 General Purpose I/O Test
	9.0.5 API Functions

	10 Variable Memory Test
	10.0.6 API Functions

	11 Program Counter Register Test
	11.0.7 API Functions

	12 IEC60730 Class B API execution times and Code Size
	13 Using the MSP430 IEC60730 Software Package Configuration Tool
	IMPORTANT NOTICE

