AM263Px Power Estimation Tool #### **ABSTRACT** The power estimation spreadsheet provides power consumption estimates based on measured and simulated data; they are provided "as is" and are not ensured within a specified precision. Power consumption depends on electrical parameters, silicon process variations, environmental conditions, and use cases running on the processor during operation. Actual power consumption should be verified in the real system. This tool is meant for estimating power consumption during realistic operating modes; it is not intended for power supply sizing. This power estimation spreadsheet is preliminary and subject to change. This spreadsheet can be downloaded from the web at: SPRM851. #### Note This is a preliminary tool and TI is continuing to characterize more devices; therefore, data is updated and the Power Estimation Tool (PET) revised along with new findings. ### **Table of Contents** | 1 Introduction |
2 | |----------------|-------| | | | | | | | 4 Interfaces | 5 | | | | | · | | | | | ### **Trademarks** All trademarks are the property of their respective owners. ### 1 Introduction The power estimation tool consists of a spreadsheet that helps calculate the estimated power based on the inputs of the application use-case a user provides. The usage of the spreadsheet is explained further in the document. By default, the spreadsheet has the most commonly used use-case settings as its' inputs. ### 2 Using the Power Estimation Tool The input part of the spreadsheet consists of following 3 sections: Processing Elements, Interfaces and Power Report. To use the input part the spreadsheet, users must modify the fields with their appropriate usage parameters. Cells designed for user input are in yellow. Fields that cannot be modified are gray. Fields in blue are the output calculated power. Configure the yellow cells to a value most closely aligned with the intended scenario. The purpose of each of these sections is: - · Processing Elements: - Configure frequency of operation for R5F Dual Core 0, R5F Dual Core 1, HSM M4, ICSSM and CPSW - Mode of operation for R5F and HSM (Hardware Security Module) - User estimated percent utilization of each core - Interfaces - Subset of commonly used major Interfaces with selectable mode - Subset of commonly used major Interfaces with percent utilization - Other Inputs - Junction Temperature (Tj) in degree Celsius - Package type: SIP or non-SIP - In case of SIP, Flash operation mode: RWW or Octal Read - Power Report: - Selectable VDD, VDD SRAM, VDDA - Power estimation output by rail - Power rails are aligned with AM263Px controlCARD™ design ### **3 Processing Elements** This section allows you to set the operating frequency, mode and load each compute core with utilization between 0%-100% (inclusive). Utilization here refers to the amount of time the core is utilized/active (expressed in-terms of percentage) within a fixed time frame. Table 3-1 lists the selectable options. Table 3-1. Selectable Options for Frequency, Mode and Utilization | Processing Element | Frequency | Mode | Utilization | | | |--------------------------------|---------------------------------|--------------------------------|-------------|--|--| | HSM (Hardware Security Module) | N/A | Secure Boot, Run Time Services | 0% – 100% | | | | R5F Dual Core 0 | 400MHz, 200MHz | Dual, Lockstep | 0% – 100% | | | | R5F Dual Core 1 | 400MHz, 200MHz, 0
(Disabled) | Dual, Lockstep | 0% – 100% | | | | ICSSM | 200MHz | N/A | 0% – 100% | | | | CPSW | 200MHz | N/A | 0% – 100% | | | www.ti.com Interfaces ### 4 Interfaces This section lets you select both modes and utilization of subset of the commonly used interfaces on AM263Px including CMPSS, DAC, ADC, OSPI, PWM, Ethernet, MCAN, MCSPI, Resolver. Utilization here refers to the amount of time the corresponding interface is utilized/active (expressed in-terms of percentage) within a fixed time frame. Table 4-1 lists the selectable options. Table 4-1. Selectable Options of Mode and Utilization | Interface | Mode | Utilization | |-------------------------|---|-------------| | CMPSS | on_3p3v, off | 0%-100% | | ADC | on_3p3v, off | 0%-100% | | DAC | on_3p3v, off | 0%-100% | | Ethernet_0 & Ethernet_1 | RGMII, RMII, MII, 10, 100, 3.3V, Off | 0%-100% | | OSPI | Controller (Master), Peripheral (Slave), 133MHz, 100MHz, 80MHz, 67MHz, 60MHz, 40MHz | 0%-100% | | Resolver | on_3p3v, off | 0%-100% | | ECAP | Capture, PWM Out , 3v3 | 0%-100% | | EPWM | on_3p3v, off | 0%-100% | | MCAN | 250kbps, 1,5,8mbps, 3.3V, Off | 0%-100% | | MCSPI | Controller (Master), Peripheral (Slave), 1.563, 2.083, 3.125, 6.25, 12.5, 25, 40mbps, 3.3V, Off | 0%-100% | ### 5 Other inputs - There is a selectable field for the junction temperature configuration: - Temperature (T_j °C): -40, 0, 25, 85, 105, 125, 140, 150. #### Note In Case of SIP package, the maximum T_j is 125°C and the tool only supports 25°C and 125°C configurations. - There is a selectable field for the package type configuration: - Select SIP if SIP package is being used - Non-SIP if Non-SIP package is being used. - There is a selectable field for the Flash operation configuration: - RWW (Read While Write OSPI 8D Mode 133MHz) - Octal Read (OSPI 8D Mode 133MHz) www.ti.com Power Report ### **6 Power Report** The power estimation tool generates a power analysis report in this section. The report lists power supply name, voltage in Volts (V), and power consumption in Watts (W) per power rail groups. Power rail groups match the AM263Px CC design. The table below shows the selectable fields for the following power rails options. Table 6-1. Selectable options for the power rails | Voltage Rail | Selectable Options (V) | |--------------|------------------------------| | VDD | 1.15, 1.175, 1.20,1.23, 1.25 | | VDD_SRAM | 1.15, 1.175, 1.20,1.23, 1.25 | | VDDA | 3.135, 3.3, 3.465 | ## **7 Revision History** | DATE | REVISION | | NOTES | | |----------|----------|------------------|-------|---| | May 2024 | * | Initial release. | | , | ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated